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ABSTRACT. We prove a large-deviation principle (LDP) for the sample paths of jump Markov processes in the small noise
limit when, possibly, all the jump rates vanish uniformly, but slowly enough, in a region of the state space. We further discuss
the optimality of our assumptions on the decay of the jump rates. As a direct application of this work we relax the assumptions
needed for the application of LDPs to, e.g., Chemical Reaction Network dynamics, where vanishing reaction rates arise
naturally particularly the context of mass action kinetics.

1. INTRODUCTION

1.1. Large deviations of Markov jump processes. We study a family of d-dimensional Markov jump processes
{Xv}v∈N with state space (v−1Z)d, deterministic initial condition Xv(0) = xv0 ∈ (v−1Z)d and generator:

(Lvf)(x) := v
∑
r∈R

Λvr(x)
[
f(x+ v−1γr)− f(x)

]
. (1)

Here R is the finite set of possible jumps, γr ∈ Zd are the fixed jump vectors, and vΛvr : (v−1Z)d → [0,∞) the
associated jump rates. The parameter v controls the noise in the system, and the scaling is chosen so that Λvr(x) converge
as v →∞. Under this scaling it is known that the paths Xv concentrate on solutions of the fluid limit ODE [19]:

d

dt
x(t) =

∑
r∈R

λr(x(t))γr , (2)

where the continuous rates λr : Rd → [0,∞) are the limits of Λvr(x) as v →∞.
The process (1) and the ODE (2) are used as microscopic and macroscopic models for a wide range of applications.

For example, in the context of chemical reactions Xv denotes the concentrations (number of molecules per unit volume)
of d species being transformed by a set of reactions R. Here, for each reaction r ∈ R, the vectors γr encode which
species are removed and created when a reaction r occurs, and λr(x) are the reaction rates [20]. In that setting v can be
interpreted as the volume size over which the concentrations are averaged. Other typical applications using similar
models include biological systems involving predator-prey interaction, birth/cell division and death, biological fitness
models, as well as epidemiological models. In these settings, large-deviation techniques are often applied to simplify the
dynamical landscape of the complex, high dimensional microscopic model (1) while retrieving quantitative information
about the random fluctuations around the mean (2). This information can be used for example to study non-equilibrium
thermodynamics [21, 24], to speed up simulations of rare events [7, 14, 31], or to study spontaneous transitions between
metastable states [13] also in the multi-scale setting [28].

The classical proof of the Large-Deviation Principle (LDP) uses a tilting, also called a change-of-measure technique.
The main challenge there is that the tilting can only be performed around sufficiently regular paths, whereas the large-
deviation principle needs to be proven for any non-typical path. Therefore, the large-deviation lower bound requires an
approximation argument, either for the random process or for the rate functional. A particular challenge in either case is
to approximate a path without changing its starting point, which is required when proving the large-deviation principle
under a deterministic initial condition. This becomes more difficult if the jump rates vanish in some regions of the state
space, which is however an inherent property of the models used in many application domains. For example, in the
context of chemical kinetics, it is natural to assume that the rate of a chemical reaction vanishes when the concentration
of one or more of the reactants approaches 0. Similarly in the context of infectious disease models, the rate of spread of
a virus is usually modelled as a linear function of the infected population.
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Example 1.1. The problem is nicely illustrated by the simplest model for autocatalysis or cell division, in chemical
notation: A → 2A. In this case there is only one species and one jump, so we may write the linear jump rate as
Λv(x) = λ(x) = x, starting from a concentration with one particle, i.e. Xv(0) = xv0 = 1/v. Clearly, the process
converges to the solution of ẋ(t) = x(t) with initial condition x(0) = x0 = 0, that is x(t) ≡ 0. In other words, the
process is expected to stick to the degenerate set ∂S = {x = 0}, which corresponds to the boundary of the state
space R≥0. However, it can be calculated (as an application of [17, Lemma 2.1]) that limv→∞ v−1 logP

(
Xv(t) ≥

δ
)

= δ log(1− e−t) for any fixed time t > 0 and δ > 0. Although this is a large-deviation result about the marginal
Xv(t), it suggests that the paths can also “escape” from the boundary with finite large-deviation cost. On the other
hand, we note that choosing xv0 ≡ 0 implies that Xv(t) ≡ 0 almost surely. Hence, whether or not escape is possible
depends strongly on the initial condition. This is a similar principle as what is sometimes called a “well-prepared
initial condition” in Γ-convergence theory [23].

For more general models of the type (1), one expects that as long as the jump rates λr(x) do not vanish too rapidly
approaching the degenerate points and when starting at a well-chosen initial condition near such points, then the process
will be able to escape with finite large-deviation cost, and the large-deviation principle should still hold. In this paper,
we show that this is indeed the case. More specifically, denoting by ∂S the set where some – or possibly all – of the
reaction rates λ vanish, we prove that when the rates near ∂S decrease slower than exp (−1/dist(x, ∂S)α), i.e.,

dist(x, ∂S)α log λ(x)→ 0 as dist(x, ∂S)→ 0, (3)

the large-deviation principle holds under the assumption α ∈ [0, 1). Furthermore, we show that these conditions on the
decay of the rates close to the degenerate set are, in some sense, necessary and not just sufficient.

1.2. Literature and approach. Early papers [12, 22] establishing a sample-path large-deviation principle for jump
Markov processes mimicked the Dawson–Gärtner approach [6], where one first derives an abstract large-deviation
result for the empirical measure on paths, and then contracts it to obtain a large-deviation principle for the path of the
empirical measure. Another approach, now considered the classic tilting technique, was first used in [29] assuming that
all the jump rates are uniformly bounded away from zero in the domain of interest. In [30], the authors relaxed this
condition by assuming the existence a subset of jumps with rates that are uniformly bounded away from zero and that
“push” the process away from the degeneracy region. This assumption is further relaxed in [1, 2, 4, 10], requiring only
the existence of a sequence of jumps that sequentially transport the process away from the problematic region.

Recent works have taken steps to generalise these assumptions to the uniformly vanishing case (when all rates can
vanish in some region of state space), in the context of chemical kinetics [27] and in the context of infectious disease
models [25, 26]. These papers give sufficient conditions on the models at hand to bypass the technical difficulties
encountered in the proof of the LDP lower bound when some of the jump rates are not bounded away from zero. We
mention that the work [27] assumes “sufficiently random” initial conditions to bypass the problem, but we shall focus
on a deterministic initial condition.

The problem of vanishing rates is addressed more completely in [18,25,26], where the authors obtain large-deviation
estimates for vanishing rates when the microscopic initial condition allows escaping the degenerate set with positive –
although vanishing in v – probability. Their approach is based on a careful adaptation of the standard tilting argument to
obtain the LDP lower bound for processes. In particular, to bypass the problem of jump rates vanishing in some regions
of state space, the change of measure performed by the authors depends on the large-deviation scaling parameter v,
which is inversely proportional to the jump size. This replaces the problem of escaping to an O(1) distance from these
degeneracy regions uniformly in v to the one of escaping to O(1/

√
v). Their result allows for jump rates that behave as

in (3) for α ∈ [0, 1/2).
In this paper we bypass the change-of-measure technique altogether establishing more direct and concise bounds on

the process level. The main challenge in realizing this strategy is to identify a set of paths occurring with sufficient
probability to recover the LDP lower bound while allowing for simple estimation of such probability. The core of the
approach consists of showing separate estimates on the total number of jumps and on the types of jumps for paths in
such set. This allows us to extend the assumption (3) to any α ∈ [0, 1) while covering a larger family of processes than
the existing literature. In addition, we provide a counterexample showing that our upper bound for the exponent α is
optimal: If the rates of the process decay as (3) for α ≥ 1 with sufficient uniformity, as we make precise below, the
process will no longer be able to escape the degenerate set with finite large-deviation cost.

1.3. Outline. The paper is structured as follows. In Section 2 we introduce our notation, we list our assumptions and
we state our main result, Theorem 1, namely the LDP. We also illustrate the generality of our result with some examples.
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The proof of Theorem 1 is split into two sections: In Section 3 we prove the LDP lower bound, while Section 4 deals
with the LDP upper bound. In Section 5, we discuss the optimality of our assumptions on the decay of the rates and in
Section 6 we summarize the key quantities of the proof. A list of symbols is provided in Section 6.

2. NOTATION AND RESULTS

We start by giving a concrete example of the properties of systems we aim to generalize in this paper, introducing
some important quantities in an intuitive way:

Example 2.1 (Mass action kinetics). In the context of chemical kinetics, one indexes the dimension of state space with
a set of species {Si} representing the chemical compounds in the system of interest. To describe interactions between
different compounds one defines reactions r ∈ R via γr,in, γr,out ∈ Nd0 and

d∑
i=1

γr,ini Si −→
d∑
i=1

γr,out
i Si.

This is to be understood as saying γr,ini copies of species Si are consumed in each r-reaction while γr,out
i copies are

produced. The reaction rate Λvr is specified via a rate constant kr ≥ 0 as

Λvr(x) := kr
1

v
∑
i |γ

r,in
i |

d∏
i=1

(
vxi
γr,ini

)
γr,ini ! ∀x ∈

(
v−1N0

)d
,

where
(·
·
)

denotes the binomial coefficient. The jump vector is γr := γr,out − γr,in. These rates are bounded from

above on compact sets, and they converge to λr(x) = kr
∏d
i=1 x

γr,ini
i as v → ∞. It is easy to see that Λvr(x) = 0

whenever vxi < γr,in, so that Xv ∈ (v−1N0)d almost surely. Consequently, the degenerate set of the limiting dynamics
is a subset of the boundary ∂Rd≥0. As we shall illustrate in examples below, different choices of reactions result in Xv

being confined on subsets of (v−1N0)d.

