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Abstract. Virtual Machines are the key technology in cloud computing.
In order to upgrade, repair or service the physical machine where a Vir-
tual Machine is hosted, a common practice is to live-migrate the Virtual
Machine to a different server. This involves copying all the guest memory
over the network, which may take a non-negligible amount of time. In
this work, we propose a technique to speed up the migration time by re-
ducing the amount of guest memory to be transferred with the help of the
guest OS. In particular, during live-migration, a paravirtualized driver
running in the guest kernel obtains, and sends to the Virtual Machine
Monitor, the list of guest page frames that are currently unused. The
VMM can then safely skip these pages during the copy. We have inte-
grated this technique in the live-migration implementation of QEMU [3],
and we show the effects of our work in some experiments comparing the
results against QEMU default implementation and VirtIO-Balloon.
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1 Introduction

Most of the cloud computing infrastructure relies on Virtual Machines (VMs) and
usually has strong requirements on downtime periods to be as low as possible.
This is not an easy task to achieve because Physical Machines (PMs) or Host
Machines, i.e. where the VMs are hosted, may require maintenance for several
reasons: hardware failures, periodic checks or upgrades. If one of such machines
is turned off without any precaution, all the VMs, and the services running on
them, become suddenly unavailable. One possible solution is to move all the
hosted VM(s) to another computer before shutting down the PM. This should
be completed as fast as possible to reduce downtime for the users. Migrating
VMs be also be useful for load balancing [16, 1]: a VM that is running on an
overloaded server and experiencing degraded performance, can be moved to a
lightly loaded server. Finally, a server experiencing a low load can be turned off,
after copying its VMs to another machine, thus saving power. Overall, migration
can be used for optimizing the usage of all available PMs.

Live Migration [4] is a technique that is available in most of the hypervisors
like Xen [2] or KVM [9] and for containers like Linux Containers LXC [13, 5]
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Fig. 1. Example of Live Migration of VM2 from PM1 to VM4 in PM2

or Docker [17]. Because most of the migration time is spent for the data copy
of the guest context to the target VM, the idea is to perform it while keeping
the source machine running. It is not possible to copy the entire state because
the running machine constantly modifies (a part of) its memory known as its
working set, so the VM needs to be shut down at some point to copy this set
(stop and copy). However, since the size of the working set is smaller than the
entire guest state, the downtime is greatly reduced. Optimizing the downtime
or the migration time is not an easy task and there are several routes that have
been explored: in [8] the authors introduced a novel stopping condition based
on the rate of page transmission during migration, Svärd et al. in [14] explained
how delta compression techniques can reduce the amount of data to be sent.

The migration process can be further optimized by skipping all the guest
pages that are marked as free, but because of the semantic gap that exists
between the host and the guest system, the VMM is unaware of the status
of each memory frame inside the VM. This gap can be overcome using VM
Introspection [6] (VMI) that consists in analyzing the guest memory content
from the hypervisor. Using the latter tecnique Wang et al. [15] implemented this
optimization by ignoring caches and free pages, drastically reducing the data
transferred by ≈ 70%. However, this promising method has some limitations:
in the case of a VM with an encrypted RAM, as found in modern confidential
computing environment, the method cannot be used, since the hypervisor cannot
decrypt the guest memory. This limitation can be address by paravirtualization:
the virtualized system, or at least some part of it, is aware that is running inside
a VM and is willing to exchange information with the Hypervisor(HV). One
example is Ballooning [7]: with the latter technology the HV can reclaim part
of the guest’s memory by “inflating” the balloon before starting the migration:
this limits the amount of RAM available for the guest, and therefore also the
amount of data to be transferred. However, this does not come for free: reducing
the guest’s memory to give it back to the hypervisor, implies that the guest
cannot use that memory until it is released by the host. In fact, the hypervisor
may use the regained memory to run a new VM, for example, and if the guest
could use that portion of memory, it could read/write the memory of another
VM. In this work we propose a paravirtualized driver that sends to the HV the
list of page frames that are free when the migration starts. In our solution, the
guest still owns the memory for the duration of the migration and can use it as
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needed. A similar solution has been proposed for the Xen hypervisor [12]. We
provide and evaluate a complete implementation for the QEMU hypervisor [3]
by reusing a generic paravirtualization device [10].

