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Abstract: Supported catalysts are important tools for developing green-economy-based processes.
Palladium nanoparticles (NPs) that are immobilized on two fibers developed as metal scavengers
(i.e., Smopex®-234 and Smopex®-111, 1% w/w) have been prepared and tested in copper-free cy-
clocarbonylative Sonogashira reactions. Their catalytic activity has been compared with that of a
homogeneous catalyst (i.e., PdCl2(PPh3)2). Pd/Smopex®-234 showed high activity and selectivity in
the synthesis of functionalized heterocycles, such as phthalans and isochromans, even when working
with a very low amount of palladium (0.2–0.5 mol%). The extension of Pd/Smopex®-234 promoted
cyclocarbonylative reactions to propargyl and homopropargyl amides afforded the corresponding
isoindoline and dihydrobenzazepine derivatives. A preliminary test on Pd NPs leaching into the
solution (1.7 × 10−3 mg) seems to indicate that, at the end of the reaction, almost all of the active
metal is present on the fiber surface.

Keywords: palladium nanoparticles; supported catalysts; Sonogashira reactions; carbonylations;
phthalan; isochroman; isoindoline; dihydrobenzazepine

1. Introduction

Recently, the synthesis of heterocycles has received large attention [1,2] due to their
increasing importance in the fields of pharmaceutical compounds and industrial chemicals.
N- and O-containing heterocycles are structural motifs frequently found in biologically
active compounds.

The 1,3-dihydroisobenzofuran [3,4] (phthalan, Figure 1a) nucleus is present in many
natural and synthetic molecules, such as pestacin [5], citalopram [6,7], escitalopram [8–10],
talopram [11], and egenine [12,13], which possess antidepressant, antioxidant, antimycotic,
antihistaminic, antibacterial and antitumoral properties [5,8,14]. The phthalan derivative
FR198248 was found to act as an anti-influenza agent [15,16], carbonylmethyleneisobenzofuran-
1-imines have shown promising potential in herbicidal activity [17], and alkylidene func-
tionalized 1,3-dihydroisobenzofurans have recently been tested as luminophores showing
good fluorescence properties and remarkable Stokes shifts [18].

Isochroman [19–21] (Figure 1b) is the structural unit of a large number of com-
pounds found in olive oil [22–24], leaves [25], and fungi [26–30]. Many isochromans
exhibit anti-inflammatory [31–33], antibacterial [34,35], antifungal [36], antioxidant, and
antiplatelet [37,38] activities, while some show cytotoxicity toward human cancer cell
lines [39,40] and are used in the treatment of migraine headaches [41]. Moreover, isochro-
man is the nucleus of the commercial fragrance galaxolide [42–44], which is present in
many products, including surface cleaners, laundry products, cosmetics, and perfumes.
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Nitrogen-containing heterocycles are important substructures that are found in natural 
and synthetic alkaloids [45,46]. They also serve as an important source of pharmaceuticals 
and have inspired synthetic chemists to develop novel chemical transformations. For 
instance, indole [47–49] and its derivatives, such as isoindole [50,51] and isoindoline [52] 
(Figure 1c), are the basis for compounds possessing relevant biological activities. In 
particular, isoindoline derivatives are inhibitors of several enzymes involved in numerous 
diseases, including diabetes, obesity, heart failure, cancer, and mood disorders [53]. 
Moreover, isoindoline-based ligands are very interesting due to their modular set-up [54]. 
Finally, isoindoline pigments are particularly relevant, since they cover a wide range of 
colors from greenish-yellow to red and brown [55]. 

Owing to their great importance, there has been a continuous interest in developing 
new and efficient methods for the synthesis of such heterocycles. Several procedures are 
based on the palladium-promoted cyclization of suitable substrates, such as benzaldehydes 
[56], benzyl [57–60] and homobenzyl alcohols [61,62], propargyl ethers [63–68], 
benzylethers [58] and benzylamines [69], anilines [70], propargylamides [71], and 
arylimides [72]. 

In this field, Gabriele’s group has developed a very interesting methodology based 
on PdI2/KI-promoted oxidative cyclization-carbonylation reactions of different substrates 
affording O- and N-containing heterocycles [73–82]. Recently, we have described the use of 
transition-metal-promoted cyclocarbonylative coupling as a valuable tool for the synthesis of 
polyfunctionalized heterocyclic compounds [83–88]. 

