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A DIRECT PROOF OF THE FIVE ELEMENT BASIS

THEOREM

BOBAN VELIČKOVIĆ AND GIORGIO VENTURI

Abstract. We present a direct proof of the consistency of the exis-
tence of a five element basis for the uncountable linear orders. Our argu-
ment is based on the approach of Larson, Koenig, Moore and Velickovic
and simplifies the original proof of Moore.

Introduction

In [11] Moore showed that PFA implies that the class of the uncountable
linear orders has a five element basis, i.e., that there is a list of five un-
countable linear orders such that every uncountable linear order contains
an isomorphic copy of one of them. This basis consists of X , ω1, ω

∗
1, C,

and C∗, where X is any suborder of the reals of cardinality ω1 and C is any
Countryman line1. It was previously known from the work of Baumgartner
[5] and Abraham-Shelah [1], that, assuming a rather weak forcing axiom,
the existence of a five element linear basis for uncountable linear order-
ings is equivalent to the following statement, called the Coloring Axiom
for Trees (CAT):

There is a normal Aronszajn tree T such that for every
K ⊆ T there is an uncountable antichain X ⊆ T such that
∧(X) is either contained in or disjoint from K.

Here, ∧(X) is the set of all pairwise meets of incomparable elements of X .
One feature of the argument from [11] is that it relies crucially on the Map-
ping Reflection Principle (MRP), a strong combinatorial principle previ-
ously introduced by Moore in [12], in order to prove the properness of the
appropriate forcing notion. It was shown in [12] that MRP implies the
failure of �κ, for all κ ≥ ω1, and therefore its consistency requires very
large cardinal axioms. However, it was not clear if any large cardinals were

2000Mathematics Subject Classification. Primary: 03E35, 03E75, 06A05; Secondary:
03E02.

Key words and phrases. Aronszajn trees, Countryman type, forcing axioms, BPFA,
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1Recall that a Countryman line is an uncountable linear order whose square is the
union of countably many non-decreasing relations. The existence of such a linear order
was proved by Shelah in [13].
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needed for the relative consistency of CAT. Progress on this question was
made by König, Larson, Moore and Veličković in [9] who reduced consid-
erably the large cardinal assumptions in Moore’s proof. They considered a
statement ϕ which is a form of saturation of Aronszajn trees and showed
that it can be used instead of MRP in the proof of the Key Lemma (Lemma
5.29) from [11]. Moreover, they showed that for the consistency of BPFA
together with ϕ it is sufficient to assume the existence of a reflecting Mahlo
cardinal. If one is only interested in the consistency of the existence of a
five element basis for the uncountable linear orderings then even an smaller
large cardinal assumption is sufficient (see [9] for details).
The purpose of this note is to present a direct proof of CAT, and therefore

the existence of a five element linear basis, assuming the conjunction of
BPFA and ϕ. The argument is much simpler than the original proof from
[11]. It is our hope that by further understanding this forcing one will
be able to determine if any large cardinal assumptions are needed for the
consistency of CAT.
The paper is organized as follows. In §1 we present the background

material on Aronszajn trees and the combinatorial principles ψ and ϕ. In
§2 we start with a coherent special Aronszajn tree T and a subset K of
T , define a new coloring of finite subsets of T and prove some technical
lemmas. In §3 we define the main forcing notion ∂∗(K) and show that it
is proper. In §4 we complete the proof that BPFA together with ϕ implies
CAT.

1. Saturation of Aronszajn trees

Recall that a tree is a partially ordered (T,<) such that for every t ∈ T
the set of predecessors of t, i.e. {s ∈ T : s < t}, is well ordered. If t ∈ T we
let ht(t) denote the height of t in T , i.e. the order type of {s ∈ T : s < t}.
If t ∈ T and ξ < ht(t) we let t ↾ ξ denote the unique predecessor of t of
height ξ. For an ordinal α we let Tα denote the α-th level of T i.e. the
set of all t ∈ T of height α. T is called normal if it has a unique least
element, i.e. the root, any two nodes of limit height that have the same
predecessors are actually equal. If T is normal and s, t ∈ T then there is
the largest node, denoted by s ∧ t, below s and t. We also refer to s ∧ t
as the meet of s and t. The height of T , denoted by ht(T ), is the least α
such that Tα is empty. A chain in T is a totally ordered subset C of T .
An antichain in T is a subset A of T such that any two elements of A are
pairwise incomparable. By an Aronszajn tree or simply an A-tree we mean
a tree of height ω1 in which all levels and chains are at most countable. A
subtree of an A-tree T is an uncountable downwards closed subset of T .
We start by discussing the notion of saturation of an Aronszajn tree.
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Definition 1.1. An Aronszajn tree T is saturated if, whenever A is a
collection of subtrees of T such that the intersection of any two trees in A

is at most countable, A has cardinality at most ω1.