The rest of the paper is organized as follows: Section 2 provides the neces-
sary background on the existing technologies (Linux memory management, live
migration and Ballooning in QEMU); Section 3 describes our proposed paravir-
tualized migration; Section 4 shows the results of some experiments and Section 5
concludes.

2 Background

2.1 Linux physical memory

Linux physical memory is organized in blocks of physical pages with different
sizes. Each block is built from a set of consecutive physical pages, the number of
which is always a power of 2. The power exponent is usually called order and it
can vary from 0 to 10. This means that the size of the smallest and the biggest
block of physical pages is respectively 4 KiB (that is the size of a single physical
page) and 4 MiB (that is the size of 210 consecutive physical pages).
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Fig. 2. Linux Physical Memory Structure

Whenever the Kernel needs to allocate memory for some processes, it needs
to find a list of free blocks of physical pages. This information can be searched
through a hierarchy of data structures. From top to bottom, the first layer is
represented by the node data structure. There are as many nodes as the number
of NUMA nodes, so in UMA machines just one node is present. Each node is
responsible for a certain number of zones, which in turn handle an array of free
area data structures: each of these contains a pointer to a list of free blocks of
pages with the same order. Since memory allocation can occur concurrently, a
synchronization mechanism to protect the critical section is required. For this
reason, each zone contains a spin-lock.
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2.2 QEMU live-migration

QEMU [3] is a widely used hypervisor originally based on binary-translation
and later extended to hardware-assisted virtualization [9]. QEMU implements
the so called Pre-Copy live-migration, since the memory is transferred before
the Guest runs in the new environment. In fact—when the migration task is
terminated—the Guest is ready to run as if nothing had ever happened.

QEMU implements this technique using three stages.

- In the first stage all the Guest RAM is marked as dirty.

- The second stage is an iterative one: when the latter starts, the Hypervisor
keeps sending to the new Virtual Machine on the destination Host all the
dirty memory. However, the Hypervisor may send the same portion of mem-
ory more than once, since the Guest kernel and the Guest processes may still
perform write operations on memory, making it dirty again. In order to end
the second stage, watermarks or specific ending conditions must be chosen
and reached (such as watermarks on the minimum amount of memory left
to be transferred or a maximum number of iterations).

- During the third and final stage, the Hypervisor momentarily stops the Guest
in order to transfer the last portion of dirty memory, the CPU and the other
peripherals state.

Metrics such as setup time (time spent in the first stage), downtime (time spent
in the third stage) and total memory sent can be read by checking the migration
state on the QEMU Monitor.

2.3 VirtIO Balloon

The idea behind VirtIO Balloon [11] is to give back to the hypervisor the unused
memory of a Guest. To do that, a communication between Guest and Hypervisor
is required. The balloon can be inflated or deflated. Inflating the balloon means
increasing the portion of guest memory that is given back to the Host and can
no longer be used by the guest kernel. Deflating the balloon is the opposite
operation. The bigger the balloon, the lower is the amount of memory that the
Guest can use, but this means that the Host has regained more memory.

VirtIO Balloon can inflate/deflate the balloon in two different ways:

– static: the administrator manually resizes (by inflating or deflating the bal-
loon) the guest memory through the QEMU Monitor.

– automatic: the HV and the guest kernel communicate to dynamically resize
the guest memory depending on the guest and host needs.