In all cases described so far, homogeneous organometallic species have been 
employed as catalysts, thus making its recovery impossible and resulting in the metal 
contamination of the products. The research of greener methodologies prompted us to 
investigate the possible use of palladium nanoparticles (Pd NPs) deposited on metal 
scavengers as catalysts. Commercially available mercapto-functionalized polyolefin 
fibers, Smopex®-111 and Smopex®-234 (Figure 2), have been chosen as supports; they have 
been developed for the recovery of platinum group metals (Pt, Pd, Rh) from post-reaction 
solutions of cross-coupling processes, such as Mizoroki-Heck, Suzuki-Miyaura, and 
Sonogashira reactions [89–92]. Pd NPs supported on Smopex®-111 and Smopex®-234 were 
obtained through the metal vapor synthesis (MVS) technique. The versatility and feasibility 
of this synthetic approach in depositing size-controlled Pd NPs onto a wide range of 
supports, including organic polymers, have been previously established [93–100]. 

In the present work, we report that Pd/Smopex®-234 has resulted in an efficient 
catalyst for the synthesis of phthalan, isochroman, and isoindoline derivatives through 
cyclocarbonylative Sonogashira reactions. The Pd NPs’ dispersion, as well as the nature of the 
thiol moiety present on the polyolefin fibers, strongly influence the efficiency of the catalytic 
reactions. 

Figure 1. Chemical structure of: (a) phthalan; (b) isochroman; (c) isoindoline.

Nitrogen-containing heterocycles are important substructures that are found in natural
and synthetic alkaloids [45,46]. They also serve as an important source of pharmaceuticals
and have inspired synthetic chemists to develop novel chemical transformations. For
instance, indole [47–49] and its derivatives, such as isoindole [50,51] and isoindoline [52]
(Figure 1c), are the basis for compounds possessing relevant biological activities. In par-
ticular, isoindoline derivatives are inhibitors of several enzymes involved in numerous
diseases, including diabetes, obesity, heart failure, cancer, and mood disorders [53]. More-
over, isoindoline-based ligands are very interesting due to their modular set-up [54]. Finally,
isoindoline pigments are particularly relevant, since they cover a wide range of colors from
greenish-yellow to red and brown [55].

Owing to their great importance, there has been a continuous interest in developing
new and efficient methods for the synthesis of such heterocycles. Several procedures are
based on the palladium-promoted cyclization of suitable substrates, such as benzalde-
hydes [56], benzyl [57–60] and homobenzyl alcohols [61,62], propargyl ethers [63–68],
benzylethers [58] and benzylamines [69], anilines [70], propargylamides [71], and arylim-
ides [72].

In this field, Gabriele’s group has developed a very interesting methodology based
on PdI2/KI-promoted oxidative cyclization-carbonylation reactions of different substrates
affording O- and N-containing heterocycles [73–82]. Recently, we have described the use of
transition-metal-promoted cyclocarbonylative coupling as a valuable tool for the synthesis
of polyfunctionalized heterocyclic compounds [83–88].

In all cases described so far, homogeneous organometallic species have been employed
as catalysts, thus making its recovery impossible and resulting in the metal contamination
of the products. The research of greener methodologies prompted us to investigate the
possible use of palladium nanoparticles (Pd NPs) deposited on metal scavengers as cat-
alysts. Commercially available mercapto-functionalized polyolefin fibers, Smopex®-111
and Smopex®-234 (Figure 2), have been chosen as supports; they have been developed
for the recovery of platinum group metals (Pt, Pd, Rh) from post-reaction solutions of
cross-coupling processes, such as Mizoroki-Heck, Suzuki-Miyaura, and Sonogashira re-
actions [89–92]. Pd NPs supported on Smopex®-111 and Smopex®-234 were obtained
through the metal vapor synthesis (MVS) technique. The versatility and feasibility of this
synthetic approach in depositing size-controlled Pd NPs onto a wide range of supports,
including organic polymers, have been previously established [93–100].
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solid catalytic systems without the need for poisons (i.e., halide from metal salt precursors 
in catalysts prepared through reduction methods). One of the main advantages of the 
MVS approach is that it allows for the preparation of supported catalytic systems where 
the metal is deposited directly in its reduced form, so that the calcination and activation 
processes of the conventional wet deposition method are not required. 

