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Personalized Query Expansion, the task of expanding queries with additional terms extracted from the user-

related vocabulary, is a well-known solution to improve the retrieval performance of a system w.r.t. short

queries. Recent approaches rely on word embeddings to select expansion terms from user-related texts. Al-

though promising results have been delivered with former word embedding techniques, we argue that these

methods are not suited for contextual word embeddings, which produce a unique vector representation for

each term occurrence.

In this article, we propose a Personalized Query Expansion method designed to solve the issues arising

from the use of contextual word embeddings with the current Personalized Query Expansion approaches

based on word embeddings. Specifically, we employ a clustering-based procedure to identify the terms that

better represent the user interests and to improve the diversity of those selected for expansion, achieving

improvements of up to 4% w.r.t. the best-performing baseline in terms of MAP@100. Moreover, our approach

outperforms previous ones in terms of efficiency, allowing us to achieve sub-millisecond expansion times

even in data-rich scenarios. Finally, we introduce a novel metric to evaluate the expansion terms’ diversity

and empirically show the unsuitability of previous approaches based on word embeddings when employed

along with contextual word embeddings, which cause the selection of semantically overlapping expansion

terms.
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1 INTRODUCTION

Nowadays, most search engines provide users with a simple interface to specify their information
needs through short keyword-based queries, which are usually two to three terms long in the
case of Web search [42, 92]. However, as a query only broadly describes a user’s information
need, search engines may struggle to provide satisfactory results. Multiple factors related to how
users choose terms for their queries can affect a system’s retrieval effectiveness [3]. For example,
the terms composing a query can be related to multiple topics, leading the system to provide
results not focused on the user’s topic of interest. Moreover, out of habit, users often issue queries
too short to clearly express complex information needs, ultimately failing to find documents
valuable to fulfill them. Finally, users sometimes have only a broad idea of the information they
need, and hence they issue queries that are not appropriate to find documents that can answer
their information needs. A well-known technique proposed to overcome those issues is Query
Expansion, whereby the user’s original query is augmented with new terms, known as expansion
terms, to improve the system’s effectiveness. The identification of proper expansion terms aims
to clarify the user’s search intent and bridges the gap between the original query terms and
the documents’ vocabulary [23], addressing the well-known vocabulary mismatch problem
[34]. Query Expansion techniques can leverage user-related information previously gathered
to derive the expansion terms, in which case we talk about Personalized Query Expansion
[2, 9, 10, 14, 21, 25, 36, 43, 46, 50, 68, 71, 83, 98, 108, 109]. Personalized Query Expansion techniques
rely on user-related documents, such as previously accessed Web pages and user-generated
content [49], e.g., product reviews or tweets, to extract expansion terms directly from the users’
vocabulary or the vocabulary used in documents of their interest.

Historically, most approaches to Personalized Query Expansion [8–10, 14, 68, 98, 107] focused
on leveraging social information derived from folksonomy platforms1 to extract expansion terms.
On those platforms, like the former social bookmarking website del.icio.us,2 users apply public
tags to online items, such as Web pages. Works in this area addressed the selection of personalized
expansion terms by relying on term co-occurrence-based approaches and social relations analyses.
More recently, to overcome the limitations of lexical matching-driven term co-occurrence analy-

sis, which suffers from the vocabulary mismatch problem, researchers started experimenting with
word embedding models, which project text into dense low-dimensional vector spaces where the
semantic similarity among terms can be computed as the cosine similarity of their vector rep-
resentations. Existing approaches [2, 50, 108] rely on the well-known Word2Vec model [66, 67]
to generate word embeddings for both queries and user-related texts and on cosine similarity to
evaluate their semantic relatedness, which they use to select the personalized expansion terms.
A limitation of the word embeddings produced by Word2Vec and similar models is that terms
are always mapped to the same vectors regardless of their context, which usually varies for each
occurrence of a term.
Recently, to overcome the limitations of traditional word embeddings, new techniques [20,

28, 74, 75] have been introduced. These new methods map each word occurrence to a unique