It was shown by Baumgartner in [4] that the following holds after Levy
collapsing an inaccessible cardinal to ω2 with countable conditions.

For every Aronszajn tree T , there is a collection B of sub-
trees of T such that B has cardinality ω1 and every subtree
of T contains an element of B.

Clearly, this statement implies that every A-tree is saturated. In order to
obtain CAT we will use a form of saturation of A-tree together with BPFA.
In Baumgartner’s model CH holds hence it is not suitable for our purpose.
It is for this reason that a different approach was taken in [9]. We now
recall the relevant definitions from this paper.
If F is a collection of subtrees of T , then F⊥ is the collection of all

subtrees B of T such that for every A in F , A ∩B is countable. If F⊥ is
empty, then F is said to be predense. For F a collection of subtrees of an
Aronszajn tree T , we consider the following statements:

ψ0(F ): There is a closed unbounded set E ⊆ ω1 and a continuous
chain (Nν : ν ∈ E) of countable subsets of F such that for every ν
in E and t in Tν there is a νt < ν such that if ξ ∈ (νt, ν) ∩ E, then
there is A ∈ Nξ such that t ↾ ξ is in A.

ϕ0(F ): There is a closed unbounded set E ⊆ ω1 and a continuous
chain (Nν : ν ∈ E) of countable subsets of F ∪ F⊥ such that for
every ν in E and t in Tν either
(1) there is a νt < ν such that if ξ ∈ (νt, ν) ∩ E, then there is

A ∈ F ∩Nξ such that t ↾ ξ is in A, or
(2) there is a B in F⊥ ∩Nν such that t is in B.

It is not difficult to show that ψ0(F ) implies that F is predense, indeed
that

⋃

ν Nν is predense. Hence, if ψ0(F ) holds for every predense family
of subtrees of T , then T is saturated. It is also clear that ψ0(F ) is a Σ1-
formula with parameters F and T . While ϕ0(F ) and ψ0(F ) are equivalent
if F is predense, ϕ0(F ) is in general not a Σ1-formula in F and T . Let
ϕ be the assertion that if T is an Aronszajn tree and F is a family of
subtrees T then ϕ0(F ) holds, and let ψ be the analogous assertion but
with quantification only over F that are predense. As noted, ϕ implies ψ.
The following was proved as Corollary 3.9 in [9].

Proposition 1.2. For a given family F of subtrees of an Aronszajn tree
T , there is a proper forcing extension which satisfies ϕ0(F ). �

Remark 1.3. If we want to force ϕ it is natural to start with an inaccessible
cardinal κ and do a countable support iteration of proper forcing notions
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(Pα, Q̇β ;α ≤ κ, β < κ). At stage α we can use ♦κ to guess an Aronszajn

tree Ṫα and a family Ḟα of subtrees of Ṫα in the model V Pα and let Q̇α

be a Pα-name for the proper poset which forces ϕ0(Ḟα). Suppose in the

final model V Pκ we have an Aronszajn tree Ṫ and a family Ḟ ∈ V Pκ of
subtrees of Ṫ . In order to ensure that ϕ0(Ḟ ) holds in V Pκ we need to find

a stage α of the iteration at which Ṫ and Ḟ are guessed, i.e. Ṫα = Ṫ and
Ḟ ↾ V Pα = Ḟα and moreover such that

(Ḟ⊥)V
Pκ

↾ V Pα = (Ḟ⊥
α )V

Pα

.

This is the reason why a Mahlo cardinal is used in the following theorem
from [9].

Theorem 1.4. If there is a cardinal which is both reflecting and Mahlo,
then there is a proper forcing extension of L which satisfies the conjunc-
tion of BPFA and ϕ. In particular the forcing extension satisfies that the
uncountable linear orders have a five element basis. �

If one is interested only in the consistency of the existence of a five
element basis for the uncountable linear orderings it was observed in [9]
then a somewhat smaller large cardinal is sufficient. Indeed, for the desired
conclusion one does not need the full strength of BPFA and one only needs
ϕ0(F ) for certain families of subtrees of an Aronszajn tree T which are
Σ1-definable using a subset of ω1 as a parameter. The precise large cardinal
assumption is that there is an inaccessible cardinal κ such that for every
κ0 < κ, there is an inaccessible cardinal δ < κ such that κ0 is in H(δ) and
H(δ) satisfies there are two reflecting cardinals greater than κ0.