The morphology of Pd/Smopex®-111 and Pd/Smopex®-234 was investigated through 
transmission electron microscopy (TEM). Representative images of both systems are 
reported in Figure 4. The two systems exhibited different structural features, pointing out 
the crucial role of the organic support in controlling the final dispersion of the metal phase. 
Quite a low level of dispersion of Pd NPs was observed when supported on Smopex®-111. 
The presence of large agglomerates of roundish NPs, having diameters that were less than 10 
nm in size (dm = 3.5 nm), was detected (Figure 4a).  

Figure 2. Structure of the supports for the Pd NPs used in this work: (a) styril thiol-grafted polyolefin
fiber (Smopex®-111); (b) mercaptoethyl acrylate-grafted polyolefin fibers (Smopex®- 234).
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In the present work, we report that Pd/Smopex®-234 has resulted in an efficient
catalyst for the synthesis of phthalan, isochroman, and isoindoline derivatives through
cyclocarbonylative Sonogashira reactions. The Pd NPs’ dispersion, as well as the nature of
the thiol moiety present on the polyolefin fibers, strongly influence the efficiency of the
catalytic reactions.

2. Results and Discussion
2.1. Synthesis and Morphology of the Catalysts

Palladium NPs were obtained according to the MVS technique (Figure 3). This
approach allowed for the generation of Pd nanoclusters that were weakly stabilized by
organic solvents, which were then dispersed on Smopex®-111 and Smopex®-234 supports,
respectively, by simple impregnation at 25 ◦C. Further reduction or thermal treatments of
the catalysts were not required.
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Figure 3. Schematic representation of the MVS approach to obtain supported Pd NPs.

More in detail, Palladium vapors were co-condensed at a low temperature (77 K) with
vapors of weakly stabilizing organic ligands (i.e., a mixture of mesitylene and 1-hexene)
using a commercially available glass reactor. Upon warming, the frozen matrix melted
and the nucleation and growth processes of the metal particles occurred, affording metal
nanoclusters that were weakly stabilized by the solvent molecules, called solvated metal
atoms (SMAs). The interaction of the metal vapors with the solvent matrix very quickly
quenched the kinetic energy of metal atoms. The final sizes of the metal aggregates were
greatly influenced by the solvent employed and the amount used, allowing for good control
over their size. The Pd-SMA was handled at a low temperature (between 223 and 243 K)
under an inert atmosphere, and it was used as a precursor for the preparation of supported
Pd nanoparticles by simply mixing the SMA with the solid supports (i.e., Pd/Smopex®-234
and Pd/Smopex®-111) at room temperature. The metal quickly separated quantitatively
from the solvent by interacting with the support surface, thus affording solid catalytic
systems without the need for poisons (i.e., halide from metal salt precursors in catalysts
prepared through reduction methods). One of the main advantages of the MVS approach
is that it allows for the preparation of supported catalytic systems where the metal is
deposited directly in its reduced form, so that the calcination and activation processes of
the conventional wet deposition method are not required.

The morphology of Pd/Smopex®-111 and Pd/Smopex®-234 was investigated through
transmission electron microscopy (TEM). Representative images of both systems are re-
ported in Figure 4. The two systems exhibited different structural features, pointing out
the crucial role of the organic support in controlling the final dispersion of the metal phase.
Quite a low level of dispersion of Pd NPs was observed when supported on Smopex®-111.
The presence of large agglomerates of roundish NPs, having diameters that were less than
10 nm in size (dm = 3.5 nm), was detected (Figure 4a).