1https://en.wikipedia.org/wiki/Folksonomy
2https://en.wikipedia.org/wiki/Delicious_(website)
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representation based on its surrounding terms, thereby capturing the different meanings it can
assume across varied contexts. The new representations are commonly called contextual word em-
beddings and have allowed reaching a new state of the art in many different Natural Language
Processing tasks. In the past few years, contextual word embeddings have also been successfully
applied to Information Retrieval [54, 59, 60, 91], advancing the state of the art in multiple tasks
and opening new opportunities and challenges for retrieval-enhancing tasks, such as Personalized
Query Expansion. In the following, we use the locutions “word embedding” to refer to “word em-
bedding techniques” and “term embedding” to refer to the actual vector representation computed
by one of those techniques for a given term.
In this article, we address Personalized Query Expansion using contextual word embeddings,

which, as mentioned above, open new opportunities for this task while also introducing new chal-
lenges. We argue that two of the main challenges in employing contextual word embeddings to
select expansion terms are (1) reducing redundancy among expansion terms and (2) addressing
scalability issues. Previous Personalized Query Expansion methods based on word embeddings
[2, 50, 108] rely on ranking functions based on cosine similarity to rank all the user-related terms
before selecting those for query expansion. However, when working with contextual word embed-
ding models, which produce a unique embedding for each term occurrence, we could end up with
very similar embeddings for multiple occurrences of the same term appearing in similar contexts.
We argue that, if not carefully handled, this aspect of contextual word embeddings could cause
the selection of multiple expansion term embeddings with very close—if not identical—semantic
meanings, thus reducing the potential utility of Query Expansion. Because of the lack of a mecha-
nism accounting for the presence of multiple, very similar embeddings, previous methods have a
high probability of selecting expansion terms that are redundant with each other, as we will show.
This could cause the expansion terms to give strong prominence to a single aspect of the query
instead of covering as many query aspects as possible, thus negatively affecting the diversification
of the search results [17–19, 55]. Moreover, as previous approaches [2, 50, 108] rely on computing
a similarity score between the query and each user-related term embedding to select those most
appropriate for expanding the query, they could introduce an overhead proportional to the number
of candidate expansion terms. While with traditional word embeddings, such as Word2Vec, each
unique term is represented once, with contextual word embeddings, we have a different representa-
tion for each term occurrence, potentially making the problemmuch more severe. This issue could
cause query expansion methods based on contextual word embeddings to suffer a low-scalability
problem, making their application in data-rich real-world scenarios debatable, such as in Web
Search, where we could leverage very long user browsing histories to conduct personalization.
In this article, we present PQEWC (pronounced “quick” ), a Personalized Query Expansion

method designed to work With Contextual word embeddings. To address the scalability issues
arising from the adoption of contextual word embeddings in Personalized Query Expansion and to
reduce the impact of potentially redundant expansion terms, we employ an offline clustering-based
procedure aiming at grouping the user-related terms and identifying those that better represent
the user interests. By selecting only the expansion term that better represents the user interests
w.r.t. the current query from each cluster, we avoid adding to the query multiple expansion terms
with similar semantic meanings, thus reducing the chance of expanding it with redundant ex-
pansion terms. Finally, we implement an approximation mechanism for selecting the expansion
terms, which allows our proposed approach to achieve a sub-millisecond expansion time even in
very data-rich scenarios, making it suitable for many real-world applications.

We acknowledge several previous efforts devoted to modeling user interests for personalization
purposes [33, 65, 84]. As later described, our proposed approach to Personalized Query Expansion
involves some steps that could be regarded as lightweight user modeling, i.e., representing
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the topics a user is most interested in. Such a light user representation is functional to our
approach, i.e., dealing with the issues arising from the adoption of contextual word embeddings
in Personalized Query Expansion, as previously described in this section. Therefore, we leave
for the future the adaptation and enhancement of previously proposed user modeling techniques
or the proposal of new ones to further boost the retrieval effectiveness of Personalized Query
Expansion. To guarantee a fair comparison with the baselines, in the comparative evaluation
reported in this manuscript, we relied on the same user-related data for each of the considered
approaches without leveraging additional information (e.g., social networks), which would have
made it unclear where the improvements (if any) come from.
The rest of the article is organized as follows. Section 2 discusses the related works and positions

our work w.r.t. them. In Section 3, we present our novel Personalized Query Expansion approach
and discuss our design choices. Section 4 introduces the retrieval task we tackled to evaluate our
proposal. Section 5 presents our research questions and describes the experimental setup of our
comparative evaluation. Finally, in Section 6, we compare our proposed approach and other query
expansion methods at the state of the art [50, 96, 108] in terms of both effectiveness and efficiency
and ablate our design choices. The results of our evaluation clearly show the advantages of PQEWC
w.r.t. the considered query expansion baselines, which are outperformed in both retrieval effective-
ness and efficiency. Across all the considered datasets, the proposed approach improves by up to
5% in terms of MAP@100 over our base retrieval system, based on BM25 [79] and ColBERT [47],
and by up to 4% w.r.t. the best-performing baseline [96]. We share all the code to reproduce the
experimental evaluation we conducted.3

2 RELATEDWORK

Query Expansion is a well-established technique in Information Retrieval. It has received signifi-
cant attention from the research community in the past few decades and continues to attract many
researchers. In this section, we first cover the state of the art of Query Expansion, and then we
focus on its Personalized counterpart. In both cases, we pay particular attention to the methods
based on word embeddings.

