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In this paper, we present a novel study on a metamaterial with nonlinear magnetic core filled-resonators. We adopt an equivalent
nonlinear circuit model, describing the magnetic core behavior in the Rayleigh region. We then derive the solution through
perturbative analytical approaches. In particular, we show that the nonlinearity of the filling material generates secondary resonances
at which the metamaterial amplifies the input field and exhibits a negative effective magnetic permeability. We validate the analytical
results with numerical simulations performed via a circuit simulator. Finally, we report our discussion and conclusion.
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I. INTRODUCTION

THE development and study of novel materials with new

properties is a wide field of active research. Focusing

on electromagnetic properties, we have the relevant work of

[1] that contributes to the generation of new material with

peculiar new electromagnetic properties. Starting from the

original work of [1] in the microwave regime, new theoretical

and experimental works have expanded the frequency range

considerably that metamaterials and composite materials can

operate [2], [3], [4], [5], [6], [7], [8], [9]. In particular in [10]

a metamaterial absorber is designed within the visible light

regime, while in [5] and in [6] the authors built structures

exhibiting negative effective permeability in the kHz frequency

range. Metamaterials with negative µ operating at optical fre-

quencies can be used to design superlens, while metamaterials

with negative µ at kHz and MHz frequencies may help to

enhance shieldings [11] and wireless power transfer [12], as

well as exhibit intrinsic stability in magnetic levitation [13],

[14], thus showing the wide range of possible applications. The

possibility to control the metamaterial behavior introducing

nonlinear elements appears also an intriguing argument. Some

studies approached this aspect using dielectric nonlinearity,

mechanical and thermal effects [15], [16], [17].

Here, we study the modified structure realized in [5] filling

up the resonant cavity with a hysteretical material operating

in the Rayleigh region [18]. Adding ferrite to the setup of [5],

we will show that, besides the principal resonance, the non-

linearity of the material generates secondary resonances. The

main characteristic of the secondary resonance is a moderate

amplification of the signal, giving the advantages of resonance

but keeping the magnetic filling material in the Rayleigh zone.

Further, being one of the two secondary resonances the half of

the main resonance, this positively impacts the cell dimensions

of a hypothetical metamaterial. As discussed throughout the

paper, we will use a nonlinear circuital model to describe
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the system we are willing to study. Our effort will focus on

equations such as

d2x

dt2
+ x = εh

(

x,
dx

dt
, t

)

(1)

To study the above equation, we will adopt two analytical

procedures: the Multiple Scales [19] and the Average Theo-

rem [20]

The paper is organized as follows: In Sec. II we present the

theoretical model. In Sec. III we study the nonlinear circuit

near the resonance. In Sec. IV we show, analytically, that the

system has a secondary resonance. Finally in Sec. VII we draw

our conclusions.

II. MODEL

Let us consider a metamaterial composed of an array of

indefinitely long cylinders as shown in Fig. 1 (cross-section).

Each grey cylinder represents a solenoid filled with a magnetic

material and closed through a capacitor to form a resonator.

The squares define the unit cells of the metamaterial. As

demonstrated in [5], the study of the metamaterial can be

reduced to the study of one unit cell inserted in an external

solenoid. As a consequence, the configuration reduces to that

shown in Fig. 2, through which we recognize the external

solenoid (solid lines) and the resonator (dash-dotted line) with

a symbol of the magnetic filling (bold lines). The two small

squares represent a search coil through which we can evaluate

the average magnetic flux density, while the two small circles

indicate a second search coil to measure the average magnetic

flux density in the region inside the external solenoid and out-

side the resonator. A detailed discussion of this configuration

and the implemented measurement procedure to characterize

a structured array of resonators via a “unit-cell” setup is

available in [5], [6]. Besides, cell dimensions, main parameter

values, and characteristic frequencies are discussed throughout

those papers.

The equivalent circuit model of the configuration shown

in Fig. 2 is reported in Fig. 3. In more detail, L11 and



ACCEPTED ON IEEE TRANSACTIONS ON MAGNETICS 2

Fig. 1. Representation of the metamaterial with the array of magnetically
nonlinear resonators. The square with the thicker border and a dashed motif
represents the unit-cell.