On the other hand, the analysis of Pd/Smopex®-234 revealed the great affinity of
this support for the as-prepared MVS-derived Pd NPs (Figure 4b), which prevents further
NP aggregation phenomena during their immobilization. Indeed, a highly homogeneous
dispersion of small Pd NPs (dm = 1.5 nm), which densely populated the surface of the
organic fiber, was detected. Indeed, the mercaptoethyl acrylate group of Smopex®-234
is able to chelate the Pd NPs much better than the thiol functional group of Smopex®-
111. Therefore, on Smopex®-234 Pd NPs are highly dispersed and stabilized. Moreover,
assuming that the Pd NPs were spherical in shape, the theoretical exposed Pd fraction and
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metal-specific surface areas (SSAs) for both catalysts were calculated from HRTEM data
through applying the following Equation (1):

dVS/dat = 3.32/(FE)1.23 (1)

where dVS is the size of Pd crystallites, dat is the atomic diameter of Pd (i.e., 0.275 nm), and
FE is the exposed fraction of Pd [101], and Equation (2):

SSA = 3 Σniri
2/(ΣρPdΣniri

3) m2/g (2)

where ri is the mean radius of the size class containing ni particles, and ρPd is the volumetric
mass of Pd (12.02 g/cm3). As a result, Pd/Smopex®-234 exhibited a dispersion of 67%
and an SSA = 116 m2/g, whereas Pd/Smopex®-111 exhibited a dispersion of 33% and an
SSA = 48 m2/g.
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Figure 4. Representative TEM micrograph and histogram of the particle size distribution of
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2.2. Catalytic Activity of Pd/Smopex®-111 and Pd/Smopex®-234

First of all, the supported catalytic systems Pd/Smopex®-111 and Pd/Smopex®-234
were tested in the coupling between 2-ethynylbenzyl alcohol 1a and iodobenzene 2a, which
were chosen as model compounds. The catalytic performance of the supported Pd NPs
was compared with the activity of the PdCl2(PPh3)2 used as a homogenous reference
catalyst. The reactions were performed in Et3N, which was used as a base and as a solvent,
in a stainless-steel autoclave that was pressurized to 20 atm of carbon monoxide. While
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palladium nanoparticles that were supported on Smopex®-111 were totally inactive (Table
1, entry 2), those deposited on the Smopex®-234 fiber showed high catalytic efficiency in
promoting the synthesis of phthalan derivative 3aa quantitatively, even in the presence of
a very low amount of catalyst (0.2 mol%).

Table 1. Palladium-promoted synthesis of phthalans via cyclocarbonylative Sonogashira reactions.
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Entry 1 1 R’ 2 R Catalyst 2 Pd Loading
(mol%)

Conversion
(%) 3 3

Selectivity (%) 3,4

(Z) (E)

1 a H a H PdCl2(PPh3)2 0.2 100 aa 65 (68) 35 (25)
2 a H a H Pd/Smopex®-111 0.2 0 aa / /
3 a H a H Pd/Smopex®-234 0.2 100 aa 75 25
4 a H b o-Me Pd/Smopex®-234 0.2 100 ab 79 (70) 21 (18)
5 a H c o-CN Pd/Smopex®-234 0.2 100 ac 100 (82) /
6 b t-Bu a H PdCl2(PPh3)2 0.2 28 ba 22 78
7 b t-Bu a H PdCl2(PPh3)2 0.5 100 ba 24 (15) 76 (57)
8 b t-Bu a H Pd/Smopex®-234 0.2 16 ba 22 78
9 b t-Bu a H Pd/Smopex®-234 1 82 ba 21 79
1 The reactions were performed with ortho-ethynylbenzyl alcohol 1 (2 mmol) and iodoarene 2 (2 mmol), in Et3N (5 mL) under CO
atmosphere (20 atm), at 100 ◦C for 24 h. 2 Supported catalysts contain 1% w/w of palladium. 3 Conversion and selectivity were determined
by 1H-NMR analysis. 4 In parentheses, the yields of pure products are reported.

The unexpected difference observed in the catalytic activity of the Pd NPs deposited
on the two Smopex® fibers (Table 1, entry 2 vs. entry 3) could be firstly related to the
different morphological features of the two species (i.e., small particles well-dispersed for
Pd/Smopex®-234 and the presence of large aggregates in the case of Pd/Smopex®-111).
Moreover, a hypothetical mechanism of action of Pd/Smopex®-234 catalyst has been added
in the Supplementary Materials.

The behavior of Pd/Smopex®-234 was also compared with that of homogeneous
PdCl2(PPh3)2 (Table 1, entry 1 vs. entry 3): the reaction promoted by Pd NPs supported
on Smopex®-234 took place with higher stereoselectivity toward the more stable iso-
mer [102,103] (Z)-3aa (75%) with respect to the reaction carried out with the homogeneous
catalyst (65%). The increase of the (Z) isomer amount after purification (i.e., silica column
chromatography) may be due to the interconversion of (E) stereoisomer into the (Z) one, as
already reported in the literature [104]. Indeed, as can be verified in the 1H-NMR of the
crude product (see Supplementary Materials) the composition of the two isomers changes
after purification, probably due to traces of acid.