2. Colorings of Aronszajn trees

Let 2<ω1 denote the full binary tree of height ω1 with the usual ordering.
For the remainder of the paper we fix an Aronszajn tree T ⊆ 2<ω1 which
is special, coherent, and closed under finite modifications. The tree T (̺3)
from [17] is such an example. Recall that T is special if it can be written
as T =

⋃

nAn, where An is an antichain, for all n. Notice that this implies
that any uncountable subset of T contains an uncountable antichain. We
will often use this fact without mentioning it. Since T is a subtree of 2<ω1,
the α-th level of T , i.e. Tα, is simply T ∩ 2α. We say that T is coherent if,
for every countable α and s, t ∈ Tα, the set

D(s, t) = {ξ < α : s(ξ) 6= t(ξ)}

is finite. Finally, T is closed under finite modifications if, for every α and
s, t ∈ 2α, if s ∈ T and D(s, t) is finite then t ∈ T . For A ⊆ ω1 we set
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T ↾ A =
⋃

α∈A Tα. If s and t are incomparable nodes in T , i.e. if D(s, t) is
non-empty, we let

∆(s, t) = minD(s, t).

Since T is a subtree of 2<ω1 which is normal it is itself normal. If s, t ∈ T
then the meet of s and t, i.e. s∧ t, is simply s ↾ ∆(s, t). Given a subset X
of T we let

∧(X) = {s ∧ t : s, t ∈ X, s and t incomparable}.

Note that if TX is the tree induced by X , i.e. the set of all initial segments
of elements of X , then ∧(TX) = ∧(X). We also let

π(X) = {t ↾ ht(s) : s, t ∈ X and ht(s) ≤ ht(t)}.

We let lev(X) = {ht(t) : t ∈ X}. If α ∈ lev(X) we let πα(X) = π(X)∩Tα.
We will also need to consider finite powers of our tree T . Given an

integer n and a level Tα of T we let

T [n]
α = {τ ∈ T n

α : i < j → τ(i) ≤lex τ(j)}

where ≤lex denotes the lexicographic ordering of T . We let T [n] =
⋃

α T
[n]
α .

Morally, elements of T [n] are n-element subsets of T of the same height. In
order to ensure that T [n] is closed under taking restrictions, it is necessary
to allow for n-element sets with repetitions, i.e. multisets, and the above
definition is a formal way to accommodate this. We will abuse notation
and identify elements of T [n] that have distinct coordinates with the set of
their coordinates. In our arguments, only the range of these sequences will
be relevant.
If σ ∈ T

[n]
α and τ ∈ T

[m]
α , for some α, then, by abusing notation, we

will write σ ∪ τ is the sequence of length n + m which enumerates the
coordinates of σ and τ in ≤lex-increasing order including repetitions. We
will also write σ ⊆ τ if the multiset enumerated by σ is included in the
multiset enumerated by τ by counting multiplicities. T [n] will be considered
as a tree with the coordinate-wise partial order induced by T . If σ ∈ T [n]

and α < ht(σ) we write σ ↾ α for the sequence (σ(i) ↾ α : i < n). If
σ, τ ∈ T [n] are incomparable we will let

∆(σ, τ) = min{α : σ(i)(α) 6= τ(i)(α), for some i < n}

and we will write σ ∧ τ for σ ↾ ∆(σ, τ).
For σ ∈ T [n] let

Dσ = (D(σ(i), σ(0)) : i < n)

Suppose σ, τ ∈ T [n] and ht(σ) ≤ ht(τ). We say that the pair {σ, τ} is
regular if Dτ ↾ ht(σ) = Dσ, i.e. for all i < n,

D(τ(i), τ(0)) ∩ ht(σ) = D(σ(i), σ(0)).
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Note that in this case, for all i, j < n,

∆(τ(i), σ(i)) = ∆(τ(j), σ(j)).

We say that a subset X of T [n] is regular if every pair of elements of X is
regular. Note that if X is regular, then so is the tree TX generated by X .
A level sequence of T [n] is a sequence {σα : α ∈ A} where A is a subset of

ω1 and σα ∈ T
[n]
α , for all α ∈ A. The following is a simple application of

the ∆-system lemma and the Pressing Down Lemma.

Fact 2.1. Let A = {σα : α ∈ A} be a level sequence. If A is uncountable
(stationary) then there is an uncountable (stationary) subset B of A such
that B = {σα : α ∈ B} is regular. �

From now on we assume the conjunction of BPFA and ϕ. We are given
a subset K of T and we want to find an uncountable antichain X in T such
that ∧(X) ⊆ K or ∧(X) ∩K = ∅. We will refer to K as a coloring of T .
We first note that, for every integer n, K induces a coloring K [n] of T [n]

defined by

K [n] = Kn ∩ T [n].

We let Fn be the collection of regular subtrees R of T [n] such that ∧(R)∩
K [n] = ∅. The following fact is immediate by using Fact 2.1.

Fact 2.2. If R ∈ F⊥
n then for every uncountable X ⊆ R there are incom-

parable σ, τ ∈ X such that σ ∧ τ ∈ K [n].