We start by defining the set of reachable points of the process. Throughout, we fix a sequence of deterministic initial
conditions {xv0}. By the potentially degenerate character of the stochastic dynamics at hand, we reduce the state space
(v−1Z)d to the set of reachable points of the process with that initial condition xv0 ∈ (v−1Z)d:

Sv := {x ∈
(
v−1Z

)d
: P[∃t ≥ 0, Xv(t) = x | Xv(0) = xv0] > 0} .

Note that, by definition, Λvr(x) = 0 whenever x+ v−1γr /∈ Sv for any x ∈ Sv . Assuming that in the limit v →∞, the

initial values xv0 ∈
(
v−1Z

)d
converge to x0 ∈ Rd, we write S =

⋂
n∈N

⋃
v≥n

Sv where the raised line indicates topological

closure. We assume throughout that S is compact, but discuss how to relax this assumption in Remark 2.6. We associate
to S the set of jumps

R≥0 := {r ∈ R : ∃x ∈ S, λr(x) > 0 } .
Notice that, depending on the sequence of initial conditions, the same Markov process may have a different state space
Sv and different set of jumps R≥0. We refer to Example 2.3 for a situation where R≥0 6= R. However, by abuse of
notation, we will drop the index ≥ 0 and refer to this set simply asR.

Finally, we define the degenerate set – also referred to as “boundary” from its topological characterization in many
application domains – as ∂S := {x ∈ S : ∃r ∈ R, λr(x) = 0}. This represents the set of points where the limiting
process is degenerate, i.e., where the classical proof of the large-deviation principle will not immediately apply. Observe
that this is a slight abuse of both notation and terminology, since this degenerate set ∂S may be different from the actual
topological boundary of the set S.

The following example clarifies the role of the sequence of initial conditions on the resulting state space.

Example 2.2. The mass action kinetics model A↔ B (see Example 2.1 for definition of the rates and jump vectors)
with initial conditions xv0 = (0, 1 + 1/v) results in Sv = {x ∈ (v−1Z≥0)2 : x1 + x2 = 1 + 1/v} and S = {x ∈
R2
≥0 : x1 + x2 = 1}.

Example 2.3. The nontrivial effect of different sequences of initial conditions is captured by the system

B↔ 2B A↔ 2A + B,
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with mass action kinetics (see Example 2.1). For this model, the sequence xv0 = (1/v, 0) results in Sv = (v−1Z≥0)2 \
{0} and S = R2

≥0. However, if xv0 = (0, 1/v) we haveR≥0 = {B → 2B, 2B → B} and the dynamics are restricted
to Sv = {0} × (v−1Z≥0) resulting in S = {x ∈ R2

≥0 : x1 = 0}.

2.1. Assumptions. As mentioned above, we implicitly assume throughout the paper that the initial conditions are
deterministic and convergent, i.e. Xv(0) = xv0 → x0, and that S is compact. Furthermore, to ensure existence of the
limit, we require the reaction rates to satisfy some conditions.

Assumption 1 (Convergence and regularity of rates). We assume the following.
a) There exists a collection of non-negative functions {λr}r∈R, Lipschitz continuous on a neighborhood of S in Rd,

such that
lim
v→∞

sup
x∈Sv

∑
r∈R
|Λvr(x)− λr(x)| = 0.

b) There exists ℵ > 0 such that for all r ∈ R, v > 0 and x ∈ Sv with Λvr(x) > 0, we have

Λvr(x)

λr(x)
≥ ℵ.

As we outline in Section 3.1 the proof of our main theorem is based on the construction of short linear paths moving
the process away from the boundary ∂S . We now introduce notation to decompose the state space into subsets, in each
of which the linear path will be fixed. More precisely, following a standard approach first presented in [30], we cover
the compact state space S with the relative interior of finitely many convex, compact sets {Ai}i∈I with Ai ⊆ S for all
i ∈ I. We then define ∂Ai := ∂S ∩ Ai and let Ibd ⊆ I be the subset of indices for which ∂Ai 6= ∅.

We now present the assumptions for the lower bound. We assume that, whenever the process starts from an initial
condition close to ∂S (where possibly all the rates are zero), one can identify a finite sequence of favorable jumps,
which we call the escape sequence, that push the process away from the boundary. We further crucially assume that the
rates of such favorable jumps do not decay too fast as we approach the boundary. This is captured by the following
counterexample.

Example 2.4. Consider the family of Markov jump processes {Xv} with generator

Lvf(x) := ve−
k
x

(
f(x+ v−1)− f(x)

)
for f : v−1N0 → R , (4)

for any k > 0. The above process, which for small x is a time-changed version of the autocatalytic process introduced in
Example 1.1, has only one possible jump in the positive direction with rate Λv(x) = e−

k
x s.t. lim%→0 % (infx : x≥% log λ(x)) =

−k 6= 0 . For the sequence of initial conditions xv0 = 1/v, we have Sv = v−1N and S = R≥0. Then, for any w > 0
and ε ∈ (0, w/2) the probability of observing a realization of Xv in an ε-neighborhood of the path z(s) = sw on the
interval s ∈ [0, 1] can be trivially estimated as

P

[
sup
t∈[0,1]

|Xv
t − z(t)| ≤ ε

]
≤ P[Xv

1 ≥ w − ε] ≤ P[Xv
1 ≥ w̃]

for w̃ = min(k,w − ε)/2. Denoting by τi the waiting time between the i− 1-th and i-th jump of the Poisson process
Xv
t at x ∈ Sv , we further have

P[Xv
1 ≥ w̃] ≤

bvw̃c∏
i=1

P[τi ≤ 1] =

bvw̃c∏
i=1

1− exp[−(ve−kv/i)] ≤ exp

bvw̃c∑
i=1

(log v − kv/i)

 .

The rough estimate above yields

1

v
logP[Xv

1 ≥ w̃] ≤ 1

v
bvw̃c log v − k

bvw̃c∑
i=1

1

i
< (w̃ − k) log v − k(1 + log w̃) (5)

which approaches −∞ as v →∞.

As the example above shows, sufficiently fast decay of the rates of the process Xv implies the divergence of the
large-deviation cost of any nontrivial path starting on the boundary ∂S . We now proceed to give sufficient assumptions
guaranteeing that this does not happen in the general setting. In particular, to capture the idea of escaping a boundary in
the higher dimensional setting, for each Ai we define directions wi with some structural properties (Assumption 2 a))
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allowing to construct linear paths that leave such boundaries. We assume that these paths can be realized as a sequence
of jumps Ei whose rates do not decay too fast (Assumption 2 b)-c)), as to avoid for the realization of such path to have
an infinite large-deviation cost. Denoting throughout by B%(x) the Euclidean ball with center x and radius % in Rd and
by |A| the Lebesgue measure of the set A, we summarize such assumptions below:

Assumption 2 (Escape). There exist constants ε, ε′, ε′′ > 0 such that for each j ∈ I, the following hold:

a) If j ∈ Ibd there is awj ∈ Rd with ‖wj‖ = 1 and a κj ∈ (0, 1) such that whenever x ∈ Aj with infy∈∂S ‖x−y‖ < ε′

and t ∈ (0, ε)
i) t 7→ infy∈∂S ‖x+ t wj − y‖ is increasing, and

ii) Btκj (x+ t wj) ∩ ∂S = ∅.
We write κ− = minj∈Ibd{κj}. If j ∈ I \ Ibd we choose wj = 0.

b) There exists a finite sequence Ej := (r1, . . . , rnj ) of jumps inR with

lim sup
v→∞

1

v

∣∣∣∣∣log Λvrk

(
xv0 + v−1

k−1∑
i=1

γri

)∣∣∣∣∣ = 0, k = 1, . . . nj ,

and
∑nj
i=1 γ

ri = αjwj for some αj > 0 .
c) Defining Zv0 := {xv0 + v−1

∑k
i=1 γ

ri : k ∈ (0, . . . , nj − 1)}, for all r ∈ Ej and T > 0

lim
%→0

sup
x∈Aj∪

⋃
v Z

v
0

∫ %

0

|log λr(x+ swj)|ds = 0 .

d) There exists κ′′ < κ−/3 such that for any x ∈ Aj ∪
⋃
v Z

v
0 we have that for all r ∈ R with λr(x) < ε′′ the rates

λr( · ) are nondecreasing along paths t 7→ x+ tw for any w ∈ Bκ′′(wj), for t ∈ (0, ε).

One can easily check that Assumption 1 and 2 are satisfied by mass action kinetics rates on a convex domain [1].

Remark 2.5. While Assumption 2 c) is natural in terms of our proof, we note that it is automatically satisfied whenever
there exists α ∈ [0, 1) such that

lim
%→0

%α
(

inf
x∈Aj∪

⋃
v Z

v
0 : d(x,∂Aj)>%

log λr(x)

)
→ 0 for all r ∈ Ej , (6)

as we mentioned in (3), where d(A,B) := infx∈A,y∈B ‖x− y‖. In particular, the above decay condition implies the
results of [30] and [25]. These papers make the stronger assumptions that (6) holds with α = 0 and α ∈ [0, 1/2)
respectively.

2.2. The large-deviation principle. For a parameter T > 0 fixed throughout the paper, we denote byDu(0, T ;Rd) the
space of càdlàg functions with values in Rd endowed with the topology of uniform convergence. Furthermore we define
B[0,T ](%, z) to be the ball of radius % around z in Du(0, T ;Rd). Finally, for z : [0, T ] 7→ Rd in the set AC(0, T ;Rd) of
absolutely continuous functions, we denote by ż its time derivative and we will say that z ∈ AC(0, T ;S) whenever
additionally z(t) ∈ S a.e. t ∈ [0, T ].