The observed catalytic trend was confirmed by the reactions carried out using function-
alized iodoarenes 2b and 2c (Table 1, entries 4–5), which possess different stereo-electronic
features. Pd/Smopex®-234 was able to catalyze the cyclocarbonylative reactions quantita-
tively, affording the corresponding phthalans, (Z)-3ab and (Z)-3ac, in high yields (70–82%)
after purification. Moreover, in the case of nitrile derivative 3ac, a complete stereoselectivity
towards the (Z) isomer was observed.

The catalytic activity of Pd/Smopex®-234 was subsequently tested in the reaction of
t-butylbenzyl alcohol 1b with iodobenzene 2a (Table 1, entries 8–9). The stereoselectivity of
the process favored the formation of the (E) isomer in all the reactions ((Z)/(E) ratio of about
20/80), probably due to the steric hindrance of benzyl alcohol 1b. The same factor could be



Catalysts 2021, 11, 706 6 of 13

the reason for the overall reduced rate of the catalytic cycle. Indeed, in the cases of both
PdCl2(PPh3)2- and Pd/Smopex®-234-promoted reactions, a substrate conversion of almost
20% was observed when a 0.2 mol% of palladium was used. (Table 1, entries 6 and 8). An
increase of the catalytic amount to 0.5 mol% for the homogeneous complex determined a
quantitative formation of phthalan 3ba (Table 1, entry 7). Analogously, an 82% conversion
was observed when 1 mol% of Pd/Smopex®-234 was used (Table 1, entry 9).

Prompted by the good results obtained in the synthesis of phthalans 3 promoted by
Pd/Smopex®-234 cyclocarbonylative Sonogashira reactions, we extended our investigation
to the reaction of 2-(2-ethynylphenyl)ethanol 4 with iodoarenes 1a-c (Table 2), which was
performed in the presence of homogeneous PdCl2(PPh3)2 and supported Pd/Smopex®-234
catalysts. In all cases, the reactions showed a complete conversion of the precursors and
the exclusive formation of the (Z) stereoisomer of isochromans 6a-c, which were isolated
as pure products in very high yields (90–95%). To our delight, a very low amount of
Pd/Smopex®-234 (0.2 mol%) was able to catalyze the cyclocarbonylative reactions with
complete chemo- and stereoselectivity.

Table 2. Palladium-promoted synthesis of isochromans via cyclocarbonylative Sonogashira reactions.
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1 The reactions were performed with ortho-ethynylhomobenzyl alcohol 4 (2 mmol) and iodoarene 2 (2 mmol),
in Et3N (5 mL), under CO atmosphere (20 atm), and in the presence of 0.2 mol% of Pd, at 100◦ for 24 h.
2 Pd/Smopex®-234 contains 1% w/w of palladium. 3 The yields of pure products are reported.

Finally, the protocol based on Pd/Smopex®-234 cyclocarbonylative reactions was
applied to the preparation of nitrogen-containing heterocycles. For this purpose, ortho-
ethynylbenzyl tosylamide 6 and ortho-ethynylhomobenzyl tosylamide 7 were chosen as
model compounds and tested in the reaction with iodobenzene 2a (Table 3). First of all,
0.2 mol% of homogeneous PdCl2(PPh3)2 (Table 3, entry 1) and supported Pd/Smopex®-
234 (Table 3, entry 2) were employed in the reaction of tosylamide 6 with 2a, under
the same experimental conditions (for 4 h at 100 ◦C, under 20 atm of CO, in Et3N,
and using toluene as solvents). A relevant reduction of the reaction rate was detected
when cyclocarbonylation was carried out with Pd NPs supported on Smopex®-234.
Nevertheless, (E)-1-phenyl-2-(2-tosylisoindolin-1-ylidene) ethanone 8 was obtained as
an exclusive product. In order to improve the conversion of the process, the reaction
was repeated with 0.4 mol% of Pd/Smopex®-234 for a longer reaction time (24 h); under
these experimental conditions, the quantitative formation of isoindoline derivative 8 was
finally achieved (Table 3, entry 4).