Proof. We may assume that X is a level sequence, say X = {σα : α ∈ A},
for some A ⊆ ω1. Since T

[n] is special, by shirking X if necessary, we may
assume that it is an antichain. By Fact 2.1 we may further assume that X
is regular. Now, if ∧(X) were disjoint from K [n], then so would be ∧(TX).
But then TX would belong to Fn. However, TX is a subtree of R which is
orthogonal to all trees in Fn, a contradiction. �

By ϕ0(Fn) we can find a club Cn in ω1 and a continuous increasing chain
(Nn

ξ : ξ ∈ Cn) of countable subsets of Fn ∪ (Fn)
⊥ witnessing ϕ0(Fn). By

replacing each of the Cn by their intersection we may assume that the Cn

are all the same and equal to say C. We now define a new coloring of
T [n] ↾ C as follows.

Definition 2.3. A node σ ∈ T [n] ↾ C is in K
[n]
ϕ if, letting α be the height

of σ, there exists R ∈ (Fn)
⊥ ∩Nn

α such that σ ∈ R, i.e. if σ is in case (2)

of the dichotomy for ϕ0(Fn). We denote (T [n] ↾ C) \K
[n]
ϕ by L

[n]
ϕ . We let

Kϕ =
⋃

nK
[n]
ϕ and Lϕ =

⋃

n L
[n]
ϕ .
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Remark 2.4. The induced coloring T [n] = K
[n]
ϕ ∪ L

[n]
ϕ , for n < ω, is our

analog of the notions of acceptance and rejection from [11]. The main dif-
ference is that these notions are defined in [11] relative to a given countable
elementary submodel ofH(ω2) whereas our colorings do not make reference
to any such model. This simplifies considerably the proof of properness of
the main forcing notion we define in §3.

We now note some useful facts about these induced colorings.

Fact 2.5. If there is a node t in L
[1]
ϕ whose height is a limit point of C

then there is an uncountable antichain X in T such that ∧(X) ∩K = ∅.

Proof. Assume t is such a node and let α be the height of t. By our
assumption, case (1) of the dichotomy for ϕ0(F1) holds for t. Therefore,
there exists η < α such that for every ξ ∈ (η, α)∩C there is a R ∈ F1∩N

1
ξ

such that t ↾ ξ ∈ R. Since (η, α) ∩ C is non-empty, it follows that F1 is
non-empty, as well. Now, let R be a member of F1. Identifying R with a
subtree of T we have that ∧(R)∩K = ∅. Since T is special, so is R and we
can fix an uncountable antichain X in R. It follows that ∧(X) ∩K = ∅,
as required. �

Fact 2.6. If σ ∈ Kϕ and α = ht(σ) is a limit point of C then there is
η < α such that σ ↾ ξ ∈ Kϕ, for all ξ ∈ (η, α) ∩ C. Similarly for Lϕ. We
refer to this property as continuity of the induced coloring. �

Fact 2.7. Suppose S is a stationary subset of C and S = {σξ : ξ ∈ S}

is a level sequence in T [n] consisting of elements of K
[n]
ϕ . Then there exist

distinct ξ, η ∈ S such that σξ ∧ ση ∈ K [n].

Proof. For ξ ∈ S since σξ ∈ K
[n]
ϕ there exists a tree Rξ ∈ Nn

ξ ∩ (Fn)
⊥ such

that σξ ∈ Rξ. Since (Nn
ξ : ξ ∈ C) is a continuous increasing sequence of

countable sets, we can apply the Pressing Down Lemma to the function
ξ 7→ Rξ. Hence, by shrinking S if necessary, we may assume that the trees
Rξ are all the same and equal to some R. This simply means that S ⊆ R.
Since R ∈ (Fn)

⊥, by Fact 2.2, there are ξ 6= η ∈ S such that ση∧σξ ∈ K [n],
as required. �

Definition 2.8. Let S = {σξ : ξ ∈ A} be a regular level sequence in T [n],
for some integer n. Then PS is the poset consisting of finite subsets p of
S such that ∧(p) ∩K [n] = ∅, ordered by reverse inclusion.

The following lemma is the main technical result of this section.

Lemma 2.9. Let S = {σα : α ∈ S} and Z = {τγ : γ ∈ Z} be two regular
level sequences in T [n] and T [m] respectively such that S is a stationary
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subset of C and S ⊆ K
[n]
ϕ . Assume that, for every α ∈ S and γ ∈ Z, if

α < γ then

σα ∪ τγ ↾ α ∈ L[n+m]
ϕ .

Then PZ is c.c.c.

