
Parasympathetic-Sympathetic causal interaction through the analysis of
heart rate variability and electrodermal activity

Alejandro Callara1, Laura Sebastiani2, Enrica Laura Santarcangelo2, Shadi Ghiasi1, Nicola Vanello 1,
Enzo Pasquale Scilingo 1, and Alberto Greco∗1,

Abstract— In this preliminary study we presented a novel
approach to investigate the interaction between the parasym-
pathetic (PNS) and sympathetic nervous system (SNS) trhough
the spectral analysis of the heart rate variability and the electro-
dermal activity. This new approach was tested to analyze data
collected during an isometric handgrip test. Results revealed ...

I. INTRODUCTION

The autonomic nervous system (ANS) is the primary
mechanism to unconsciously regulate most of the bodily
functions such as heart rate variability (HRV), respiratory
rate, electrodermal activity (EDA), urination, and digestion
[1]. The two branches of the ANS, i.e., the parasympathetic
(PNS) and the sympathetic nervous systems (SNS), are
generally recognized to exert antagonistic effects on the
regulation of autonomic functions. However, this oppos-
ing interplay is not algebraically additive, but complicated
interactions exist [2]. Indeed, plenty of experimental and
clinical studies have demonstrated the presence of multiple
interactions between PNS and SNS that are mediated through
several pathways and mechanisms at both central and periph-
eral levels [3].

In this preliminary study, we aim at characterizing the di-
rectional interdependence between the PNS and SNS through
the analysis of two widely used ANS correlates such as the
HRV and the EDA. In fact, on the one hand, the estimation
of the high frequency (HF) components of the HRV spectrum
is commonly considered a reliable measure of the PNS
activity on cardiac functioning [4]. On the other hand, the
spectral power of the EDA in the range of 0.045 to 0.25
Hz (EDASYMP) has been recently presented as an index
of the SNS activity under cognitive, orthostatic and physical
stress (handgrip) conditions [5]. To detect and quantify the
bilateral causal interactions between the two branches of
the ANS, we adopted a multivariate autoregressive (MVAR)
model [6]. Due to the time-variant relationships between
these signals, we applied a modified recursive Kalman filter
to track changes in the model parameter.

II. MATERIALS AND METHODS

Twenty-five healthy subjects (aged XX ± XX years)
underwent an isometric handgrip test. The protocol consisted
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of 3 min of resting-state (rest0) and 2 min during which the
subject was asked to tighten a small hard ball in his/her
dominant hand at the maximum contraction strength (hg).
The ECG and EDA signals were recorded using the BIOPAC
MP 150 system with a sampling frequency of 500 Hz.

EDA signal represents changes in the skin conductance
of the non-dominant hand and it is a manifestation of the
activity in sweat glands. Since sweat glands are innervated by
the SNS, EDA is considered an ideal way to estimate the SNS
activity. ECG signals were used to detect R-peaks in order
to generate RR time series that were subsequently resampled
at 4 Hz (HRV). The EDA signals were also resampled at 4
Hz.

From HRV and EDA, we estimated the HF power spec-
trum and EDASYMP, respectively. More in details, the time-
frequency representation of both the HRV and EDA signals
were calculated using the smoothed pseudo-Wigner-Ville
distribution method (SPWVD) [7], as it is shown in eq. 1:
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where: φd and φt are smoothing functions (the first an
exponential window and the latter a rectangular window),
and x(t) represents the HRV and EDA time series. We
applied SPWVD because it provides better time-frequency
resolution with respect to non-parametric linear methods [8].

III. PARASYMPATHETIC-SYMPATHETIC CAUSAL
INTERACTION (PSCI)

For each subject, the HF and EDASYMP time-series were
used to construct bivariate autoregressive models from which
the HF-EDASYMP causal interactions were estimated. In
particular, we exploited the framework presented in [6]
to estimate time-varying (TV-) model coefficients based
on an optimized kalman-filter approach. Furthermore, the
heteroskedasticity of model residuals was evaluated in order
to take into account possible TV- model residual variances.
Indeed, this represents a major issue in the estimation of
coupling measures obtained from TV-MVAR models, leading
to inaccuracies in both strength and directionality of coupling
estimates. To properly compare the amount of interaction
across different subjects we estimated the generalized Partial



rest0 hg1 hg2

1

1.5

2

2.5

m
e
a
n
 

 S
E

 r
a
n
k

HF -> EDASYMP

Fig. 1. Within-subject ranks of the HF→EDASYMP index obtained for the
three sessions. Statistical pairwise comparisons found significant differences
in the cases indicated by the asterisks.

Directed Coherence (gPDC) [baccala2007,sato2009] start-
ing from the time-varying model coefficients and covari-
ances. This estimator results in a scale-invariant estima-
tor of granger-causal interactions between different time-
series. The statistical significance of observed gPDC was
assessed through a phase-randomization approach [thieler
1992]. Group level analysis was performed by averaging
surrogates distributions from each subject. The averaging was
performed for each direction of interaction, each frequency,
and each time-window, i.e for each (i, j, ω, t). Statistically
significant causality was obtained by comparing average
gPDC across subjects with the group-level null-distribution.
Multiple testing was controlled with standard false discovery
rate procedure (αFDR = 0.05). Finally, differences between
gPDC in REST and HG conditions were analyzed.

A. Statistical analysis

An intersubject Wilcoxon test compared the PSCI indexes
among the resting session and the first and second half of
the handgrip session. The analysis was performed for both
HF→EDASYMP and EDASYMP→HF directions. False dis-
covery rate was controlled through the Benjamini-Hockberg-
Yekuteli correction for multiple testing.

IV. RESULTS

The causality analysis evidenced significant different in-
teractions based on the experimental condition (Fig. 1 and 1).
Specifically, we observed a significant increase in the flow
of information going from HF to EDASYMP during the HG
task with respect to the REST condition (Fig. 1). On the
other hand a decrease of the EDASYMP to HF interaction
was observed during HG (Fig. 2).

V. DISCUSSION AND CONCLUSION

In this preliminary study, we propose a novel approach
to investigate the directional interaction between the PNS
and SNS during a handgrip task. The activity of the PNS
(HF) and SNS (EDASYMP) were estimated through the
spectral analysis of the HRV and the EDA respectively, by
using the SPWD method for a better time resolution. A TV-
MVAR approach quantified the causal interaction between
HF and EDASYMP revealing a significant increase in the
information sent from the PNS to the SNS during the whole
handgrip phases. Contrarily, the information sent from the
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Fig. 2. Within-subject ranks of the EDASYMP→HF index obtained for the
three sessions. Statistical pairwise comparisons found significant differences
in the cases indicated by the asterisks.

SNS to the PNS significantly decreased at the beginning of
the handgrip task and then goes back at the resting level.
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