2.1 Query Expansion

Among the several approaches proposed for Query Expansion [3, 23], a line of research that still
attracts the research community’s interest is represented by the methods founded on the pseudo-
relevance feedback technique [80]. These methods [22, 24, 27, 41, 53, 58, 101] rely on a first re-
trieval stage to collect the so-called feedback documents, i.e., documents appearing in the top
positions of the ranked list of documents, which are assumed to be relevant w.r.t. the query and
from which terms to expand the initial query are extracted. Query Expansion methods based on
pseudo-relevance feedback have proved their effectiveness over the years and are still relevant
today. The most important of these models is RM3 [41], which leverages statistical information on
the occurrences of terms in feedback documents and in the corpus to select the expansion terms.
Intuitively, RM3 expands the initial query with terms that are frequent in the feedback documents
and infrequent in the corpus.
With the advent of word embedding techniques, new Query Expansion methods leveraging

semantic term representations have been proposed [29, 51, 81]. Instead of exploiting the pseudo-
relevance feedback documents using statistical methods to select the expansion terms, those meth-
ods choose them by evaluating the semantic similarity between the query terms and the corpus
vocabulary. Generally, they expand a query with the closest terms in the word embedding space,

3https://github.com/AmenRa/pqewc
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i.e., the most semantically similar terms. For example, Kuzi et al. [51] propose to use theWord2Vec
model [66, 67] to compute latent representations of all terms appearing in the corpus on which the
search is conducted, and to apply cosine similarity to select expansion terms that are semantically
related to the query. Similarly, Roy et al. [81] rely onWord2Vec to obtain term embeddings for their
corpus vocabulary. To select the expansion terms for a given query, the authors employ a k-nearest
neighbor method based on cosine similarity. The authors found that their approach could improve
over their underlying retrieval model without expansion but not over the pseudo-relevance feed-
back expansion model RM3. Diaz et al. [29] investigate whether training word embedding models
such as Word2Vec and GloVe [73] locally, i.e., on the available test collection, instead of using
globally trained models, i.e., models trained on general domain-agnostic texts, can benefit Query
Expansion. The authors found locally trained word embeddings to generally improve the perfor-
mance of Query Expansionw.r.t. globally trainedword embeddings. Themost significant drawback
of those methods, which do not deliver significant improvements over the pseudo-relevance feed-
back approaches, is the lack of a mechanism to identify the most prominent terms from a retrieval
perspective, i.e., the terms that allow improving the identification of the relevant documents, as
only the terms’ semantic relatedness is considered. Moreover, after expansion, the authors rely on
traditional retrieval models based on lexical term matching, which notoriously do not account for
semantic relatedness.
More recently, the contextual word embedding techniques renovated the research community’s

interest in Query Expansion, and novel approaches based on this new kind of embedding were
proposed [69, 96, 106]. The authors of new approaches, aware of the limitations of previous meth-
ods based on word embeddings, combine the new contextual word embedding techniques with
the pseudo-relevance feedback approach.
Zheng et al. [106] propose a novel Query Expansion method based on contextual word embed-