Fig. 2. Schematic section of the unit-cell with the external solenoid (solid
lines), the resonator (dash-dotted line), the magnetic filling (bold lines),
and the two search coils (squares and circles refer to Bave and µ0Have,
respectively).

L22 represent the differential self inductances of the external

solenoid and the resonator, respectively, while L21 = L12 ≡
M stands for the differential mutual inductance between the

two solenoids. The parameters R2 and C2 are the resistance

and capacitance of the resonator circuit. The voltages vo3
and vo4 are the induced voltages along with the two search

coils, small circles, and small squares, respectively, of Fig. 2.

Such voltages can be measured as discussed in [5], providing

the average field µ0Have (coil with circles) and the average

magnetic flux density Bave (coil with squares) over the unit-

cell region.

Fig. 3. Equivalent circuit of the resonant system with nonlinear inductances.

Applying Faraday-Lenz’s law, knowing the magnetic

flux Φ [i1,M(i1, i2), i2, L22(i1, i2)] linked with the resonator

solenoid, we have

V2 =
dΦ

dt
=
∂Φ

∂i1

di1
dt

+
∂Φ

∂M

dM

dt
+
∂Φ

∂i2

di2
dt

+
∂Φ

∂L22

dL22

dt
, (2)

where V2 is the voltage across L22. Evaluating the derivatives

we write

V2 =

(

M + i1
∂M

∂i1
+ i2

∂L22

∂i1

)

di1
dt

+

(

L22 + i1
∂M

∂i2
+ i2

∂L22

∂i2

)

di2
dt
. (3)

Let us assume the same turn density for the two solenoids

to simplify our analysis. As a consequence, we can infer

L22(i1, i2) =M(i1, i2), since all the linked magnetic flux with

the resonator links also with the external solenoid. Expanding

up to the first nonlinear term, the B −H relationship of the

magnetic filling material, we can write:

B(H) ≈ aH + bH2, (4)

where the right-hand term is representative of the B − H
relationship in the Rayleigh zone.

Besides, we may associate the differential permeability

µ ≡ µ(H) = ∂B/∂H to a differential self inductance

L22(i1 + i2), and H ∝ i1 + i2 inside the resonator, due

to the superposition of the two magnetic fields generated

by i1 and i2. Consequently, L22 = L0 + αL(i1 + i2), and

analogously M = M0 + αM (i1 + i2), where the quantities

differential L0 and M0 are the constant terms of the self

and mutual inductance, respectively. In particular, we can

derive the parameters a and b through a characterization of

the magnetic material sample. Then we can estimate L0 and

α considering the cell and resonator geometry. Further, we

consider the case in which i1(t) is a given harmonic function,

i1(t) = i0 cos(ωt + φ1) and i2(t) ≡ dq2/dt is the current

flowing in the resonator circuit. Adding a capacitor C and

a resistance R, the electromotive balance equation of the

resonator circuit writes as:

[

M0 + 2αM i1 + (αM + αL)
dq2
dt

]

di1
dt

+

[

L0 + 2αL

dq2
dt

+ (αM + αL)i1

]

d2q2
dt2

+

R
dq2
dt

+
q2
C

= 0 (5)

Let us write (5) in dimensionless variable. For sake of sim-

plicity we may set M0 = L0 ≡ L, αM = αL ≡ α and

dq1/dt ≡ i1(t); thus we have

d2q2
dt2

+
R

L
[

1 + 2α
L

(

dq2
dt

+ dq1
dt

)]

dq2
dt

+

q2

LC
[

1 + 2α
L

(

dq2
dt

+ dq1
dt

)] = −d
2q1
dt2

. (6)
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Introducing the following notation

ω2
C =

1

LC
, Q =

q2
Q0

, Q1 =
q1
Q0

, ε =
2αQ0ωC

L
, (7)