VirtIO Balloon can be used to speed up live-migration. To do so in QEMU,
the balloon can be inflated from the QEMUMonitor so that the memory that the
guest kernel can use is smaller. Now the hypervisor can copy just the memory
that the guest can actually use. The balloon can then be deflated once the
migration is complete. Note that, for the entire duration of the migration process,
the guest kernel cannot use the memory contained in the balloon.
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3 Paravirtualized migration

In Linux all the memory is divided in pages. These pages can be either allocated
for different purposes, or can be marked as free. The HV, because of the semantic
gap, is unaware of the status of each page and, while performing a migration,
must copy all of them. Our idea to reduce the amount of data transferred is to
communicate to the HV the list of free pages, along with their physical addresses,
during the first state of the migration, so that the HV can skip them during the
first iteration of the second stage.

To provide communication between the Guest OS, the Hypervisor and the
Host OS the mechanism described in [10] has been exploited. It involves the use
of a virtual device, attached to QEMU, that provides a TCP socket for the host
system, and a readable buffer for the device-driver. In this way, the host system,
using the socket, is able to send a message to the device, while the HV and the
guest OS can communicate using the device buffer.

On the other hand, to send back information from the guest to the host, the
guest OS can write—with the help of the device driver—inside a buffer available
in the device. Since the device is virtual all the information written can be then
sent to the host via the socket.

One example of communication is when the host system wants to enable
or disable the new migration mechanism. In this case, it just needs to send a
message to the device so that it will store this information until the migration
procedure starts.

If migration optimization is enabled, the following steps show the entire pro-
cess of our mechanism:

1. The migration thread raises a specific IRQ on the virtual device in order
to communicate to the device driver that a migration is occurring. It then
waits until the device driver terminates its task.

2. The device driver handles the IRQ. It acquires each zone spinlock and com-
municates to the HV the physical addresses of the Free Blocks of Physical
Pages (FBPP from now on) with their relative sizes, causing a VM Exit.

3. The virtual device can now wake up the migration thread and it waits until
the migration’s first stage is terminated.

4. The migration thread can now read the guest physical addresses of FBPP
from the device buffer. Since the HV is a Host’s process, it needs to translate
the Guest Physical Addresses to Host Physical Addresses. Once the trans-
lation is performed, it can remove every FBPP from the list of dirty pages.
Then it will wake up the thread in charge of the device’s emulation, and it
will start the migration’s second stage.

5. The VM Exit is concluded, so the device driver can now release the spinlocks.

The Guest cannot allocate, nor deallocate memory during this stage, but it can
do it freely during the other stages, and in particular while memory is being
transferred, since any modifications to the Guest kernel’s memory-allocation
data structures will be caught by the normal dirty-pages tracking mechanism.
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4 Experimental results

All the experiments where run on an Intel i7 8700K with 16 GiB DDR4 RAM.
The Guest VM was assigned 4 virtual CPUs and 8 GiB of memory. Both the
host and the guest were running v5.11.22 of the Linux kernel. To evaluate per-
formance, we tested different scenarios varying the amount of free memory and
the live-migration methodology: The improved live-migration mechanism has
been compared against the current QEMU migration implementation with and
without the use of VirtIO Balloon.

Our expectation in terms of performance was a decrease in the amount of
transferred memory at the cost of a slight increase in setup time. The reduction
in terms of transferred memory comes from the avoidance of sending the free
memory pages from the VM in the source PM to the VM in the destination PM.
On the other hand, this improvement does not come for free, since the list of
the FBPP must be evaluated during the first live-migration stage, increasing the
setup time. However, we expect that this is largely offset by the time saved from
not sending a large portion of memory.

In the first testing session, we compared our optimized live-migration imple-
mentation with the QEMU native one.

Three scenarios with different memory loads have been tested. In order to
simulate these scenarios, we used a program that used a fixed amount of memory
and kept it allocated for the whole migration process.

– No Load: No memory from the program was allocated during the migration
process.

– Mid Load: 4 GiB of memory from the program were allocated during the
migration process.