Proof. Before starting the proof, notice that by using the Pressing Down
Lemma and shrinking S if necessary we may assume that there is a fixed

tree R0 ∈ (Fn)
⊥ witnessing that σα is in K

[n]
ϕ , for all α ∈ S. By shrinking

S and Z if necessary we may moreover assume that for every α ∈ S, γ ∈ Z,
every i < n and j < m, σα(i) and τγ(j) are incomparable in T .
Now, assume A is an uncountable subset of PZ . We need to find distinct

p and q in A which are compatible, i.e. such that ∧(p ∪ q) ∩ K [m] = ∅.
By a standard ∆-system argument we can assume that all elements of A
have a fixed size k and are mutually disjoint. For each α ∈ S we pick an
element pα of A such that ht(τ) > α, for all τ ∈ pα.
Fix for a moment one such α. Since by our assumption σα ∪ τ ↾ α ∈

L
[n+m]
ϕ , for all τ ∈ pα, we can fix an ordinal ηα < α such that for every

ξ ∈ (ηα, α)∩C and every τ ∈ pα there is a tree R ∈ Fn+m∩Nn+m
ξ such that

σα ↾ ξ ∪ τ ↾ ξ ∈ R. By applying the Pressing Down Lemma and shrinking
S again we may assume that all the ordinals ηα are equal to some η∗.
Now, for each α ∈ S, fix an enumeration {υ0α, . . . , υ

lα−1
α } of distinct

elements of {τ ↾ α : τ ∈ pα}. We may assume that there is a fixed integer
l such that lα = l, for all α ∈ S. Moreover, by shrinking S further, we may
assume that if α, β ∈ S are distinct then υiα and υjβ are incomparable, for
all i, j < l. For each α ∈ S let

Fα = {σα(j) : j < n} ∪ {υiα(j) : i < l, j < m}

and let

Dα =
⋃

{D(s, t) : s, t ∈ Fα}.

Then Dα is finite, so if α is a limit ordinal and we let ξα = max(Dα) + 1
then ξα < α. By the Pressing Down Lemma and shrinking S yet again we

may assume that there exists a fixed ordinal ξ, a sequence σ ∈ T
[n]
ξ , and

sequences υi ∈ T
[m]
ξ , for i < l, such that, for each α ∈ S, we have:

(1) ξα = ξ,
(2) σα ↾ ξ = σ,
(3) υiα ↾ ξ = υi, for i < l.

Now, notice that if α, β ∈ S are distinct, then for every i < l,

∆(υiα, υ
i
β) = ∆(σα, σβ).

Moreover, if i and j are distinct then
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υiα ∧ υjβ = υiα ∧ υjα = υiβ ∧ υ
j
β /∈ K [m].

Therefore, pα and pβ are compatible in PZ provided υiα∧υ
i
β /∈ K [m], for all

i < l. We have finally set the stage for the proof of the lemma.
Fix a sufficiently large regular cardinal θ and a countable elementary

submodel M of H(θ) containing all the relevant objects and such that
δ = M ∩ ω1 belongs to S. Working in M fix a countable elementary
submodel N ofH(ω2) containing all the relevant objects and let ζ = N∩ω1.
Now, by our assumption η∗, C ∈ N , C is a club, and N ∈ M , and so we
have that ζ ∈ (η∗, δ) ∩ C. Therefore, for each i < l there exists a tree
Ai ∈ Fn+m ∩ Nn+m

ζ such that σδ ↾ ζ ∪ υiδ ↾ ζ ∈ Ai. Since Nn+m
ζ ⊆ N we

know that Ai ∈ N , for all i. Let

H = {η : ∃α ∈ S[α > η ∧ ∀i < l(σα ↾ η ∪ υiα ↾ η ∈ Ai)]}

Since all the parameters in the definition of H are in N , by elementarity
of N it follows that H ∈ N . On the other hand ζ ∈ H \ N , therefore H
is uncountable. Fix a 1 − 1 function f : H → S with f ∈ N such that for
every η ∈ H , f(η) witnesses that η ∈ H . Then the set X = {σf(η) : η ∈ H}
belongs to N . We also know that X is an uncountable subset of R0. Since
T [n] is a special tree, by shrinking H we may assume that Y = {σf(η) ↾ η :

η ∈ H} is an antichain in T [n]. Since Y ⊆ R0 and R0 ∈ (Fn)
⊥, by Fact 2.2,

there are distinct η, ρ ∈ H such that:

σf(η) ∧ σf(ρ) = σf(η) ↾ η ∧ σf(ρ) ↾ ρ ∈ K [n].

Let α = f(η) and β = f(ρ). We claim that pα and pβ are compatible in
PZ . To see this, consider some i < l. We know that σα ↾ η ∪ υiα ↾ η and
σβ ↾ ρ ∪ υiβ ↾ ρ belong to Ai. Therefore,

(σα ∪ υiα) ∧ (σβ ∪ υ
i
β) = (σα ↾ η ∪ υiα ↾ η) ∧ (σβ ↾ ρ ∪ υiβ ↾ ρ) /∈ K [n+m].

Since σα ∧ σβ ∈ K [n] it follows that

υiα ∧ υiβ /∈ K [m].