β =
R

2αQ0ω2
C

, T = ωCt, τ = εωCT, (8)

we define the parameter ε as the ratio between a reference

inductance, i.e., 2αQ0ωC , proportional the nonlinearity pa-

rameter α, and the inductance L. To ensure the validity of our

perturbative approach, we required that ε≪ 1. Similarly, β is

representative of a dimensionless resistance. More in general,

β is not required to be a small parameter, and for our purposes,

we assume that εβ is also a small term. We may rewrite (6)

as

d2Q

dT 2
+

εβ
[

1 + ε
(

dQ

dT
+ dQ1

dT

)]

dQ

dT
+

Q
[

1 + ε
(

dQ

dT
+ dQ1

dT

)] = −d
2Q1

dT 2
. (9)

For what follows, we consider a simplified expression of the

above equation since we will limit our analysis to the case of

ε ≪ 1. Developing the denominator of Eq. (9) in power of ε
we have, at first order,

[

1 + ε

(

dQ

dT
+
dQ1

dT

)]

−1

≃ 1− ε

(

dQ

dT
+
dQ1

dT

)

(10)

Plugging Eq. (10) into Eq. (9) and keeping the terms up to

the first-order ε, we have

d2Q

dT 2
+Q = −d

2Q1

dT 2
+ ε

[

−βdQ
dT

+Q

(

dQ

dT
+
dQ1

dT

)]

. (11)

III. SOLUTION NEAR THE PRIMARY RESONANCE

In this section, we study the electric system near the primary

resonance, i.e., when the external source is a periodic signal

with a frequency ω ≈ ωC . To perform an analytical progress,

we will adopt the technique of the multiple scales [19]. Near

the primary resonance, we consider a weak external current

i1(t) near the resonance, i.e.,

i1(t) = εi01 sin[(1 + εΩ)ωCt] (12)

corresponding to the dimensionless function

dQ1

dT
= εf sin[(1 + εΩ)T ], f =

i01
Q0ωC

(13)

We assume the ε expansion for (11) with the charge expansion

Q =

∞
∑

n=0

εnFn(T
+, τ) = F0(T

+, τ) + εF1(T
+, τ) + · · · (14)

where T+ is the strained variable of the form T+ = T (1 +
ε2γ2 + · · · ) with γ2, γ3 . . . coefficients that have to be de-

termined. The slow variations are considered to depend on

τ = εT . Up to the first-order ε, it is sufficient to consider

T+ = T . From (11), we have

d2Q

dT 2
+Q = ε

[

−f cos(T +Ωτ)− β
dQ

dT
+Q

dQ

dT

]

(15)

Applying the multiple scale approach (see [19] for more

details)

∂2

∂T 2
F0(T, τ) + F0(T, τ) = 0 (16)

∂2

∂T 2
F1(T, τ) + F1(T, τ) = −f cos(T +Ωτ)−

β
∂

∂T
F0(T, τ) + F0(T, τ)

∂

∂T
F0(T, τ) +

−2
∂2

∂T∂τ
F0(T, τ). (17)

We make the ansatz F0(T, τ) = A(τ) cos(T + Ωτ) +
B(τ) sin(T + Ωτ) and imposing the condition that mixed-

secular terms vanish we have the following differential equa-

tion system

−ΩA(τ) +
β

2
B(τ) +B′(τ) = −f

2
, (18)

A′(τ) +
β

2
A(τ) + ΩB(τ) = 0. (19)

The solution is promptly found

A(τ) = e−
1

2
βτ

[(

a0 −
2fΩ

β2 + 4Ω2

)

cosΩτ

−βf sinΩτ
β2 + 4Ω2

]

+
2fΩ

β2 + 4Ω2
(20)

B(τ) = e−
1

2
βτ

[(

a0 −
2fΩ

β2 + 4Ω2

)

sinΩτ

+
βf cosΩτ

β2 + 4Ω2

]

− βf

β2 + 4Ω2
, (21)

in agreement with [19]. The solution is

Q(T ) = A(τ) cos(T +Ωτ) +B(τ) sin(T +Ωτ) (22)

with A(τ) and B(τ) given by (20) and (21). It is straightfor-

ward to see that for β → 0 and Ω → 0 we obtain A(τ) = a0
and B(τ) = −τ/2, i.e., the linear resonant case. For T → ∞
the system reaches the steady solution

Q(T ) ≈ A(τ) cos(T +Ωτ) +B(τ) sin(T +Ωτ) =
2fΩ

β2 + 4Ω2
cos(T + Ωτ)− βf

β2 + 4Ω2
sin(T +Ωτ) =

f
√

β2 + 4Ω2
cos(ωCt+Ωεt+ ψ), (23)

with

ψ = arctan

[

β

2Ω

]

.