dings that leverage a BERT-based [28] re-ranker [70] in a pseudo-relevance feedback fashion. After
a first re-ranking round, the most relevant text chunks are extracted from the top re-ranked doc-
uments and used to compute additional relevance scores for the documents. Finally, the newly
computed relevance scores are aggregated with the original ones to obtain the scores to compute
the final documents ranking. Their experimental evaluation shows that the proposed model deliv-
ers promising retrieval effectiveness improvements. Naseri et al. [69] revisit the pseudo-relevance
feedback approaches to Query Expansion by employing the similarity between the query’s contex-
tual word embeddings and those of the feedback documents in deriving probability values to use in
place of those of the original formulation. Although improving over non-contextual Query Expan-
sion methods based on word embeddings, the model proposed by Naseri et al. [69] only performs
on par with the classic expansion method RM3 [41]. Wang et al. [96] have recently introduced
ColBERT-PRF, a novel query expansion method based on the neural retrieval model ColBERT [47]
and pseudo-relevance feedback. After a first ranking stage with ColBERT, this method leverages
Kmeans clustering [62] to group the term embeddings of a certain number of feedback documents.
Then, it selects the tokens corresponding to the cluster centroids with higher Inverse Document
Frequency scores [44] for expanding the original query. The authors report encouraging improve-
ments over ColBERT without query expansion as well as many other baselines. Unfortunately,
despite some promising improvements in terms of retrieval effectiveness, previous Query Expan-
sion methods based on contextual word embeddings suffer from poor efficiency [96], limiting their
applicability in real-world applications.

2.2 PersonalizedQuery Expansion

In the early 2000s, the increasing popularity of social tagging systems, where users can asso-
ciate public tags with online items such as Web pages, attracted some attention from the research
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community thanks to the large amount of accessible data provided by those platforms. In particu-
lar, researchers leveraged those data to derive test beds for Personalized Information Retrieval in
social-network-like environments [11, 12, 15, 16, 95, 100, 107]. Among the approaches for person-
alization proposed in this period, several Personalized Query Expansion methods were presented
[8–10, 13, 14, 68, 98, 107]. Most of the works in this area approach the selection of personalized
expansion terms by leveraging both term co-occurrence statistics and social relations among the
users. For example, Bender et al. [8], Bertier et al. [9], Mulhem et al. [68], and Wu et al. [98] de-
rive terms for Personalized Query Expansion by leveraging the relations and similarities among
users, documents, and tags. Biancalana and Micarelli [10] propose a method for selecting expan-
sion terms based on a three-dimensional co-occurrence matrix from which the authors derive
relations among the query terms appearing in a document, terms associated with similarly tagged
documents, and those appearing in user-related documents, among which the authors select the
expansion terms. Bouadjenek et al. [13, 14] approach Personalized Query Expansion by employing
a combination of social proximity and semantic similarity to identify the terms similar to those
mostly used by a given user and his or her social relatives. Unfortunately, we foundmost of the pre-
vious works to lack comparisons with other Personalized and non-Personalized Query Expansion
methods, making it difficult to draw general conclusions about their effectiveness.
Other than the works related to social tagging systems, the literature comprises some

approaches leveraging other contextual data. For example, Zhu et al. [109] leverage the co-
occurrences of the query terms with terms from user-related documents located in their desktop
environment to select personalized expansion terms. Some works focus on building ontology-
based user profiles from previous queries formulated by the user [21] and previously accessed
documents [36]. Palleti et al. [71] build user profiles by leveraging collaborative information
approaches and derive personalized expansion terms from those. Chirita et al. [25] exploit local
user-related information to derive personalized terms and expand the queries before submitting
them to Web search engines. This way, the authors preserve the users’ privacy and anonymity
while enhancing their Web search experience. Sarwar et al. [83] leverage users’ status messages
from social networks to identify personalized expansion terms for their queries. The authors first
retrieve the most relevant status messages with BM25 and then select from those the expansion
terms relying on their Inverse Document Frequency. Again, those works lack comparisons with
other Personalized and non-Personalized Query Expansion methods.
More recently, some researchers have addressed Personalized Query Expansion using word em-

beddings [2, 50, 108]. Similarly to previous works leveraging non-contextual word embeddings
for Query Expansion, the authors mostly employ term embeddings computed with Word2Vec and
evaluate cosine similarity to assess the semantic relatedness of the query terms and, in this case,
the user vocabulary to select the expansion terms. Amer et al. [2] conduct an exploratory study
on the use of Word2Vec’s term embeddings for Personalized Query Expansion. Specifically, they
compare the performance of a Query Expansion method that selects expansion terms based on
their cosine similarity with the query term embeddings when employing locally trained embed-
dings, i.e., embeddings trained individually for each user only on the specific user-related texts, and
globally trained embeddings, i.e., embeddings trained on the whole corpus. Similarly to previous
Query Expansion methods based on word embeddings, the authors employ the term embeddings
only during the expansion process and rely on a Language Model with Dirichlet smoothing [104]
as their retrieval model. The authors report that the expansion methods did not improve the re-
trieval effectiveness of the original queries, and the globally trained embeddings outperformed
the locally trained ones. Kuzi et al. [50] address the Personalized Query Expansion task in the
context of e-mail search. Similarly to the work by Amer et al. [2], the authors compared a Query
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Expansion method based on word embeddings with globally trained word embeddings and locally
trained ones with the pseudo-relevance feedback expansion model RM1 [52]. The authors report
findings similar to those of Amer et al. [2], but the personalized variant of their Query Expansion
method based on word embeddings allows to improve the performance of the original queries.
Zhou et al. [108] focus on enriching user profiles with information from external sources and pro-
pose two Personalized Query Expansion methods based on word embeddings and topic modeling.
The model based on word embeddings ranks the user-related term embeddings by their cosine
similarity with the sum of the query term embeddings and selects the top n for expansion. The
authors report good results on folksonomy-based datasets for both the proposed models.
As we reported for the other works about Personalized Query Expansion, most of the authors