To define the standard rate function for the LDP of Markov jump processes in the small noise limit [29] we introduce
the action

I[0,T ](z) :=

{∫ T
0

inf{µ∈RR:
∑
r∈R µrγ

r=ż}H(µ|λ(z(t))) dt, if z ∈ AC(0, T ;S) ,

+∞ otherwise.
(7)

H(µ|λ) :=
∑
r∈R

λr − µr + µr log
µr
λr

, (8)

where (λ(x))r := λr(x). We can now state the main result of this paper:

Theorem 1. Consider the sequence of Markov jump processes {Xv}v∈N, fixing a sequence of deterministic initial
conditions {xv0}∞v∈N with xv0 ∈ (v−1Z)d such that Xv(0) = xv0 → x0 ∈ Rd. Assume S is compact. Let Assumption 1
and 2 hold. Then the sequence {Xv}v∈N satisfies a LDP in Du(0, T ;Rd) with the good rate function

Ix0

[0,T ](z) :=

{
I[0,T ](z) if z(0) = x0

+∞ otherwise,
(9)
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that is, Ix0

[0,T ] has compact sublevel sets in Du(0, T ;Rd), and for all measurable Γ ⊆ Du(0, T ;Rd),

lim sup
v→∞

1

v
logPxv0 [Xv ∈ Γ] ≤ − inf

x∈Γ̄
Ix0

[0,T ](x) (10)

lim inf
v→∞

1

v
logPxv0 [Xv ∈ Γ] ≥ − inf

x∈Γo
Ix0

[0,T ](x), (11)

where Pxv0 [ · ] denotes the conditional probability on Xv
0 = xv0 .

A few considerations are now in order.
Throughout the paper we work with the uniform topology, which is stronger than the Skorohod topology, and hence

our main result also holds in the Skorohod topology [8, Cor. 4.2.6].
As common in large-deviation theory, our main result requires that the sequence is exponentially tight inDu(0, T ;Rd).

This is implied by the compactness of S and the Lipschitz continuity and hence boundedness of the rates {λr}. The
argument to prove this result is standard [8, Lemma 5.1.7]: one first shows exponential tightness of the (continuous)
linearly interpolated paths using an Arzelà-Ascoli argument, and then use exponential equivalence to obtain exponential
tightness of the jump process in Du(0, T ;Rd). Alternatively, exponential tightness of the jump process can also be
shown in the Skorohod topology, as in [29, Section 5.4] Due to the exponential tightness, the compactness of sublevel
sets of Ix0

[0,T ] comes for free, and the upper bound only needs to be proven for compact sets [8, Lem. 1.2.18].

Remark 2.6. The boundedness of the rates and compactness of S can be relaxed. Indeed, exponential tightness can
be obtained by other means: Either by Lipschitz continuity of the jump rates [11, 29], or by stability estimates [1, 3].
Once exponential tightness is guaranteed, one can restrict the analysis to trajectories that do not leave a large enough
compact [11, Theorem 4.4], effectively reducing the problem to the one with compact state space, which we discuss
above.

We further note that the seemingly restrictive assumption of deterministic initial condition also covers the case
when such an initial condition is random. This can be done, given the probability conditioned on a fixed initial state
from Theorem 1, by integrating with respect to the probability distribution νv ∈M((v−1Z)d) of the initial condition,
provided that the measure νv satisfies some weak regularity and tightness assumptions. In this case, however, one must
check that the conditions in Theorem 1 hold uniformly on a set of positive measure WRT νv . For a detailed discussion of
this procedure when ν also satisfies a LDP at the same rate we refer to [5].

3. PROOF OF LDP LOWER BOUND

The general strategy adopted to prove the LDP lower bound result is mainly standard. Without loss of generality,
we may assume that Γ is open, for any path z ∈ Γ one can find a δ > 0 such that B[0,T ](δ, z) ⊂ Γ, so that
Px [Xv ∈ Γ] ≥ Px

[
B[0,T ](δ, z)

]
for δ > 0 small enough. Hence, it is sufficient to prove that, for any path z ∈ Γ the

probability that the process Xv stays in a neighborhood B[0,T ](δ, z) for any δ > 0 is approximately exp[−vIx0

[0,T ](z)].
Applying such estimate to a sequence {z(n)}∞n=1 of paths converging to the minimizer of Ix0

[0,T ] in Γ with small enough
δ(n) proves the desired result. This shows that for the lower bound (11) it is sufficient to prove the following.

Proposition 3.1. Fix a path z : [0, T ]→ S with a fixed initial condition z(0) = x0 ∈ S such that Ix0

[0,T ](z) = K <∞.
Then, for a sequence of initial conditions xv0 ∈ (v−1Z)d converging to x0, under Assumption 1 and Assumption 2,

lim
δ→0

lim inf
v→∞

1

v
logPxv0

[
Xv ∈ B[0,T ](δ, z)

]
≥ −Ix0

[0,T ](z) . (12)

The remainder of this section concentrates on proving such estimate. Our approach to the proof of the above result
mimicks the one from [30]. Throughout this section, we fix a path z ∈ AC([0, T ],S) starting from z(0) = x0 and
we approximate z with another path zδ obtained by perturbing z, shifting it uniformly away from the regions where
the rates are degenerate by a quantity controlled by δ. We then proceed to prove on one hand that the probability
of Xv approximately following zδ is accurately described by the rate function Ix0

[0,T ](zδ), and on the other that the
large-deviation cost of the process following the shifted path converges towards the one of the original path as δ → 0.
The main difficulty to establish the former claim arises with the necessity of keeping the microscopic initial condition of
the path fixed, and estimating the probability of the process reaching, in a small time interval, the origin of the shifted
path z, which is macroscopically bounded away from the boundary. On the other hand, to establish the latter convergence
property of the rate functional we have to guarantee sufficient regularity of such functional as some of the jump rates
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decrease to 0 with δ → 0. The remainder of the section is devoted to the realization of this program. In Section 3.1
we give the explicit construction of the path zδ and detail its role in the proof of Proposition 3.1, in Section 3.2 we
estimate the probability of the process reaching the origin of the shifted path from its fixed initial condition x0, while in
Section 3.3 we prove sufficient regularity of the rate functional Ix0

[0,T ]. The proof of Proposition 3.1 is finally concluded
in Section 3.4.

3.1. Construction of the path zδ . We now construct a macroscopic path that perturbs the original path z ∈ AC(0, T ;S)
at a negligible cost and that can only intersect ∂S at its initial point. To do so we recall the covering {Ai} defined in
Section 2.1, allowing us to identify, for each Ai, directions wi to move away from the boundary ∂S . More specifically,
this covering allows to partition the path z as it enters different regions Ai and to shift it in the corresponding direction
wi, thereby guaranteeing that the shifted path avoids ∂S as we detail below and as depicted in Fig. 1.

To construct zδ we recall that z(0) = x0 and introduce the sequence of times {τk}k so that {z(t) : t ∈ [τk−1, τk]} ⊂
(Aik)o, the relative interior ofAik , for all k for a corresponding sequence {ik}k of indices in I . Then, for fixed x0 ∈ S ,
we consider i0 ∈ I such that x0 ∈ Ai0 , so that z(t) ∈ Ai0 for all t ∈ [0, τ1]. In this interval we define the shifted path

zδ(t) :=

{
x0 + twi0 for t ∈ [0, tδ]

z(t− tδ) + tδwi0 for t ∈ (tδ, τ1 + tδ]
(13)

for tδ = 1
6ξmin(δ, ω−1

z (δ)) where ωz denotes the modulus of continuity of the path z and ξ > 0 is defined below (see
Lemma 3.2). We then continue defining the path zδ by shifting the original path z infinitesimally on every interval
[τk, τk+1], sequentially moving it away from ∂Aik with the corresponding wik . More precisely, setting the length
of the k-th shift time for the perturbed path as βktδ for β > 1 to be chosen later (see Lemma 3.2) and denoting by
∆β
k := tδ

∑k−1
`=0 β

` the cumulative shift time up to transition k we define the k-th shift as

zδ(t) :=

{
zδ(τk + ∆β

k) + (t− τk −∆β
k)wik for t ∈ (τk + ∆β

k , τk + ∆β
k+1]

zδ(τk + ∆β
k) + βktδwik + z(t−∆β

k+1)− z(τk) for t ∈ (τk + ∆β
k+1, τk+1 + ∆β

k+1].
(14)

We now establish some structural properties of the newly constructed path around the original z, which we recall is
fixed throughout this section. This lemma extends [30, Lemma 3.4].

Lemma 3.2. Let Assumptions 1 and 2 hold and set β := 3/κ′′ recalling that κ′′ < κ− = minj∈I κj from Assumption 2
a). Then, for any K > 0 there is a J > 0 such that if I[0,T ](z) ≤ K, there are 0 = τ0 < τ1 < · · · < τJ = T and {ik}
with z(t) ∈ Aik for τk−1 ≤ t ≤ τk. Furthermore, setting ξ := min(1, (κ′′/3)J+1/3, ε) there exists δz > 0 such that
for all δ < δz the path zδ from (13) and (14) satisfies sup[0,T ] ‖z − zδ‖ < 2δ/3.
Finally, the path zδ satisfies

⋃
t∈[tδ,T ] Bκ−tδ(zδ(t))∩∂S = ∅ and for every k ∈ (1, . . . , J) and a ∈ Rd∩ spanr∈R(γr)

with ‖a‖ < tδκ
′′/2 there exists w ∈ Bκ′′(wik) such that zδ(τk + ∆β

k+1) + a = z(τk) + βktδw.