The numerical check is shown in Figs. (4), (5) where we

plotted the solution (22) in the transient and stationary regime
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respectively. Here, and for all the next figures, data are reported

in arbitrary units (a. u.). We compared the analytical result and

the numerical simulation performed with the software LTspice,

as detailed in Sec. VII. The agreement is excellent. We stress

that the nonlinearity did not destroy the primary resonance.

On the contrary, as we will see in the next sections, it creates

new resonances.
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Fig. 4. Plot of the numerical (dotted line) and analytical (solid line) solution at
primary resonance, ωR = 1, for Q(T ) given by Eq. (22) during the transient.
The values of the other parameters are ε = 0.01, β = 0.1, Ω = 1, f = 1.
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Fig. 5. Plot of the numerical (dotted line) and analytical (solid line) solution
at primary resonance, ωR = 1, for Q(T ) given by Eq. (22) in the stationary
regime. The values of the other parameters are ε = 0.01, β = 0.1, Ω = 1,
f = 1.

IV. SOLUTION NEAR THE SECONDARY RESONANCES

We now consider the case far from the LC-resonance with

a current not necessarily small, i1(t) = i0 sinωt. First we seek

for secondary resonances. To do that we study (11) with the

standard approach (straightforward expansion) Q = u0(T ) +
εu1(T ) + · · · , we have

∂2

∂T 2
u0(T ) + u0(T ) = −F cosωRT, (24)

∂2

∂T 2
u1(T ) + u1(T ) = −β ∂

∂T
u0(T ) +

u0(T )

(

∂

∂T
u0(T ) +

F

ωR

sinωRT

)

, (25)

with

ωR ≡ ω

ωC

, F ≡ i0ωR

Q0ωC

.

The solution of (24) is

u0(T ) = c1 cosT + c2 sinT − F cosωRT

1− ω2
R

(26)

Plugging (24) into (25) we may easily solve (25) using stan-

dard techniques. We do not write down the large expression

of the solution for brevity. We limit ourselves to stress that,

analyzing the solution, in addition to ωR = 1, we find

secondary resonances at ωR = 0, 1/2, 2. The next step is to

manipulate (11) in such a way to obtain an equation formally

written as (1) so that we can apply the mathematical tools used

in this paper, in particular, the Average Theorem [20]. To do

that, we set

Q = U +Qp = U − F cosωRT

1− ω2
R

, (27)

where Qp is the particular solution of (11) at zero-order ε.
After a little algebra we end up into

d2U

dT 2
+ U = εh

(

U,
dU

dT
, T

)

(28)

with the nonlinear term h
(

U, dU
dT
, T

)

given by the expression

h

(

U,
dU

dT
, T

)

= −β
[

d

dT

(

−F cos(ωRT )

1− ω2
R

)

+
dU

dT

]

+

(

U − F cos(ωRT )

1− ω2
R

)

×
[

dU

dT
+

d

dT

(

−F cos(ωRT )

1− ω2
R

)

+
F sin(ωRT )

ωR

]

. (29)

Following the approach of [20] we perform the transformation

(van der Pol transformation)

[

u
v

]

= A

[

U
dU
dt

]

, (30)

A =

[

cos
(

ωRT
k

)

− k
ωR

sin
(

ωRT
k

)

− sin
(

ωRT
k

)

− k
ωR

cos
(

ωRT
k

)

]

(31)

and, inverting the transformation, we have

U = u cos

(

ωRT

k

)

− v sin

(

ωRT

k

)

, (32)

dU

dt
= −ωR

k

[

u sin

(

ωRT

k

)