Since this is true for all i it follows that pα and pβ are compatible. �

Lemma 2.10 (MAℵ1
). Let S = {σα : α ∈ S} and Z = {τγ : γ ∈ Z} be

two regular level sequences in T [n] and T [m] respectively such that S and Z

are stationary subsets of C. Assume S ⊆ K
[n]
ϕ and Z ⊆ K

[m]
ϕ . Then there

exist α ∈ S and γ ∈ Z such that α < γ and

σα ∪ τγ ↾ α ∈ K [n+m]
ϕ .
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Proof. For every γ ∈ Z fix a tree Rγ ∈ (Fm)
⊥ ∩ Nm

γ such that τγ ∈ Rγ,

i.e. witnessing that τγ ∈ K
[m]
ϕ . Since Z is stationary by the Pressing

Down Lemma and shrinking Z if necessary we may assume that all the
Rγ are equal to some tree R. Assume towards contradiction that for every

α ∈ S and γ ∈ Z, if α < γ then σα ∪ τγ ↾ α ∈ L
[n+m]
ϕ . By Lemma 2.9

PZ is c.c.c. By MAℵ1
we can find an uncountable subset Y of Z such that

τα ∧ τβ /∈ K [m], for every distinct α, β ∈ Y . This means that the tree R∗

generated by {τα : α ∈ Y } belongs to Fm. However, R∗ ⊆ R and R is
orthogonal to all trees in Fm, a contradiction. �

3. The forcing ∂∗(K)

In this section we define a notion of forcing ∂∗(K) and prove that it is
proper. We then show that either there is an uncountable antichain Y in T
such that ∧(Y )∩K = ∅ or forcing with ∂∗(K) adds an uncountable subset
X of Kϕ ∩ T ↾ C such that π(X) = X . Then it will be easy to force again
and obtain an uncountable subset Z of X such that ∧(Z) ⊆ K. Before we
start it will be convenient to define a certain club of countable elementary
submodels of H(ω2). Fix, for each δ < ω1, a surjection eδ : ω → Tδ.

Definition 3.1. E is the collection of all countable elementary submodels
M of H(ω2) such that T, C,K, (eδ : δ < ω1) as well as (Nn

ξ : ξ ∈ C), for
n < ω, all belong to M .

We are now in the position to define the partial order ∂∗(K).

Definition 3.2. ∂∗(K) consists of all pairs (Xp,Mp) such that:

(1) Xp is a finite subset of T ↾ C, π(Xp) = Xp, and Xp ∩ Tα ∈ Kϕ, for
all α ∈ lev(Xp)

2.
(2) Mp is a finite ∈-chain of elements of E such that for every x ∈ Xp

there is M ∈ Mp such that ht(x) =M ∩ ω1.

The order of ∂∗(K) is the coordinatewise reverse inclusion, i.e. q ≤ p iff
Xp ⊆ Xq and Mp ⊆ Mq.

In what follows, for p ∈ ∂∗(K), M i
p denotes the i-th model in Mp, in the

enumeration induced by the heights of the models.

Theorem 3.3. ∂∗(K) is a proper forcing notion.

Proof. Fix a countable M ≺ H(2|∂
∗(K)|+) such that ∂∗(K), E ∈ M . Given

a condition p = (Xp,Mp) ∈M , we need to find q ≤ p that is (∂∗(K),M)-
generic. Set

q = (Xp,Mp ∪ {M ∩H(ω2)}).

2Here, of course, we identify Xp ∩ Tα with its ≤lex-increasing enumeration.
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We claim that q is as desired. To see this, fix a dense set D ∈ M and
a condition r ≤ q. We need to find s ∈ D ∩M which is compatible with
r. By replacing r with a stronger condition we may assume that r ∈ D.
Define

r′ = (Xr ∩M,Mr ∩M)

and

r∗ = (Xr \M,Mr \M)

Note that r′ and r∗ are both conditions in ∂∗(K). Let l = |Mr \M |. For
every i < l, let δi = M i

r∗ ∩ ω1, let ki = |Xr∗ ∩ Tδi | and fix σi ∈ [ω]ki such
that eδi[σi] = Xr∗ ∩Tδi . As before, we also think of Xr∗ ∩Tδi as an element
of T [ki] via its ≤lex-increasing enumeration. We now define formulas θi, for
i < l, by reverse induction on i.
θl(ξ0, . . . , ξl−1) holds if there is a condition s = (Xs,Ms) ∈ ∂∗(K) such

that:

(1) Ms = {M0
s , . . . ,M

l−1
s },

(2) M i
s ∩ ω1 = ξi, for all i < l,

(3) Xs ∩ Tξi = eξi[σi] and |Xs ∩ Tξi| = ki, for all i < l,
(4) (Xr′ ∪Xs,Mr′ ∪Ms) ∈ D.