We defer the proof of this lemma to the end of the section and proceed to present the central estimate allowing us to
bound the probability in (12) from below — in the sense of large deviations. To do so, defining throughout β := 3/κ′′

and ξ := min(1, (κ′′/3)J+1/3, ε) so that Lemma 3.2 holds, by triangle inequality it is sufficient to consider the event
supt∈[0,T ] ‖zδ(t)−Xv(t)‖ < δ/3. Furthermore, zδ(t) ∈ S for all t and for any δ′′/2 ≤ δ′ ≤ δ/3 we can further bound
the event of interest from below as follows:

Pxv0
[
Xv ∈ B[0,T ](δ, z)

]
≥ Pxv0

[
Xv ∈ B[0,T ](δ/3, zδ)

]
≥ Pxv0

[
{Xv ∈ B[0,tδ](δ/3, zδ)} ∩ {X

v(tδ) ∈ Bδ′′/2(x0 + tδwj)} ∩ {Xv ∈ B[tδ,T ](δ
′, zδ)}

]
≥ Pxv0

[
{Xv ∈ B[0,tδ](δ/3, zδ)} ∩ {X

v(tδ) ∈ Bδ′′/2(x0 + tδwj)}
]

(15)

× inf
y∈Bδ′′/2(x0+tδwj)

P
[
Xv ∈ B[tδ,T ](δ

′, zδ) | Xv(tδ) = y
]
,

where in the last inequality we have used the Markov property. In the remainder of the paper we set

δ′ := κ−tδ/3 and δ′′ := tδκ
′′ < δ′

where recalling that κ− = minj∈Ibd{κj} < 1 and that ξ < 1 we have δ′ ≤ δ/3. We note that this choice is compatible
with the definition of κ′′ from Assumption 2.
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z
zδ
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Ai1 Ai2

wi2

wi0

x0

FIGURE 1. Schematic representation of shifted path.

Remark 3.3. We pause briefly to motivate our choice of δ′ and δ′′: These small parameters are chosen in such a way
as to guarantee that the event in the second term in the last line of (15) only contains paths that are uniformly bounded
away from ∂S, as captured by Lemma 3.2 and depicted in Fig. 2.

The desired result is obtained by showing that

lim
δ→0

lim inf
v→∞

1

v
logPxv0

[
{Xv ∈ B[0,tδ](δ/3, zδ)} ∩ {X

v(tδ) ∈ Bδ′′/2(x0 + wjtδ)}
]

= 0 and (16)

lim
δ→0

lim inf
v→∞

1

v
log inf

y∈Bδ′′/2(x0+tδw)
P
[
Xv ∈ B[tδ,T ](δ

′, zδ) | Xv(tδ) = y
]
≥ −Ix0

[0,T ](z). (17)

The term in (16) is bounded from below in Section 3.2, while in Section 3.3 and Section 3.4 we formulate and combine
the estimates in different Aj to bound (17), thereby proving the desired LDP lower bound.

3.2. Jump bounds. We now proceed to bound from below the first term on the last line of (15). To do this we consider
a convenient subset of outcomes obtained by fixing a precise sequence of jumps (but not the times of the jumps) that
the process undergoes in the interval (0, tδ). To define such an event, we recall the sequence Ej from Assumption 2b)
consisting of nj jumps leading away from ∂Aj and we denote the event of repeating the sequence of jumps in Ej n
times by

Ξj(n, v) :=

n−1⋂
m=0

nj⋂
i=1

{
Xv(σmnj+i)−Xv(σmnj+i−) = v−1γri

}
, (18)

where, for all k ∈ N, σk is the time of the k-th jump of the Markov process Xv. Furthermore, we note that by our
choice of tδ < 1/6δ we must have {x0 + twj : t ∈ (0, tδ)} ⊂

⋂
t∈(0,tδ)

Bδ/3(x0 + wjt), as depicted in Fig. 2. Thus
for nv+ := b vαj tδc and nv− := d vαj (tδ − δ′)e we have for all v large enough that nv− < nv+ ,

{Xv ∈ B[0,tδ](δ/3, zδ)} ⊇ Ξj(n
v
+, v) ∩ {σnv+nj > tδ} , (19)

and also

{Xv(tδ) ∈ Bδ′(x0 + wjtδ)} ⊇ Ξj(n
v
+, v) ∩ {σnv+nj > tδ} ∩ {σnv−nj ≤ tδ} .

Note that, as v and n increase the paths in Ξj(n, v) have ranges concentrating on a straight line segment in Rd
However, there is no information about the speed at which they move along this line segment. This degree of
freedom will be sufficient to establish the LDP lower bound, as we shall see next. In preparation for the next re-
sult observe by Assumption 1a) that lim supv→∞ sup

{∑
r∈R Λvr(x) : x ∈ B2tδ(x0)

}
< ∞ and define t̄δ(α, ε′′) :=

minj{αj/nj , ε′′/maxr∈R Lip(λr)}, where ε′′ is as defined in Assumption 2.
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Bδ/3(x0)

Bδ/3(x0 + tδwi0)

Bδ′(x0 + tδwi0)
z

zδδ/3

x0

FIGURE 2. Schematic representation of the desired effect for the choice of parameters δ, δ′, δ′′

summarized in Lemma 3.2. For a fixed path z and δ > 0 by our choice of ξ > 0 and consequently tδ
we have that a neighborhood of the path x0 + wi0t (blue arrow) is contained in

⋂
t∈(0,tδ)

Bδ/3(x0 +

twi0) (the intersection of the two dotted balls). By our choice of δ′(ξ, κ−) > 0, we find that a
δ′-neighborhood (dashed blue region) of the path zδ (blue line) on [tδ, T ) never intersects ∂S while
Bδ′(x0 + wi0tδ) ⊂

⋂
t∈(0,tδ)

Bδ(z(t)). The shaded blue region represents Bδ′′/2(x0 + tδwj).

Lemma 3.4. Suppose x0 ∈ Aj and let Assumption 1 and 2 hold and that δ is small enough that tδ < t̄δ(α, ε
′′), then

for λ̄ > max{1, lim supv→∞ sup
{∑

r∈R Λvr(x) : x ∈ B2tδ(x0)
}
} we have

lim inf
v→∞

1

v
logP

[
Xv(tδ) ∈ Bδ′′/2(x0 + tδwj) , Ξj(n

v
+, v) , σnv+nj > tδ

∣∣∣Xv(0) = xv0

]
≥ −tδ

(
nj
αj

log

(
nj
αj

)
− nj
αj

+ λ

)
+

nj∑
i=1

∫ tδ/αj

0

log (λri (x0 + sαjwj)) ds+ tδ
nj
αj

logℵ .

To prove the above result, defining throughout γ̃(i) :=
∑i−1
k=1 γ

rk we introduce the following lemma relating the
Riemann sum of log λr along the escape sequence defining Ξj to the corresponding integral.

Lemma 3.5. Suppose x0 ∈ Aj , let Assumption 1 and 2 hold, then for all δ such that tδ < t̄δ(α, ε
′′) and ri ∈ Ej we

have

lim inf
v→∞

1

v

nv+−1∑
m=0

log
(
λri

(
xv0 +

m

v
αjwj + v−1γ̃(i)

))
≥
∫ tδ/αj

0

log (λri (x0 + sαjwj)) ds . (20)

Proof of Lemma 3.4. When x0 6∈ ∂Aj all the rates are strictly positive by definition, so the result follows by standard
large-deviation estimates [29, Theorem 5.51]. Therefore, for the rest of the proof we assume that x0 ∈ ∂Aj . Denoting
by 1 {x ∈ A} the indicator function on the set A, we introduce a jump r? with

Λvr?(x) :=

(
λ̄−

∑
r∈R

Λvr(x)

)
1 {x ∈ B2tδ(x0)} and γr

?

= 0 ,

and expand the set of jumps R? := R ∪ {r?}. We then define a new family of processes X̄v on the extended set of
jumpsR? and corresponding jump rates. By independence of the jump processes we trivially couple the underlying
Poisson processes for jumps inR to the ones of the process Xv, so that X̄v(t) = Xv(t) a.s. and proceed to establish
the desired result for X̄v . In the rest of the proof, by abuse of notation we will denote by Ξ̄j the set defined in (18) for
X̄v instead of Xv . We then have

P
[
X̄v(tδ) ∈ Bδ′′/2(x0 + tδwj), σnv+nj > tδ, Ξ̄j(n

v
+, v)

∣∣∣X̄v(0) = xv0

]
≥ P

[
σnv−nj ≤ tδ < σnv+nj

∣∣∣Ξ̄j(nv+, v), X̄v(0) = xv0

]
× P

[
Ξ̄j(n

v
+, v)

∣∣X̄v(0) = xv0
]
.
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On the event Ξ̄j(n
v
+, v) ∩

{
σnv+nj ≥ t

}
one has, for v large enough,

sup
s<t

∥∥X̄v(s)− x0

∥∥ ≤ ‖x0 − xv0‖+ tδ ‖wj‖+ v−1 max
i

∥∥∥γ̃(i)
∥∥∥ < 2tδ ,

and therefore
∑
r∈R∗ Λvr(X̄

v(s)) = λ̄ for all s < t.
Now, recalling that αjwj :=

∑nj
k=1 γ

rk with ‖wj‖ = 1, by the conditional independence of the jumps

P
[
Ξ̄j(n

v
+, v)

∣∣X̄v(0) = xv0
]

=

nv+−1∏
m=0

nj∏
i=1

Λvri
(
xv0 +mv−1αjwj + v−1γ̃(i)

)
λ

. (21)

and thus

1

v
logP

[
Ξ̄j(n

v
+, v)

∣∣X̄v(0) = xv0
]
≥

nj∑
i=1

1

v

nv+−1∑
m=0

log

(
Λvri

(
xv0 +mv−1αjwj + v−1γ̃(i)