+ v cos

(

ωRT

k

)]

. (33)

Deriving (30) in which U, dU
dt

can be written as functions of

u, v, t via (30) itself, and using (28) we finally get

du

dT
= − k

ωR

[

εh+

(

ω2
R − k2

k2

)

U

]

sin

(

ωRT

k

)

, (34)

dv

dT
= − k

ωR

[

εh+

(

ω2
R − k2

k2

)

U

]

cos

(

ωRT

k

)

. (35)
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We are interested to the case k2 − ω2
R = εΓ. We may rewrite

(32) and (33) as

du

dT
= −ε k

ω

[

h−
(

Γ

k2

)

U

]

sin

(

ωRT

k

)

, (36)

dv

dT
= −ε k

ω

[

h−
(

Γ

k2

)

U

]

cos

(

ωRT

k

)

. (37)

We are now in the position to apply the Averaging Theo-

rem [20]. In this case, it coincides with taking the average

on the right-hand-side of (36) and (37) during the period

corresponding to the frequency ωR, keeping the functions u
and v as constants while averaging. We are interested in two

cases: ωR ≈ 1/2 and ωR ≈ 2, which will be studied in detail

in the next sections.

V. SECONDARY RESONANCE: ωR ≈ 2

Substituting (32) and (33) into (36) and (37), we obtain

two quite large expressions containing the functions u and v
and trigonometric functions. Applying the Averaging Theo-

rem [20] with ωR =
√
k2 − εΓ =

√
4− εΓ we find

du

dT
= −ε

[(

β

2
+
F

24

)

u(T ) +
1

8
Γv(T )

]

, (38)

dv

dT
= −ε

[(

β

2
− F

24

)

v(T )− 1

8
Γu(T )

]

. (39)

The above equations can be solved. As reference we write

the approximated solution for ωR ≈ 2 with initial conditions

Q(0) = 0, Q′(0) = 0.

Q(T ) ≈ −F cos (ωRT )

1− ω2
R

+
F

1− ω2
R

×

exp

[

−1

2
βεT

]

cos

[

εT

24

√

9Γ2 − F 2

]

×
[

cos
[ωR

2
T
]

+
ε(12β + F ) sin

[

ωR

2
T
]

3 (4ωR + εΓ)

]

−

F

1− ω2
R

exp

[

−1

2
βεT

]

sin
[

εT
24

√
9Γ2 − F 2

]

√
9Γ2 − F 2

×
[

(

36ΓωR − ε
(

−9Γ2 + F 2 + 12βF
))

sin
[

ωR

2
T
]

3 (Γε+ 4ωR)
+

4 (FωR − 3βΓǫ) cos
[

ωR

2
T
]

Γε+ 4ωR

]

, (40)

with ωR =
√
k2 − εΓ =

√
4− εΓ. We stress that although

we studied an approximation of (9), i.e., (11), the analytical

results, in the range of the parameters keeping finite the so-

lution, are in excellent agreement with the numerical solution

of the exact equation (see Fig. 6). Seeking the range of the

parameters that generates an exponential growing solution, we

may limit ourselves to analyzing the system’s eigenvalues. We

find that when ωR ≈ 2

λ1 =
ε

24

(

−12β −
√

F 2 − 9Γ2

)

, (41)

λ2 =
ε

24

(

−12β +
√

F 2 − 9Γ2

)

. (42)

We infer that the parameter region corresponding to an ex-

ponential growing solution can be determined by imposing

λ2 > 0, that is

F 2 ≥ 144β2 + 9Γ2, Γ ≤ F

3
(43)

The divergence of the solution in the parameter range given

by (43) has to be attributed to the approximation used for the

analytical study of (9), namely the use of (11). We finally

observe that, although the resonance ωR = 2 does not cause a

considerable increase in the amplitude of the signal, the system

exhibits a negative µ as numerically shown in the Sec. VII.
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Fig. 6. Plot of numerical (dashed line) and analytical expression (solid line)
for Q(T ) given by Eq. (40), in the stationary regime. The values of the
parameters are β = 0.1, ε = 0.01, ωR = 2, F = 1, Γ = 0. The two
curves are indistinguishable.