Suppose θi+1 has been defined for some i < l. Then

θi(ξ0, . . . , ξi−1) iff Qη θi+1(ξ0, . . . , ξi−1, η).

Here Qη θ(η) means “there are stationary many η such that θ(η) holds”.

Remark 3.4. Notice that the parameters of each θi(ξ0, . . . , ξi−1) are in M ,
so if ξ0, . . . , ξi−1 ∈ M then θi(ξ0, . . . , ξi−1) holds iff it holds in M . Thus,
if Wi is the set of tuples (ξ0, . . . , ξi−1) such that θi(ξ0, . . . , ξi−1) holds then
Wi ∈M , for all i ≤ l. We set W =

⋃

i≤lWi.

Notice also that if θi(ξ0, . . . , ξi−1) holds then eξj [σj ] ∈ K
[kj ]
ϕ , for all j < i.

Claim 3.5. θi(δ0, . . . , δi−1) holds, for all i ≤ l.

Proof. We prove this by reverse induction on i. Notice that θl(δ0, . . . , δl−1)
holds as witnessed by the condition r∗. Suppose we have established
θi+1(δ0, . . . , δi). Since Wi+1 ∈M ∩H(ω2) and M ∩H(ω2) =M0

r∗ ⊆M i
r∗ it

follows that the set

Z = {η : (δ0, . . . , δi−1, η) ∈ Wi+1}

also belongs toM i
r∗ . If Z were non stationary, by elementarity, there would

be a club E ∈ M i
r∗ disjoint from it, but δi ∈ Z and δi belongs to any club

which is in M i
r∗ , a contradiction. �
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By Claim 3.5 we can pick a stationary splitting tree U ⊆W . This means
that U ⊆ (ω1)

≤l is a tree and for every node t = (ξ0, . . . , ξi−1) ∈ U of height
i < l the set

St = {η : (ξ0, . . . , ξi−1, η) ∈ U}

is stationary. We can moreover assume that U ∈ M . We now build by
induction an increasing sequence (ξi : i < l) of ordinals in M such that:

(1) (ξ0, . . . , ξi) ∈ U , for all i,

(2) eξi [σi] ∪ eδ0 [σ0] ↾ ξi ∈ K
[ki+k0]
ϕ , for all i.

The reason we require (2) is that we want the condition s witnessing the
formula θl(ξ0, . . . , ξl−1) to be compatible with r and this is the only problem
we may encounter. Now, suppose j < l and we have picked ξi, for all i < j.
Consider the set Sj = {η : (ξ0, . . . , ξj−1, η) ∈ U}.

Claim 3.6. There is ξ ∈ Sj ∩M such that eξ[σj ] ∪ eδ0 [σ0] ↾ ξ ∈ K
[kj+k0]
ϕ .

Proof. Assume otherwise. We know that Sj is stationary and that the level

sequence Sj = {eη[σj ] : η ∈ Sj} is contained in K
[kj ]
ϕ . By shrinking Sj we

may also assume that Sj is regular. Let

Z = {η : eη[σ0] ∈ K [k0]
ϕ ∧ ∀ξ ∈ Sj ∩ η[eξ[σj ] ∪ eη[σ0] ↾ ξ /∈ K [kj+k0]

ϕ ]}.

Then Z ∈ M and since by our assumption δ0 ∈ Z, it follows that Z
is stationary. By shrinking Z, we may assume that the level sequence
Z = {eη[σ0] : η ∈ Z} is regular. Now, by Lemma 2.10 and MAℵ1

we obtain
a contradiction. �

Suppose (ξ0, . . . , ξl−1) has been constructed. Since (ξ0, . . . , ξl−1) ∈ U∩M ,
by elementarity there is a condition s ∈ ∂∗(K) ∩M witnessing this fact.
Let

s̄ = (Xr′ ∪Xs,Mr′ ∪Ms).

Then by (4) in the statement of θl(ξ0, . . . , ξl−1) we know that s̄ ∈ D. Since
s and r′ are both in M so is s̄. We claim that s̄ is compatible with r. To
see this we define a condition u as follows. Let

Xu = π(Xr ∪Xs).

Note that lev(Xu) = lev(Xr′) ∪ lev(Xs) ∪ lev(Xr∗) and we have

Xu ∩ Tα =











eδi [σi] if α = δi, for some i < l,

eξi [σi] ∪ eδ0 [σ0] ↾ ξi if α = ξi, for some i < l,

Xr′ ∩ Tα if α ∈ lev(Xr′).

In all cases we have that Xu ∩ Tα ∈ Kϕ. We let Mu = Mr′ ∪Ms ∪Mr∗ .
It follows that u ≤ s̄, r. This completes the proof of Theorem 3.3.

�
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4. The main theorem

In this section we complete the proof of the main theorem saying that
the conjunction of BPFA and ϕ implies CAT. Let G be V -generic over the
poset ∂∗(K) and define in V [G]:

XG =
⋃

{Xp : p ∈ G}.