)
λri
(
xv0 +mv−1αjwj + v−1γ̃(i)

))

+

nj∑
i=1

1

v

nv+−1∑
m=0

log

(
λri
(
xv0 +mv−1αjwj + v−1γ̃(i)

)
λ

)
. (22)

Now, using Lemma 3.5 and recalling the definition of ℵ > 0 from Assumption 1 we have for (22)

lim inf
v→∞

1

v
logP

[
Ξ̄j(n

v, v)
∣∣X̄v(0) = xv0

]
≥

nj∑
i=1

∫ tδ/αj

0

log (λri (x0 + sαjwj)) ds− njtδ log
(
λ/ℵ

)
/αj . (23)

Also since the waiting times between jumps are independent of which type of jump actually occurs

P
[
X̄v(tδ) ∈ Bδ′′/2(x0 + tδwj), σnv+nj > tδ

∣∣∣Ξ̄j(nv, v), X̄v(0) = xv0

]
= P

[
nv−nj ≤ Y v < nv+nj

]
,

where Y v is Poisson distributed with mean tδvλ. By definition, λ̄ ≥ 1 so that it is in particular greater than nv+nj/v for
our choice of tδ , and by Cramer’s theorem for Poisson random variables we have

lim
v→∞

1

v
logP

[
nv−nj ≤ Y v < nv+nj

]
≥− tδ

(
nj
αj

log

(
nj
αj λ̄

)
− nj
αj

+ λ̄

)
. (24)

The result now follows by combining (24) and (23). �

Proof of Lemma 3.5. We note that λr is Lipschitz so whenever λr(x0) > 0 then λr(x+ swj) is uniformly bounded
away from 0 on a sufficiently small time interval and the result follows immediately by a dominated convergence
argument. We therefore assume throughout that λr(x0) = 0. Introducing

ñv := inf

{
m ∈ N :

xv0 +mv−1αjwj + v−1γ̃(i) − x0

‖xv0 +mv−1αjwj + v−1γ̃(i) − x0‖
∈ Bκ′′(wj)

}
, (25)

we split the sum in the statement of the Lemma into the terms m = 0, m ∈ (1, . . . , ñv) and m ∈ (ñv + 1, . . . , nv+) and
proceed to bound their contribution separately. The term m = 0 is automatically bounded by Assumption 2b). For the
second term we observe since log

(
λri
(
xv0 +mv−1αjwj + v−1γ̃(i)

))
is increasing in m by Assumption 2d) that

lim inf
v→∞

1

v

ñv∑
m=1

log
(
λri

(
xv0 +mv−1αjwj + v−1γ̃(i)

))
≥ lim inf

v→∞

∫ ñv/v

0

log
(
λri

(
xv0 + v−1γ̃(i) + tαjwj

))
dt = 0 ,

where the final equality arises since limv→∞ xv0 = x0 implies limv→∞ v−1ñv = 0, and we have the integral estimate
from Assumption 2c), which is uniform in the starting points xv0 + v−1γ̃(i) ∈ Zv0 .

Similarly for the terms m ∈ (ñv + 1, . . . , nv+−1), defining m′ := m− ñv ≥ 0 we can write

xv0 +mv−1αjwj + v−1γ̃(i) = x0 +m′v−1αjwj +
(
xv0 + ñvv−1αjwj + v−1γ̃(i) − x0

)
, (26)
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and note that by (25) the vector in brackets, once renormalized, is in Bκ′′(wj).
We also have limv→∞

∥∥xv0 + ñvv−1αjwj + v−1γ̃(i) − x0

∥∥ = 0 so provided that δ is small enough that x0 +

m′v−1αjwj ∈ Aj and λri(x0 +m′v−1αjwj) < ε′′ we may apply Assumption 2d) to see that for each m′ ≥ 0

λri

(
xv0 +mv−1αjwj + v−1γ̃(i)

)
≥ λri

(
x0 +m′v−1αjwj

)
.

A second application of Assumption 2d) implies

lim inf
v→∞

1

v

nv+−1−ñv∑
m′=1

log
(
λri
(
x0 +mv−1αjwj

))
≥ lim inf

v→∞

∫ (nv+−1−ñv)/v

0

log (λri (x0 + tαjwj)) dt.

�

3.3. Approximation of the rate functional. After the process has left the boundary ∂S, we estimate the cost of a
given path z by approximating z with another path, that is uniformly bounded away from ∂S. This implies that a
standard LDP holds for such shifted path, and this can then be used to bound the rate function of the original z. We start
by proving an adaptation of [30, Lemma 4.1] to the present setting, recalling that ωz is the modulus of continuity of z.

Lemma 3.6. Under Assumption 2, for every x ∈ Aj for j ∈ I recalling that tδ := 1
6ξmin(ω−1

z (δ), δ) the cost of the
path zδ(t) = x+ twj satisfies

lim
δ→0

I[0,tδ](zδ) = 0 .

Proof. The thesis follows immediately by Assumption 2, resulting in the integrability of the rate functional I[0,tδ] along
the chosen trajectories. �

We define throughout

`(x, y) := sup
ϑ∈Rd

ϑ · y −
∑
r∈R

λr(x) (exp (ϑ · γr)− 1). (27)

and recall that, by convex duality, for any x, y ∈ Rd we have `(x, y) = inf{µ∈R|R|≥0
:
∑
r∈R µrγ

r=y}H(µ|λ(x)) for

H(µ|λ) defined in (8), as proven e.g., in [29, Theorem 5.26] and discussed in the paragraph below [30, Lemma
5.1]. Consequently we can express I[0,T ](z) =

∫ T
0
`(z(s), z′(s)) ds. This allows to prove the following adaptation

of [30, Lemma 5.1].

Lemma 3.7. Let Assumptions 1 and 2 hold. Fix i ∈ I, τ > 0 and let the path z take values in Ai for t ∈ [0, τ ] and
satisfy I[0,τ ](z) < K for K <∞. Then for any w ∈ Bκ′′(wi), Cβ > 0 the shifted path zδ(·) = z(·) + Cβtδw satisfies

lim sup
δ→0

I[0,τ ](zδ) ≤ I[0,τ ](z)

Proof. We define `1(t) = `(z(t), z′(t)) and `2(t) = `(zδ(t), z
′
δ(t)) and denote by (µ∗r(t))r∈R the optimizing set of

jumps in (7) for the path z. This minimizer exists, because the sublevel sets for µ 7→ H(µ|λ) for H from (8) are
compact. Then we have that `2(t) ≤ H(µ∗(t)|λ(zδ(t))). On the other hand, by continuity of the asymptotic rates
λr there exists a function Kλ(δ) with limδ→0Kλ(δ) = 0 for which we have |λr(z(t))− λr(zδ(t))| < Kλ(δ) for all
r ∈ R and t ∈ [0, τ ], so that

`2(t)− `1(t) ≤
∑
r∈R

λr(zδ(t))− λr(z(t)) + µ∗r(t) log
λr(z(t))

λr(zδ(t))
≤ |R|Kλ(δ) +

∑
r∈R

µ∗r(t) log
λr(z(t))

λr(zδ(t))
.

We now bound the second term on the RHS from above depending on whether λr(z(t)) > ε′′ from Assumption 2. If
λr(z(t)) ≤ ε′′, by the assumed increasing property of λr(·) along x+ sw, we have log λr(z(t))/λr(zδ(t)) ≤ 0. On
the other hand, if λr(z(t)) > ε′′ then for δ small enough

log
λr(z(t))

λr(zδ(t))
≤ log

λr(z(t))

λr(z(t))−Kλ(δ)
≤ log

ε′′

ε′′ −Kλ(δ)
≤ 2Kλ(δ)

ε′′
,

where in the last inequality we used log(1− x)−1 < 2x for x small enough. It remains to show that the contribution
of the term µ∗r(t) is bounded from above on the paths of interest. This result is obtained in the proof of [30, Lemma
5.1] by the convexity and asymptotic growth of the Lagrangian `(x, y) in its second argument, proven in [30, Lemma
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5.1], [29, Lemma 5.17] leveraging only the boundedness of the rates λr. Following the same argument we bound
µ∗r(t) ≤ C0(1 + `1(t)) and we finally obtain

`2(t) ≤ `1(t) +Kλ(δ)(C1 + C2`1(t))

for sufficiently large, positive constants C0, C1, C2. By the assumed boundedness of I[0,τ ](z), this gives the desired
result by integration. �

We now combine the above estimates, established in each region Ai separately, to obtain convergence of the rate
functional I[0,T ](zδ) to I[0,T ](z) as δ → 0. While the idea of the proof is the same as in the original reference, we have
to reproduce the process more closely, as in our case we cannot bound, in general, the rate function of the shifts linearly
in δ as done in [30, Lemma 4.1] and we only have the limiting result Lemma 3.6. To bypass this issue, we leverage
exponential tightness – discussed directly below the statement of Theorem 1 – to show that the number of transitions
between different Aj done by the path of interest is bounded uniformly on sublevel sets of the rate functional. For any
a ∈ Rd, we extend the definition of zδ on the interval [0, T ] as:

z̃aδ (t) =

{
zδ(tδ) + a for t ∈ [0, tδ)

zδ(t) + a for t ∈ [tδ, T ]
.