VI. SECONDARY RESONANCE: ωR ≈ 1/2

As done in the previous section, following again [20], we

may repeat the same calculations for ωR =
√
k2 − εΓ =

√

1/4− εΓ. We find the following system of differential

equations

du

dT
= −ε

[

βωR

2
u+ Γv − F 2

8ω2
R (1− ω2

R)
2

]

, (44)

dv

dT
= −ε

[

− Γ

ωR

u+
β

2
v

]

. (45)

The system is linear and its solution, with initial conditions

Q(0) = 0, Q′(0) = 0, is

Q(T ) ≈ F 2
[

βωR cos
(

TωR

k

)

− 2Γ sin
(

TωR

k

)]

4 (1− ω2
R)

2
ωR (β2ω2

R + 4Γ2)
−

F cos (TωR)

1− ω2
R

− F exp

[

−1

2
βτ

]

cos

[

TωR

k
+
τΓ

ωR

]

βF − 4
(

1− ω2
R

) (

β2ω2
R + 4Γ2

)

4 (1− ω2
R)

2
(β2ω2

R + 4Γ2)
+

exp

[

−1

2
βτ

]

FωR sin

[

TωR

k
+
τΓ

ωR

]

βεk
[

4
(

1− ω2
R

) (

β2ω2
R + 4Γ2

)

− βF
]

+ 4FΓ

8 (1− ω2
R)

2
(β2ω2

R + 4Γ2) (εkΓ + ω2
R)

. (46)
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Figs. 7 and 8 show a very good agreement between analytical

and numerical checks. We note that the resonance ωR = 1/2
causes a considerable increase in the signal’s amplitude but

without the divergence characteristic of the primary resonance.

Thus if we do not exit from the Rayleigh zone, our results

remain valid.
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Fig. 7. Plot of numerical (dashed line) and analytical expression (solid line)
for Q(T ) given by (46) in transient regime. The values of the parameters are
β = 0.1, ε = 0.01, ω = 1/2, F = 1, Γ = 0.
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Fig. 8. Plot of numerical (dashed line) and analytical expression (solid line)
for Q(T ) given by (46) in stationary regime. The values of the parameters
are β = 0.1, ε = 0.01, ω = 1/2, F = 1, Γ = 0.

VII. NUMERICAL ANALYSIS

In Fig. 9, we show the circuit model adopted to derive the

numerical results compared with the analytical calculations

of Secs. III–VI. Simulations are performed with the LTspice

software environment.

The electric circuit of Fig. 3 shows a current generator i1
driving a primary inductance L1 magnetically coupled to a

constant inductance L0, which is in turn connected in series to

a dependent voltage source B, a resistance R and a capacitance

C. To numerically match with the analytical study, we fixed

L0 = 1 H, the mutual inductance between L1 and L0 equal

to 1 H, R = 1 Ω, and C = 1 F. More specifically, the element

B is an LTspice behavioral voltage source, and it is adopted

to implement the discussed nonlinearity, according to (5).

Fig. 9. Spice circuit.
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Fig. 10. Flux versus current at the primary resonance at ωR = 1. The values
of the other parameters are ε = 0.01, β = 0.1.

As shown in Figs. 4–8, the comparison between the numer-

ical and analytical solutions is excellent.

We now focus on the magnetic properties of the system.

The total flux, i.e., the flux through the external solenoid, is

(initial conditions Q(0) = 0, Q′(0) = 0

ΦT = L∗i1(T )−RQ− 1

C

∫ T

0

Q(u)du (47)

which is the sum of the flux through the resonator, i.e.,

−RQ − 1/C
∫ T

0
Q(u)du, and the flux through the circu-

lar crown between the external solenoid and the resonator,

i.e., L∗i1(T ). Therefore, L∗ = Lwo−res(1 − πr2res/a
2), is

the circular crown self-inductance, and Lwo−res is the self-

inductance of the unit-cell without the resonator. Finally, rres
is the resonator radius.
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Fig. 11. Flux versus current at the secondary resonance at ωR = 2. The
values of the other parameters are ε = 0.01, β = 0.1.
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Fig. 12. Flux versus current at the secondary resonance at ωR = 1/2. The
values of the other parameters are ε = 0.01, β = 0.1.