Note that π(XG) = XG, lev(XG) ⊆ C, and every finite subset of XG

contained in one level of T is in Kϕ. Let ẊG be a canonical ∂∗(K)-name
for XG. We first establish the following fact in the ground model V .

Lemma 4.1. Suppose there is no uncountable antichain Y in T such that
∧(Y ) ∩K = ∅. Then there is a condition p ∈ ∂∗(K) which forces that ẊG

is uncountable.

Proof. Suppose the maximal condition forces that ẊG is countable. Let
θ be a sufficiently large regular cardinal and let M be a countable ele-
mentary submodel of H(θ) containing all the relevant objects. As shown
in Theorem 3.3 q = (∅, {M ∩ H(ω2)}) is an (M, ∂∗(K))-generic condi-

tion. Therefore, q 
 ẊG ⊆ M . If there is a node t in K
[1]
ϕ ∩ T

[1]
δ then

r = ({t}, {M ∩H(ω2)}) is a condition stronger than q and r 
 t ∈ ẊG, a

contradiction. Assume now that T
[1]
δ ⊆ L

[1]
ϕ . Since δ is a limit point of C, by

Fact 2.5 there is an uncountable antichain Y in T such that ∧(Y )∩K = ∅,
again a contradiction. �

Now, assume there is no uncountable antichain Y ⊆ T such that ∧(Y )∩
K = ∅ and fix a V -generic G over ∂∗(K) containing a condition as in
Lemma 4.1. We work in V [G]. We can show that lev(XG) is a club, but
this is not necessary. Namely, let X̄G be the closure of XG in the tree
topology. Then by Fact 2.6 all finite subsets of X̄G contained in one level
of T are in Kϕ. Moreover, lev(X̄G) is equal to the closure of lev(XG) in
the order topology and is a club. Clearly, we also have π(X̄G) = X̄G.

Remark 4.2. Before continuing it is important to note a certain amount
of absoluteness between V and V [G]. In V we defined (Fn)

V to be the
collection of regular subtrees R of T [n] such that ∧(R) ∩ K [n] = ∅. The

same definition in V [G] gives a larger collection F
V [G]
n of subtrees of T [n].

Nevertheless, the definition of Fn is Σ1 with parameters T and K. Since
BPFA holds in V , if a certain tree A ∈ V is in (F V

n )⊥ then it is also

in (F
V [G]
n )⊥. It follows that the same sequences (Nn

ξ : ξ ∈ C) witness
ϕ(Fn) in V and in V [G], for all n. Therefore the definitions of the induced

colorings K
[n]
ϕ , for n < ω, are also absolute between V and V [G].
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Definition 4.3. The poset Q consists of finite antichains p in X̄G such
that ∧(p) ⊆ K, ordered by reverse inclusion.

Claim 4.4. Q is a c.c.c. poset.

Proof. Suppose A is an uncountable subset of Q. We need to find two
elements of A which are compatible. By a standard ∆-system argument
we may assume that the elements of A are disjoint and have the same size.
For each α ∈ lev(X̄G) choose pα ∈ A such that ht(t) ≥ α, for all t ∈ p.
We can assume that the pα are distinct. Let σα be the enumeration in
≤lex-increasing order of distinct elements of {t ↾ α : t ∈ pα}. There is a
stationary subset S of lev(X̄G) and an integer n such that σα has size n,

for all α ∈ S. Note that σα ∈ K
[n]
ϕ , for all α ∈ S. By shrinking S further

we may assume that {σα : α ∈ S} is a regular level sequence and that for
every α, β ∈ S and every distinct i, j < n

σα(i) ∧ σβ(j) = σα(i) ∧ σα(j) ∈ K.

Now, by Fact 2.7 we can find distinct α, β ∈ S such that σα∧σβ ∈ K [n], i.e.
σα(i) ∧ σβ(i) ∈ K, for all i < n. It follows that pα and pβ are compatible
in Q. �

By a standard argument there is a condition q ∈ Q which forces the
Q-generic H to be uncountable. Therefore, by forcing with Q below q over
V [G] we obtain an uncountable antichain H of T such that ∧(H) ⊆ K.
Since ∂∗(K)∗Q is proper, by BPFA, we have such an antichain in V . Thus,
we have proved the main theorem which we now state.

Theorem 4.5. Assume BPFA and ϕ. Then CAT holds and hence there
is a five element basis for the uncountable linear orders. �
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[18] Stevo Todorčević. Partitioning pairs of countable ordinals. Acta Math., 159(3-4):
261–294, 1987

E-mail address : boban@math.univ-paris-diderot.fr
URL: http://www.logique.jussieu.fr/~boban

E-mail address : gio.venturi@gmail.com
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