Lemma 3.8. Let Assumptions 1 and 2 hold, and let the path z satisfy I[0,T ](z) <∞. Then the path z̃aδ satisfies

lim sup
δ→0

sup
a∈spanr∈R(γr) : ‖a‖<κ′′tδ

I[0,T ](z̃
a
δ ) ≤ I[0,T ](z)

Proof. Recall the definition of times τ1 . . . , τJ from Lemma 3.2, separating [0, T ] in a finite number of intervals where
the path z is contained in a set Aj . We now express the rate function as the sum of the cost of the shifted path and the
cost of the shifts: For ∆i := tδ

∑i
k=0(3/κ′′)k (reflecting the choice of β in Lemma 3.2) we write

I[0,T ](z̃
a
δ ) = I[0,tδ)(z̃

a
δ ) +

J∑
i=1

I[τi−1+∆i,τi+∆i](z̃
a
δ ) +

J∑
i=1

I[τi+∆i,τi+∆i+1](z̃
a
δ ) , (28)

and proceed to bound the terms on the RHS separately. For the first term we can trivially choose the optimizing set of
fluxes in (8) as µ∗ = 0, so that by boundedness of the rates λr(x) < C we have I[0,tδ)(z̃

a
δ ) ≤ |R|Ctδ , which vanishes

with δ → 0.
We proceed to bound the summands in the second term. Recalling by Lemma 3.2 that for each time interval

[τi−1 + ∆i, τi + ∆i] the trajectory of z̃aδ corresponds to the one of z +wtδ for w ∈ Bκ′′(wji) we see that for each such
interval we can apply Lemma 3.7. Combining this result with the time-translation invariance of the rate functional we
obtain that

lim sup
δ→0

J∑
i=1

I[τi−1+∆i,τi+∆i](z̃
a
δ ) ≤

J∑
i=1

I[τi−1,τi](z) . (29)

We then bound the third term of (28) by Lemma 3.6, recalling that by Lemma 3.2 the path z̃aδ is in S. We start by
writing

I[τi+∆i,τi+∆i+1](z̃
a
δ ) ≤

∑
r∈R

∫ τi+∆i+1

τi+∆i

[
λr(z̃

a
δ (s))− µ∗r + µ∗r log

µ∗r
λr(z̃aδ (s))

]
ds .

where µ∗r is given by the multiplicity of reaction r in Ej . We then further divide the sum onR based on whether the
jump rates λr(z(t)) are bounded from below by ε′′ from Assumption 2 on the time interval of interest. We denote the
jumps whose rates do not satisfy this lower bound byR(0)(ji) and write

I[τi+∆i,τi+∆i+1](z̃
a
δ ) ≤

∑
r∈R(0)(ji)

∫ τi+∆i+1

τi+∆i

[
λr(z̃

a
δ (s))− µ∗r + µ∗r log

µ∗r
λr(z̃aδ (s))

]
ds

+
∑

r∈R\R(0)(ji)

∫ τi+∆i+1

τi+∆i

[
λr(z̃

a
δ (s))− µ∗r + µ∗r log

µ∗r
λr(z̃aδ (s))

]
ds . (30)

12



Then, by compactness given by I(z) < K there exists C ′(K) > 0 such that the second term is bounded from above by∑
r∈R\R(0)(ji)

∫ τi+∆i+1

τi+∆i

[
λr(z̃

a
δ (s))− µ∗r + µ∗r log

µ∗r
λr(z̃aδ (s))

]
ds < |R|C ′(∆i+1 −∆i) .

On the other hand, there exists C ′′ > 0 large enough such that for each term of the first sum in (30) we have∫ τi+∆i+1

τi+∆i

[
λr(z̃

a
δ (s))− µ∗r + µ∗r log

µ∗r
λr(z̃aδ (s))

]
ds < C ′′

[
(∆i+1 −∆i) +

∫ τi+∆i+1

τi+∆i

| log λr(z̃
a
δ (s))|ds

]
,

and using Assumption 2 b) and c) we have for some x ∈ Aji and all r ∈ R(0)(ji)

lim
δ→0

∫ τi+∆i+1

τi+∆i

| log λr(z̃
a
δ (s))|ds ≤ lim

δ→0

∫ βitδ

0

| log λr(x+ swji)|ds = 0 .

Combining the above upper bounds for each transition we have

lim
δ→0

J∑
i=0

I[τi+∆i,τi+∆i+1](z̃
a
δ ) ≤ J lim

δ→0
sup

i∈(0,...,J)

I[τi+∆i,τi+∆i+1](z̃
a
δ ) = 0 . (31)

Finally, combining (28) with (29) and (31) we obtain the desired result. �

3.4. Proof of LDP in path space.

Proof of Proposition 3.1. We conclude the proof by showing that (16) and (17) hold, thereby bounding the corre-
sponding terms from (15). First of all, we obtain (16) by combining (19) and Lemma 3.4, from which we have
that

lim
δ→0

lim inf
v→∞

1

v
logP

[
Xv(t) ∈ Bδ′′/2(tδwj) , Ξj(n

v
+, v) , σnv+,nj > tδ

∣∣∣Xv(0) = xv0

]
= 0 . (32)

It remains to show that (17) holds. We first bound its left-hand side as

inf
y∈Bδ′′/2(x0+tδw)

P
[
Xv ∈ B[tδ,T ](δ

′, zδ) | Xv(tδ) = y
]
≥

inf
a∈Bδ′′/2(0)

P
[
Xv ∈ B[tδ,T ](δ

′/2, zδ + a) | Xv(tδ) = zδ(tδ) + a
]
, (33)

where we shift the path zδ of a, but the lower bound is preserved since B[tδ,T ](δ
′/2, zδ + a) ⊆ B[tδ,T ](δ

′, zδ) for all
a ∈ Bδ′′/2(0). Since paths in the right-hand side above are uniformly bounded away from ∂S by Lemma 3.2, rates are
uniformly bounded away from 0 on the paths of interest and standard large-deviation bounds (which hold uniformly on
y ∈ Bδ′′/2(tδ wi0)) can be applied. Therefore, defining Nδ := Bδ′′/2(0) ∩ spanr∈R(γr) we bound the second term of
(15) by

lim inf
v→∞

1

v
log inf

a∈Nδ
P
[
Xv ∈ B[tδ,T ](δ

′/2, zδ + a) |Xv(tδ) = zδ(tδ) + a
]
≥ inf
a∈Nδ

(− inf
z∈B[tδ,T ](δ′/2,zδ+a)

I[tδ,T ](z))

≥ inf
a∈Nδ

(−I[tδ,T ](zδ + a))

≥ inf
a∈Nδ

(−I[0,T ](z̃
a
δ )) . (34)

Finally, noting that by Lemma 3.8 we have

lim inf
δ→0

inf
a∈Nδ

(−I[0,T ](z̃
a
δ )) ≥ −I[0,T ](z) = −Ix0

[0,T ](z) . (35)

we obtain (17) by combining (33), (34) and (35). �

We conclude this section by proving Lemma 3.2

Proof of Lemma 3.2. The finiteness of J results from [30, Lemma 3.5]. In particular, one can choose α small enough
and [τi−1, τi] so that the set {Bα(z(t)) , t ∈ [τi−1, τi]} is contained in Aji for all i ∈ (1, . . . , J). By exponential
tightness we can apply [30, Lemma 3.4] to obtain uniform absolute continuity of z on the set I[0,T ](z) < K, so that
there exists τ− > 0 with inf{z : I[0,T ](z)<K,i∈N} τi − τi−1 > τ−. Consequently J = T/τ− is finite.
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The bound sup[0,T ] ‖z−zδ‖ < 2δ/3 follows from the construction (13) and our choice of ξ := min(1, (κ′′/3)J+1/3, ε).
Indeed for the time interval [0, tδ] we have

sup
t∈[0,tδ]

‖x0 + wjt− z(t)‖ ≤ tδ + ωz(tδ) ≤
2δ

3
,

where ωz is the (subadditive) modulus of continuity of z. To extend this estimate beyond tδ we note that

sup
t∈[0,T ]

‖zδ(t)− z(t)‖ <
J∑
k=0

βktδ + ωz(β
ktδ) ≤ 2ξδ

J∑
k=0

βk . (36)

Then, by our choice β = 3/κ′′ and since

k∑
l=0

(
3

κ′′

)l
=

1− (3/κ′′)k+1

1− 3/κ′′
≤ κ′′

2
(3/κ′′)k+1 . (37)

we see that by boundedness of k ≤ J and by the definition of ξ we have supt∈[0,T ] ‖zδ(t)− z(t)‖ < 2δ/3.
We now prove that

⋃
t∈[tδ,T ] Bκ−tδ(zδ(t)) ∩ ∂S = ∅ by induction on k. For k = 0 the claim follows directly by

Assumption 2a) for δ < ε′/2. Then, by (37) as the k + 1-th shift is of length tδ(3/κ′′)k+1 we must have that zδ(t) is at
least at distance tδκ−(1−κ′′/2)(3/κ′′)k+1 > tδκ−/2(3/κ′′)k+1 > κ−tδ from ∂S for t ∈ [τk+1+∆β

k+1, τk+2+∆β
k+1].

Since the initial point of the shift satisfies the required condition by assumption, and that this property is conserved on
[τk + ∆β

k , τk + ∆β
k+1] (i.e., during a shift) by Assumption 2a) we obtain the desired result.

Finally, we show that for every k ∈ (1, . . . , J) and a ∈ Rd with ‖a‖ < tδκ
′′/2 there exists w̃ ∈ Bκ′′(0) such that

zδ(τk + ∆β
k+1) + a = z(τk) + βktδ(wik + w̃). This follows immediately from (37), since we have

‖zδ(τk + ∆β
k+1) + a− z(τk)− βktδwik‖ = ‖

k−1∑
l=0

(
3

κ′′

)l
tδwil + a‖ ≤

k−1∑
l=0

(
3

κ′′

)l
tδ + ‖a‖

≤ tδκ
′′

2

(
1 + (3/κ′′)k

)
≤ κ′′‖(3/κ′′)ktδwik‖ ,

concluding the proof of the lemma. �

4. LDP UPPER BOUND

Similar results under slightly more restrictive assumptions are well known e.g., [9, 29] with jump rates bounded
away from 0. A sufficiently general result is available in [27], but under assumptions on the initial condition that are not
satisfied here. We will sketch the application of the ideas from [27] to the setting of this paper.