Let us now consider the case t → ∞ at which the

system works in a steady-state. The results for the primary

resonance, ωR = 1, are summarized in Fig. (10) and, for the

secondary resonances, in Figs. (11), and (12), for ωR = 2, 1/2
respectively.

Effective Magnetic Permeability µeff(ω) With phasor nota-

tion, let us now analyze the sign of the effective permeability

µ
eff

[5]

µeff(ω) =
Bave−iso(ω)

µ0Have(ω)
∝ ΦT−iso

I1
(48)

where Bave−iso and Have still refer to the spatial averages as

defined in Fig. 2, and, furthermore, Bave−iso (ΦT−iso), takes

into account the only isofrequency component of the mag-

netic flux density (magnetic flux) with the driven sinusoidal

magnetic field (driven current I1).

Then for frequencies sufficiently far from 1, from (40) and

(47) we have for the magnetic flux:

ΦT = −εβF cos(ωT )

ω2 − 1
+

F

ω

[

L∗ − 1

C(ω2 − 1)

]

sin(ωT ) =

ρ sin(ωT + φ) (49)

where we choose i1(T ) = F sin(ωT )/ω so to obtain the first

term on the right hand side of (24) and, by definition:

ρ =
F

ω

√

(

L∗ − 1

C(ω2 − 1)

)2

+

(

εβω

ω2 − 1

)2

(50)

sinφ = − εβF

ρ(ω2 − 1)
, (51)

cosφ =

(

L∗ − 1

C(ω2 − 1)

)

F

ωρ
. (52)

For |µeff(ω)| we obtain:

|µeff(ω)| ∝

√

(

L∗ − 1

C(ω2 − 1)

)2

+

(

εβω

ω2 − 1

)2

(53)

Fig. 13. Plot of the real part of µeff versus the dimensionless frequency ω.
Results are analytically derived from (49)-(53); ω = 1 refers to the primary
resonance.

We can finally analyze the sign of the real part of µeff(ω) as

reported in Figs. 13.

In particular, we can observe how the real part of the

effective permeability becomes negative from the primary

resonance to about three times its value, thus showing a wider

frequency range with respect to the air-core linear case as

discussed in [5] and [6], for which the frequency range over

which we can get negative values of the effective permeability

is very limited close around the frequency resonance.

The presence of magnetic material with µr ∼ 102 can

reduce the cell dimensions for a required resonance frequency

or, alternatively, diminish the resonance frequency if the cell

dimensions are maintained. However, the observed amplitude

resonance at ω = 1/2 has to be properly considered to avoid

possible undesired overvoltages on the circuit elements.

VIII. CONCLUSION

We investigated the behavior of a metamaterial made of non-

linear magnetic core filled-resonators, with the core operating

in the Rayleigh region. The study was performed by deriving

a nonlinear circuit model and adopting perturbative analytical

approaches for the solution. As a significant result, we showed

that the nonlinear filling material determines secondary res-

onances at one-half and twice the primary resonance. In

particular, the input field is significantly amplified at one-

half the primary resonance. At the same time, the real part

of the effective magnetic permeability maintains a positive

value around such a frequency range. On the other hand,

at twice the primary resonance, the input signal amplitude

practically maintains unchanged, while the effective perme-

ability is still negative. Indeed, the effective permeability gets

negative values from the primary resonance up to about three

times its value, and it substantially shows a linear behavior for

frequencies larger than the primary resonance. We performed a

numerical analysis with a circuit simulator, and it validated the

analytical results with a very good agreement. Finally, the use

of magnetic cores allows for reducing the cell dimensions for

a given primary resonance frequency, as well as for extending

the application up to industrial frequencies, and for reaching

larger negative values of the real part of the effective magnetic

permeability. However, the secondary resonance at one-half
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the primary resonance has to be properly taken into account

for an accurate design of the metamaterial.
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