– High Load: 6 GiB of memory from the program were allocated during the
migration process.
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Fig. 3. Setup time with and without
the optimization in low mid and high
load.
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Figure 3 show that, in each scenario, we experienced a higher setup time
compared to the standard QEMU migration, as expected. The setup time is
about 25 milliseconds and tends to decrease when the load on memory increases.
In fact, when a big amount of memory has already been allocated by the kernel,
the number of FBPP is lower, so the driver of the emulated guest device that is
running into the guest kernel finishes its job faster. Experiments also show that
in the high load scenario, setup time is still not comparable to the one obtained
by the QEMU default migration, since in this case there is still the overhead
caused by synchronization between the migration thread and the guest device
driver.

As for the amount of transferred memory, experiments in Figure 4 show an
improvement in the no load and mid load scenario, while there is no difference
in the high load one. In fact, in this last case, the amount of free memory is so
low that there is no improvement at all since the hypervisor needs to copy the
whole memory anyway. On the other hand, when there is a really high portion
of free memory, as in no load scenario, the transferred memory reduction is quite
significant.

Now let’s compute the amount of time spared performing the live migration
considering a 1 Gib/s transmission bitrate:

– no load: with the standard QEMU migration the hypervisor needs to transfer
6.98 GiB of memory, taking around 55,84 seconds. The optimized mechanism
allows the hypervisor to just send 870.32 MiB of memory, taking just 6.96
seconds. The added setup time is so small compared to these numbers that
it is negligible.

– mid load: with the standard QEMU migration the hypervisor needs to trans-
fer 6.86 GiB of memory against the 4.86 GiB with the optimized mechanism.
This leads to a spare of 16 seconds in terms of total migration time. Even in
this case, the added setup time is so small that is still negligible.

– full load: this is the worst scenario, in fact the amount of transferred RAM
is basically equal between the two migration mechanism, implying no im-
provement in terms of time saved.

Of course having an higher bitrate implies a less evident advantage in terms
of time saved. In fact, while an higher bitrate allows the HV to copy the same
amount of data in a shorter time, on the other hand it offers no setup time
reduction. However, the transferred memory reduction given by this optimization
for the no load and mid load scenario is still big enough to be advantageous even
with a bitrate of 10 Gib/s.

The following results come from two simulations with different balloon sizes,
statically set. In both cases, the guest had no load on memory, in order to
maximize the transferred RAM reduction for both migration implementations.
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Fig. 5. Setup time using the optimiza-
tion and VirtIO Balloon in two VM se-
tups (1 GiB and 4 GiB of RAM).
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Fig. 6. Transferred RAM using the op-
timization and VirtIO Balloon in two
VM setups (1 GiB and 4 GiB of RAM).

In these two simulations the Guest VM had 1 GiB and 4 GiB of memory
respectively. The RAM was reduced by inflating the (VirtIO) balloon and thus
given back to the HV.

Figure 5 shows that in each scenario we experienced a higher setup time
compared to the standard QEMU migration with the use of VirtIO Balloon.
This is expected and the motivation is the same as in the previous scenario.

As for the amount of transferred memory, Figure 6 shows that there is no
significant improvement against the standard QEMU migration using VirtIO
Balloon when the guest’s memory is shrunk to 1 GiB. In this scenario, the
amount of memory left to the guest is basically comparable to the memory
without the free pages. In other words the balloon reduced the amount of free
pages, making our optimization less effective. However, when the balloon size is
not as big as the free memory, like in the second scenario, our implementation
performs better, allowing us to save around 15.76 seconds considering a bitrate of
1 Gib/s. Even in this case, the added setup time is so small that is still negligible.

5 Conclusions and future work

In conclusion, in this work we improved the QEMU live migration by not sending
the guest’s free memory. This showed substantial performance gains against the
standard migration, especially when the guest is not handling a high memory
load. Future work should consider the use of eBPF to monitor, using probes,
guest’s memory allocation. Doing this, we can reduce the setup time since we
would not need to synchronize the guest’s device driver and the migration thread
for the entire first migration stage. On the other hand, the guest kernel would
be able to allocate memory even during the setup time, since the driver would
not need to hold the free areas spin-locks for a long time.
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