The Pd/Smopex®-234 catalyst was subsequently applied to the cyclocarbonylative
Sonogashira reaction between tosylamide 7 and iodobenzene 2a. The reaction took place
with 0.4 mol% of supported Pd NPs and solely yielded dihydrobenzazepine 9, which is
an important nucleus of many biologically active natural products and pharmaceutical
compounds [105,106].
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Table 3. Palladium-promoted synthesis of N-heterocyclic compounds via cyclocarbonylative Sonogashira reactions.
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Finally, preliminary tests of Palladium leaching and catalyst recovery at the end of the
reaction were carried out. With this aim, the autoclave was charged with iodobenzene 2a
(0.6 mmol), tosylamide 6 (0.5 mmol), Et3N (1.5 mL), toluene (1.0 mL), and Pd/Smopex®-
234 (0.4 mol% of Pd). After 24 h at 100 ◦C, the CO pressure was discharged (under fume
hood), and the hot reaction mixture was filtered (using a Teflon filter, 0.2 mm) under
nitrogen atmosphere. The palladium content in the resulting solution was determined
by ICP-OES analysis and was found to be 0.8 w/w% of the initial Pd (i.e., 1.7 × 10−3 mg).
This very low value will prompt us to carry out further experiments, such as recycling
of the catalyst and Maitlis hot filtration tests [107,108], to evaluate the mechanism (ho-
mogeneous or heterogeneous) of the Pd/Smopex®-234 catalyst in the cyclocarbonylative
Sonogashira reaction.

3. Materials and Methods
3.1. Preparation of Solvated Palladium Atoms Solutions

Palladium vapors were generated under reduced pressure (10−5 mBar) through the
resistive heating of 500 mg of the metal in an alumina-coated tungsten crucible; they were
then co-condensed at liquid N2 temperature (−195 ◦C) with vapors of 1-hexene (30 mL) and
mesitylene (30 mL) in a glass reactor [109]. The reactor chamber was heated to the melting
point of the solid matrix (−40 ◦C), and the resulting brown solution (called Pd-SMA) was
siphoned and handled at a low temperature (about −40 ◦C). The palladium content of the
obtained Pd-SMA, determined through an ICP-OES analysis, was 2.3 mg of Pd/mL.

3.2. Preparation of Supported Palladium Catalysts

In a Schlenk tube, Pd-SMA (27 mL, 62.1 mg of Palladium) was added to a suspension
of the support (Smopex®-111 or Smopex®-234) (6.2 g) in mesitylene (20 mL). The resulting
mixture was stirred for 6 h at 25 ◦C. The colorless solution was then removed, and the light-
brown solid was washed with n-pentane (3 × 20 mL) and dried under reduced pressure.
The metal content of Pd/Smopex®-111 and Pd/Smopex®-234 (i.e., 1% w/w) was confirmed
through ICP-OES analysis.
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3.3. Synthesis of Phthalans: General Procedure

In a typical run (see Table 1), ortho-ethynylbenzyl alcohol 1 (2.0 mmol), iodoarene
2 (2.0 mmol), and Et3N (5 mL) were mixed, under CO atmosphere, into a Schlenk tube.
This solution was siphoned in a 25 mL stainless steel autoclave, previously charged with
the Pd catalyst (0.2–1 mol%), and placed under vacuum (0.1 Torr). The reactor was
pressurized with carbon monoxide (20 atm), and the resulting mixture was stirred at 100 ◦C
for 24 h. After the removal of excess CO (under fume hood), the reaction mixture was
diluted with CH2Cl2 (20 mL), washed with brine (20 mL), dried over anhydrous Na2SO4,
and the solvent was removed under reduced pressure. Reagent conversion and product
composition were determined through 1H-NMR analysis. Crude products were purified
through column chromatography on silica gel and were characterized by 1H-NMR and
13C-NMR techniques.