In order to prove the upper bound, we will temporarily enlarge the state space in order to include the integrated flux
of each reaction, i. e. we consider the process (Xv(t),W v(t)) ∈ Rd×R|R|≥0 with initial condition (xv0, 0) and generator:

Qvf(x,w) =
∑
r∈R

vΛvr(x)(f(x+ v−1γr, w + v−1δr)− f(x,w)),

for δrr = 1 and δrs = 0 for all s 6= r. It is clear that the marginal distribution of the Xv-coordinate is the distribution of
our original process. In the following proposition, we prove a large-deviation upper bound for this process. To shorten
notation, let us define for any w ∈ R|R| the vector Γw : =

∑
r∈R γ

rwr ∈ Rd.
Let C1

c ([0, T );R|R|) be the space of continuous and differentiable compactly supported functions from [0, T ) to
R|R|. For x ∈ Du(0, T ;S), w ∈ Du(0, T ;R|R|≥0 ) and ζ ∈ C1

c ([0, T );R|R|) we set

G(x,w, ζ) := −
∫ T

0

∑
r∈R

(
ζ̇r(t)wr(t) +

[
eζr(t) − 1

]
λr(x(t))

)
dt

and use this to define a partial rate function

J̃S(x,w) :=

{
supζ∈C1

c ([0,T );RR)G(x,w, ζ) if x(t) = x0 + Γw(t), x(t) ∈ S ∀t ∈ [0, T )

+∞ otherwise.
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Proposition 4.1. Let ζ ∈ C1
c ([0, T );R|R|) and suppose Assumption 1 holds, then (x,w) 7→ G(x,w, ζ) is continuous

from Du(0, T ;Rd × R|R|≥0 ) to R.

Proof. We have

|G(x,w, ζ)−G(x′, w′, ζ)| ≤
∥∥∥ζ̇∥∥∥

∞
‖w − w′‖∞ T +

(
e‖ζ‖∞ + 1

)∫ T

0

∑
r∈R
|λr(x(t))− λr(x′(t))|dt.

We can use the continuity of the λr from Assumption 1a), along with the boundedness given by the compactness of S ,
and apply dominated convergence when x′ → x to see that the second term of our estimate tends to 0, as well as the
first term when w′ → w. �

Proposition 4.2. Let K be a closed subset of the space of càdlàg paths Du(0, T ;Rd ×R|R|≥0 ), then under Assumption 1

lim sup
v→∞

1

v
logP ((Xv,W v) ∈ K) ≤ − inf

(x,w)∈K
J̃S(x,w).

Proof. Assumption 1 implies exponential tightness – see discussion below the statement of Theorem 1 – therefore we
may assume that K is compact.

Fix ε ∈ (0, 1), then for every (x,w) ∈ Du(0, T ;S × R|R|≥0 ) satisfying x = x0 + Γw one can find ζ[x,w] ∈
C1

c

(
[0, T );RR

)
such that

G (x,w, ζ[x,w]) ≥ min
(
J̃S(x,w), ε−1

)
− ε

and define neighbourhoods in path space

Gε(x,w) := {(x′, w′) : G(x′, w′, ζ[x,w])>G(x,w, ζ[x,w])− ε} .

We may use Proposition 4.1 to see that the Gε(x,w) are open and so can find a finite cover Gε(xi, wi) i = 1, . . . , n for
K.

Now following [27, Thm A.3], which itself is an application of the ideas from [16, Appendix 1, Sect. 7], and using
the fact that the jump rates are bounded over S (because of Assumption 1a) and compactness of S), we define tilted
measures Pζ via mean 1 non-negative martingales so that

1

v
log

dPζ ◦ (Xv,W v)
−1

dP ◦ (Xv,W v)
−1 (x,w) = −

∫ T

0

∑
r∈R

[
wr(t)ζ̇r(t) + Λvr(x(t))

(
eζr(t) − 1

)]
dt := Gv(x,w, ζ).

Slightly adapting and simplifying the argument of [27, Lemma 4.7]

1

v
logP ((Xv,W v) ∈ Gε(x,w))

≤ 1

v
logPζ[x,w] ((Xv,W v) ∈ Gε(x,w))− inf

(x′,w′)∈Gε(x,w)
Gv(x′, w′, ζ[x,w])

≤ − inf
(x′,w′)∈Gε(x,w)

[Gv(x′, w′, ζ[x,w])−G(x′, w′, ζ[x,w])]− inf
(x′,w′)∈Gε(x,w)

G(x′, w′, ζ[x,w]). (38)

The first term on the final line vanishes as v → ∞ by the uniform convergence from Assumption 1a). Thus for
i = 1, . . . , n

lim sup
v→∞

1

v
logP

(
(Xv,W v) ∈ Gε(xi, wi)

)
≤ −min

(
J̃S(xi, wi), ε−1

)
+ 2ε

and by the Laplace principle

lim supv→∞
1

v
logP ((Xv,W v) ∈ K) ≤ − min

i=1,...,n
min

(
J̃S(xi, wi), ε−1

)
+2ε ≤ inf

(x′,w′)∈K
min

(
J̃S(x′, w′), ε−1

)
+2ε,

which completes the proof as ε can be taken arbitrarily small.
If @ (x,w) ∈ K satisfying x = x0 + Γw, then lim supv→∞

1
v logP ((Xv,W v) ∈ K) ≤ −∞, since, by definition

Xv(t) = Xv(0) + ΓW v(t) a.s. for all t ∈ [0, T ]. �
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Proposition 4.3. If Assumption 1 holds then J = J̃S , where

J (x,w) :=

{∑
r∈R

∫ T
0
H(ẇ(t)|λ(x(t))) dt, (x,w) ∈ AC(0, T ;S × R|R|), ẋ = Γẇ, x(0) = x0

∞, otherwise.

whereH is defined in (8).

Proof. The proof follows [27, Prop 3.5]; we assume that ẋ = Γẇ and x(t) ∈ S a.e. t ∈ [0, T ) throughout. Suppose
that (x,w) /∈ AC(0, T ;S × R|R|≥0 ), then one can find a sequence ζn ∈ C1

c

(
[0, T );R|R|

)
with supn,z,t |ζnz (t)| ≤ 1 but

limn→∞
∫ T

0

∑
r∈R ζ̇

n
z (t)w(t)dt = −∞ and thus J (x,w) ≥ limn→∞G(c, w, ζn) = +∞, that is, J = J̃S if the

path is not absolutely continuous.
One then shows thatJ (x,w) = J̃S(x,w) for any (x,w) ∈ AC(0, T ;S×R|R|) using approximation arguments. �

Corollary 4.4. If Assumption 1 holds then the large-deviation upper bound holds with the good rate functional:

inf
w∈W 1,1(0,T ;R|R|≥0

)

ẋ=Γẇ

J (x,w) = Ix0

[0,T ](x) =

∫ T

0

sup
ϑ∈Rd

[
ϑ · ẋ(t)−

∑
r∈R

λr(x(t))
(

exp(ϑ · γr)− 1
)]

dt.

Proof. The large-deviation upper bound with the rate functional on the left-hand side follows from Propositions 4.2, 4.3
and the contraction principle. For non-absolutely continuous paths both the left-hand and right-hand sides will diverge:
The left-hand side since the infimum will be taken over an empty set, and the right-hand by a similar argument as in
Proposition 4.3.

Now take an arbitrary x ∈ AC(0, T ;Rd). Then

inf
w∈W 1,1(0,T ;R|R|≥0

)

ẋ=Γẇ

J (x,w) ≥
∫ T

0

inf
j∈R|R|≥0

:ẋ(t)=Γj

H
(
j(t)|λ(x(t))

)
dt︸ ︷︷ ︸

=I
x0
[0,T ]

(x)

=

∫ T

0

sup
ϑ∈Rd

[
ϑ · ẋ(t)−

∑
r∈R

λr(x(t))
(

exp(ϑ · γr)− 1
)]

dt,

where the equality follows from convex duality, pointwise in t. To show that the inequality is in fact an equality, we
may assume that the left-hand side is finite. Hence from now on we may assume that x ∈W 1,1(0, T ;S). By Jensen’s
inequality, any path j : (0, T ) → R|R|≥0 for which

∫ T
0
H
(
j(t)|λ(x(t))

)
dt < ∞ is bounded in L1(0, T ;R|R|), which

shows the first equality.
�

5. OPTIMALITY OF DECAY RATE IN (6)

We recall from Remark 2.5 that integrability of the rates necessary to establish the lower bound estimates in Section 3
– but not the upper bound ones in Section 4 – is directly implied by a sufficiently slow decay of the rates (6). In this
section (and more specifically in Proposition 5.4) we make precise our claim that the range of exponents α given in
Remark 2.5 is maximal. In particular, we show that whenever the rates of jumps necessary to escape the degenerate set
decay too fast (satisfying a condition similar to (6) for α ≥ 1), the rate function for the upper bound diverges for any
y ∈ AC(0, T ;S) with y(0) ∈ ∂S and y(t) ∈ S \ ∂S for a t > 0. We start the discussion of this problem with some
examples as to capture the idea of our strategy in a simple setting. Recall from Corollary 4.4 that, under Assumption 1,
for any y ∈ AC(0, T ;S) and any δ > 0:

lim sup
v→∞

1

v
logPxv0 (Xv ∈ B[0,T ](δ, y)) ≤ − inf

x∈B[0,T ](δ,y)

∫ T

0

`(x(s), ẋ(s))ds, (39)

where we recall that ` is defined as

`(x, y) = sup
ϑ∈Rd

ϑ · y −
∑
r∈R

λr(x) (exp (ϑ · γr)− 1).
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Example 5.1. Recall Example 2.4, where (6) does not hold and the upper bound is easily seen to diverge. Given the
generator in (4) and setting k = 1, the integrand on the right-hand side of the LDP upper bound in (39) reads

`(x, y) = sup
ϑ∈Rd

{
ϑy − e−1/x(eϑ − 1)

}
≥ y log ye1/x − (y − e−1/x),

where in the inequality we have chosen ϑ(x, y) = log ye1/x. Then, the LDP rate function can be bounded as follows

I0
[0,T ](z) ≥

∫ T

0

z′(t) log(z′(t)e1/z(t))− (z′(t)− e−1/z(t))dt ≥
∫ T

0

z′(t) log z′(t) + z′(t)/z(t)− z(t) dt,

for any z ∈ AC(0, T ;R≥0) with z(0) = 0. Using that x log x > −1 is continuous at 0 we have, for every bounded
path z with bounded derivative, that

I0
[0,T ](z) ≥ −

∫ 1

0

(1 + z(t)) dt+

∫ 1

0

z′(t)/z(t) dt ≥ −
∫ T

0

(1 + z(t)) dt+

∫ z(T )

0

x−1 dx = +∞.