3.4. Synthesis of Isochromans: General Procedure

In a typical run (see Table 2), 2-(2-ethynylphenyl)ethanol 4 (2.0 mmol), iodoarene
2 (2.0 mmol), and Et3N (5 mL) were mixed, under CO atmosphere, into a Schlenk tube.
This solution was siphoned in a 25 mL stainless steel autoclave, previously charged with
the Pd catalyst (0.2 mol%), and placed under vacuum (0.1 Torr). The reactor was pres-
surized with carbon monoxide (20 atm), and the resulting mixture was stirred at 100 ◦C
for 24 h. After the removal of excess CO (under fume hood), the reaction mixture was
diluted with CH2Cl2 (20 mL), washed with brine (20 mL), dried over anhydrous Na2SO4,
and the solvent was removed under reduced pressure. Reagent conversion and product
composition were determined through 1H-NMR analysis. Crude products were purified
through column chromatography on silica gel and were characterized by 1H-NMR and
13C-NMR techniques.

3.5. Synthesis of N-Heterocyclic Compounds: General Procedure

In a typical run (see Table 3), ortho-ethynyl(homo)benzyl tosylamide 6 or 7 (2.0 mmol),
iodobenzene 2a (2.5 mmol), Et3N (3 mL), and toluene (2 mL) were mixed, under CO
atmosphere, into a Schlenk tube. This solution was siphoned in a 25 mL stainless steel au-
toclave, previously charged with the Pd catalyst (0.2–0.4 mol%), and placed under vacuum
(0.1 Torr). The reactor was pressurized with carbon monoxide (20 atm), and the resulting
mixture was stirred at 100 ◦C for a selected time (4–24 h). After the removal of excess CO
(under fume hood), the reaction mixture was diluted with CH2Cl2 (20 mL), washed with
brine (20 mL), dried over anhydrous Na2SO4, and the solvent was removed under reduced
pressure. Reagent conversion and product composition were determined through 1H-NMR
analysis. Crude products were purified through column chromatography on silica gel or
neutral alumina and were characterized through 1H-NMR and 13C-NMR techniques.

4. Conclusions

In conclusion, we have reported that Pd NPs, prepared according to the MVS tech-
nique, can be easily deposited on commercial thiol-based metal scavengers Smopex®-111
and Smopex®-234, affording Pd/Smopex®-111 and Pd/Smopex®-234 systems. The latter
material exhibits a very high homogeneous dispersion of small Pd NPs (dm = 1.5 nm)
without the presence of Pd NP aggregates, as observed for Pd/Smopex®-111. Both sys-
tems were initially studied as supported catalysts in the cyclocarbonylative reaction of
2-ethynylbenzyl alcohol with iodoarenes to generate phthalans. Pd/Smopex®-234 showed
a catalytic efficiency comparable to that observed with the PdCl2(PPh3)2 organometal-
lic complex, which was used as a reference homogeneous catalyst. On the other hand,
Pd/Smopex®-111 was completely unable to promote the reaction. Pd/Smopex®-234 also
proved to be very efficient in the synthesis of isochroman, isoindoline, and dihydroben-
zazepine derivatives with high chemo- and stereoselectivity.

Almost all the cyclocarbonylative Sonogashira reactions were carried out with a
very small amount of catalyst (0.2–0.4 mol% of Pd) in both phosphine-free and Cu-free
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conditions, thus enhancing the potentialities of Pd/Smopex®-234 as a promising catalyst
for heterocycle synthesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11060706/s1: additional experimental details; supplementary figures; 1H-NMR and
13C-NMR spectra of the pure products of cyclocarbonylative reactions.
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101. Borodziński, A.; Bonarowska, M. Relation between crystallite size and dispersion on supported metal catalysts. Langmuir 1997,
13, 5613–5620. [CrossRef]

102. Chai, Z.; Xie, Z.-F.; Liu, X.-Y.; Zhao, G.; Wang, J.-D. Tandem addition/cyclization reaction of organozinc reagents to 2-Alkynyl
aldehydes: Highly efficient regio- and enantioselective synthesis of 1,3-dihydroisobenzofurans and tetrasubstituted furans. J.
Org. Chem. 2008, 73, 2947–2950. [CrossRef] [PubMed]

103. Lu, D.; Zhou, Y.; Li, Y.; Yan, S.; Gong, Y. Copper(II)-catalyzed asymmetric henry reaction of o-alkynylbenzaldehydes followed by
Gold(I)-mediated cycloisomerization: An enantioselective route to chiral 1H-isochromenes and 1,3-dihydroisobenzofurans. J.
Org. Chem. 2011, 76, 8869–8878. [CrossRef] [PubMed]

104. Duan, S.; Cress, K.; Waynant, K.; Ramos-Miranda, E.; Herndon, J.W. Synthesis of alkylidenephthalans through fluoride-induced
cyclization of electron-deficient 2-siloxymethylphenylacetylene derivatives. Tetrahedron 2007, 63, 2959–2965. [CrossRef]

105. Danyliuk, I.Y.; Vas’kevich, R.I.; Vas’kevich, A.I.; Vovk, M.V. Hydrogenated benzazepines: Recent advances in the synthesis and
study of biological activity. Chem. Heterocycl. Compd. 2019, 55, 802–814. [CrossRef]

http://doi.org/10.1002/ejoc.201900481
http://doi.org/10.3390/catal11020227
http://doi.org/10.1002/ejoc.201200794
http://doi.org/10.1002/ejoc.201402979
http://doi.org/10.1002/ejoc.201500539
http://doi.org/10.1002/ejoc.201601392
http://doi.org/10.1002/ejoc.201700455
http://doi.org/10.1002/slct.201900524
http://doi.org/10.1021/acs.joc.0c01282
http://doi.org/10.1021/op7000657
http://doi.org/10.1007/s11244-008-9055-6
http://doi.org/10.1595/147106710X510061
http://doi.org/10.1595/147106709X481093
http://doi.org/10.1016/j.jcat.2005.05.008
http://doi.org/10.1002/slct.201601736
http://doi.org/10.1016/j.apcata.2014.04.029
http://doi.org/10.1007/s10562-019-02959-5
http://doi.org/10.1016/j.jcat.2010.04.006
http://doi.org/10.1002/cphc.201700215
http://www.ncbi.nlm.nih.gov/pubmed/28449245
http://doi.org/10.3390/catal10030330
http://doi.org/10.1016/j.jcat.2015.07.012
http://doi.org/10.1021/la962103u
http://doi.org/10.1021/jo800029m
http://www.ncbi.nlm.nih.gov/pubmed/18315008
http://doi.org/10.1021/jo201596p
http://www.ncbi.nlm.nih.gov/pubmed/21967551
http://doi.org/10.1016/j.tet.2007.01.046
http://doi.org/10.1007/s10593-019-02540-3


Catalysts 2021, 11, 706 13 of 13

106. Kawase, M.; Saito, S.; Motohashi, N. Chemistry and biological activity of new 3-benzazepines. Int. J. Antimicrob. Agents 2000, 14,
193–201. [CrossRef]

107. Hamlin, J.E.; Hirai, K.; Millan, A.; Maitlis, P.M. A Simple Practical Test for Distinguishing a Heterogeneous Component in an
Homogeneously Catalysed Reaction. J. Mol. Catal. A Chem. 1980, 7, 543–544.

108. Rizzo, G.; Albano, G.; Lo Presti, M.; Milella, A.; Omenetto, F.G.; Farinola, G.M. Palladium supported on silk fibroin for
suzuki–miyaura cross-coupling reactions. Eur. J. Org. Chem. 2020, 2020, 6992–6996. [CrossRef]

109. Evangelisti, C.; Schiavi, E.; Aronica, L.A.; Psaro, R.; Balerna, A.; Martra, G. Solvated metal atoms in the preparation of supported
gold catalysts. In Gold Catalysis, Preparation, Characterization, and Applications; Prati, L., Villa, A., Eds.; Jenny Stanford Publishing:
New York, NY, USA, 2015; pp. 73–97.

http://doi.org/10.1016/S0924-8579(99)00155-7
http://doi.org/10.1002/ejoc.202001120

	Introduction 
	Results and Discussion 
	Synthesis and Morphology of the Catalysts 
	Catalytic Activity of Pd/Smopex®-111 and Pd/Smopex®-234 

	Materials and Methods 
	Preparation of Solvated Palladium Atoms Solutions 
	Preparation of Supported Palladium Catalysts 
	Synthesis of Phthalans: General Procedure 
	Synthesis of Isochromans: General Procedure 
	Synthesis of N-Heterocyclic Compounds: General Procedure 

	Conclusions 
	References