In order to proceed and generalize the example above, we discuss two further examples highlighting the appropriate
way to negate the assumptions in Remark 2.5.

Example 5.2. Consider a system defined on Sv = (v−1N0)2 with two jumps, γ1 = (0, 1), γ2 = (1, 0) and correspond-
ing rates Λv1(x) = λ1(x) = 1{x1 ≥ 1}(x1− 1), Λv2(x) = λ2(x) = 1. For the initial condition x0 = 0 the law of large
numbers [20] shows that the paths of Xv concentrate around (y∗1 , y

∗
2)(t) = (t,1{t > 1}(t − 1)2/2). In particular,

this implies the existence of paths y(t) ∈ AC(0, T ;S) with y(0) ∈ ∂S and y(t) ∈ S \ ∂S but having a finite large
deviations cost for a system violating (6).

To discuss the optimality of the interval for the parameter α governing the local decay of rates in (6) we avoid
considering macroscopic behaviors like the one highlighted in the example above and we restrict our attention to paths
that do not leave the set Aj in the time interval of interest, keeping j fixed throughout this section. For the same reason,
to negate (6) we consider jumps whose rates decay faster than exp[−k · dist(x, ∂Aj)−1] uniformly in x in Aj for a
k > 0. These jumps belong to the set

FASTR,j :=

{
r ∈ R : lim

%→0
%

(
sup

z∈Aj : dist(z,∂Aj)<%
log λr(z)

)
< 0

}
, (40)

with dist(z, ∂Aj) = infx∈∂Aj ‖z − x‖. While this set is not, in general, the complement of the jumps whose rates
satisfy (6), it allows to capture, at least locally, those whose decay is more rapid (in terms of α) than (6).

We further notice that the existence of a single reaction r ∈ FASTR may still result in a finite cost for paths escaping
∂Aj , as the following example shows.

Example 5.3. Consider a system defined on Sv = (v−1N0)2 with two jumps, γ1 = (−1, 1) and γ2 = (1, 1) and
corresponding rates λ1(x) = x1e

−1/x2 , λ2(x) = 1. It is clear that this system satisfies a LDP with any sequence of
initial conditions, see [30]. However, approaching the set {x ∈ R2 : x2 = 0}, upon choosing wj = (1, 0) we see that
this system does not satisfy (6). We are, however, able to choose wj = (1, 1) so that with such choice of wj (6) holds
for all r ∈ Ej .

In light of the above example, the statement we seek to negate is the existence of vectors wj and corresponding Ej
stated in Assumption 2 such that Ej ∩ FASTR,j = ∅. To do so, we fix a (non-empty) S and a limiting point x0 ∈ ∂Aj ,
for j ∈ Ibd, assuming throughout that ∂Aj is a subset of a (d− 1)-dimensional hyperplane to simplify the notation of
the proof. In this way, we define TxAj = {y ∈ spanr∈R(γr) : y · nx ≥ 0}, with nx inward normal to the boundary
∂Aj in x. Assuming that there is no vector wj ∈ spanr∈R(γr) that is a sum of jumps with rates decaying slow enough
means that ∀x ∈ ∂Aj

Cox ({γr : r ∈ (R \ FASTR,j)}) ∩ TxAj = ∅ , (41)

where Cox(A) is the convex cone defined by the set of vectors A with origin x.
Note that in this way we are building a class of processes where the jumps r pointing in the interior of the domain

(and therefore useful to escape the boundary) necessarily belong to FASTR,j .

Proposition 5.4. Assume that (41) holds, then for every y ∈ AC(0, T ;S) with y(0) = x0 ∈ ∂Aj and such that there
exists t1 ∈ (0, T ) with y(t1) ∈ Aj \ ∂Aj and inf{t ∈ (0, T ) : z(t) 6∈ Aj} > t1 it holds that Ix0

[0,T ](y) =∞.
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Proof. Recalling the structure in (39) of the LDP upper bound we notice that, in order to show that the rate function is
infinite for any path y ∈ AC(0, T ;S) as above, it is sufficient to find a ϑ(t, y) such that∫ T

0

[
ϑ(s, y(s)) · ẏ(s)−

∑
r∈R

λr(y(s)) (exp [ϑ(s, y(s)) · γr]− 1)

]
ds = +∞ . (42)

By assumption, there exists t0 < t1 ∈ [0, T ] such that y(t0) ∈ ∂Aj and y(t) 6∈ ∂Aj for all t ∈ (t0, t1). We now
aim to express

∫ t1
t0
ϑ(t, y(t)) · ẏ(t) dt as an exact integral of some potential for which Φ(x0) = −∞, while we choose

ϑ(t, y(t)) = 0 for t ∈ [0, t0] ∪ [t1, T ], such that the integral in (42) vanishes on that interval. More specifically,
following for example [15], for a κ > 0 we take ϑ = κ∇Φ(y) so that

I(y) ≥ κΦ(y(t1))− κΦ(y(t0))−
∑
r∈R

∫ t1

t0

λr(y(t))eκγr·∇Φ(y) dt+
∑
r∈R

∫ t1

t0

λr(y(t)) dt︸ ︷︷ ︸
≥0

.

The missing step is therefore to choose Φ and tune κ such that Φ(y(t0)) = −∞ and
∑
r∈R

∫ t1
t0
λr(y(t))eκγr·∇Φ(y) dt

is bounded. For the choice Φ(y) := log(nx0 · (y − x0)) we have:∑
r∈R

∫ t1

t0

λr(yt) exp [κγr · ∇Φ(y)] dt =
∑
r∈R

∫ t1

t0

elog λr(y(t))+κ(nx·γr)/(nx0 ·(y(t)−x0)) dt .

With this choice, since y ∈ AC(0, T ;S), we have that nx0 · (y(t)− x0) ≥ 0 for t ∈ (t0, t1). We can split the jumps in
the setR+ := {r ∈ R : γr ∈ Tx0Aj} andR− = R \R+. For the latter class of jumps we have nx0 · γr ≤ 0 and∑

r∈R−

∫ t1

t0

λr(y(t))e
κ

nx0 ·γr
nx0 ·(y(t)−x0) dt < +∞ ,

since the argument of each integral is bounded on (t0, t1). On the other hand, we handle the terms coming from the
former class of jumpsR+ – the ones pushing the process in the interior of S – using thatR+ ⊆ FASTR,j . Therefore
we can tune κ such that

lim
t→0

(nx0 · (y(t)− x0)) log λr(yt) + κ(nx0 · γr) ≤ 0 ∀r ∈ R+ ,

ensuring that
∑
r∈R+

∫ t1
t0
λr(y(t)) exp

[
κ

nx0 ·γr
nx0 ·(y(t)−x0)

]
dt < +∞. This proves (42). �
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6. LIST OF SYMBOLS

R finite set of jumps/reactions Subsec. 1.1
Λvr , λr microscopic and macroscopic jump rates Subsec. 1.1 & Ass. 1, 2
γr ∈ Rd jump vectors Subsec. 1.1 & Ass. 2
Sv,S, ∂S ⊂ Rd reachable points and boundary/degenerate set Sec. 2
Ai, ∂Ai ⊂ Rd covering of S Sec. 2
I, Ibd, index sets for covering Sec. 2
B%(x) ⊂ Rd euclidean ball of radius % and center x Subsec. 2.1
Du(0, T ;Rd) càdlàg functions with uniform topology Subsec. 2.2
AC(0, T ;Rd)

(
AC(0, T ;S)

)
absolutely continuous functions (restricted to S) Subsec. 2.2

B[0,T ](%, z) ball of radius % and center z in Du(0, T ;Rd) Subsec. 2.2
I[0,T ], I

x0

[0,T ] large-deviation action and rate functional Eqns. (7), (9)
H(µ|λ), `(x, y) relative entropy and Lagrangian Eqn. (8), (27)
J , J̃S flux large-deviation functional and dual form Section 4
Ej ⊂ R, wj ∈ Rd, αj > 0 escape sequence, vector and normalisation Ass. 2 a), b)
ε, ε′, κj , κ− > 0, escape parameters Ass. 2 a)
ε′′, κ′′ > 0 monotonicity range Ass. 2 d)
z, zδ target and approximated path Subsec. 3.1
tδ, ξ, β > 0, ωz path shift parameters, modulus of continuity Eqns. (13),(14)
δ′, δ′′ > 0 neighborhood parameters of shifted path Subsec. 3.1
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