of methods based on word embeddings did not compare their approaches with other Personalized
Query Expansion methods. We argue that the lack of standard Personalized Search test collections
[6] and of publicly available implementations for all the presented Personalized Query Expansion
methods poses severe issues in determining the state of the art in this context. However, we high-
light that many proposals, such as those based on social interactions, are of difficult application in
domains different from the original ones.
In this work, we focus on the adoption of contextual word embeddings in Personalized Query

Expansion. More specifically, to overcome the limitations of both semantic and lexical methods
previously reported, we propose an approach that combines the usage of contextual word embed-
dings with a clustering-based procedure, which allows for identifying the topic of interest for each
user and the terms that better represent the user’s specific preferences. Moreover, we also pay par-
ticular attention to the efficiency issue affecting the Query Expansionmethods based on contextual
word embeddings reported in the previous non-personalized works [69, 96, 106] and propose an
approximation procedure that allows our approach to achieve a sub-millisecond expansion time
and to scale even in very data-rich scenarios. For reproducibility, we conduct our experimental
evaluation on publicly available datasets (see Section 5.1), and we share the code of both the im-
plementation of the novel Personalized Query Expansion approach we present in Section 3 and
those of the baselines (Section 5.2).

3 THE PROPOSED APPROACH

In this section, we present PQEWC,4 the method we propose to tackle the challenges introduced
by the adoption of contextual word embeddings in Personalized Query Expansion, as described
in Sections 1 and 2. First, in Section 3.1, we describe the approach we propose to identify the
embeddings most representative of the user’s interests that are also discriminative from a retrieval
perspective (i.e., the embeddings that allow identifying documents relevant w.r.t. the query and the
user preferences), and show how to avoid selectingmultiple expansion termswith similar semantic
meanings. Then, we introduce our expansion term selection strategy and an effective mechanism
to drastically reduce the number of computations required in the expansion term selection stage
(Section 3.2). Finally, in Section 3.3, we introduce ColBERT [47], a recent state-of-the-art retrieval
model, which we enhance with our Personalized Query Expansion approach. We also discuss how
we compute the relevance score of a document w.r.t. an expanded query.

In the following, we assume to have gathered for each user a set of related textual content, such
as documents authored by the user, previously accessed web pages, user-generated content [49]
(e.g., product reviews or tweets), previously issued queries, or other kinds of textual content related
to the user.

4Personalized Query Expansion With Contextual word embeddings, pronounced “quick”.
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Fig. 1. Embedding space partitioning example.

3.1 Term Embeddings Representative of the User Interests

In this section, we introduce the first step of our proposed approach, which aims at identifying
the term embeddings that better represent the interests of a specific user that are also discrimina-
tive from a retrieval perspective (i.e., the embeddings that allow identifying documents relevant
w.r.t. the query and the user preferences).

The method we propose aims at pre-computing bags of candidate personalized expansion
terms (in the form of term embeddings), among which we select those most related to the current
search performed by the user (see Section 3.2). To identify the specific user’s interests, we first
partition the embedding space into regions where embeddings with similar semantic meanings lie.
As exemplified in Figure 1, we do this in two steps. First, we group the embeddings of all terms in
the document collection using the hierarchical density-based clustering method HDBSCAN [64]
(Figure 1(a)). Then, we instantiate a nearest centroid classifier [90] (a.k.a. Rocchio classifier [63])
defined upon the clusters identified by HDBSCAN, thus partitioning the embedding space follow-
ing the document collection’s topic distribution in that same latent semantic space (Figure 1(b)). By
relying upon this classifier, we group the user-related term embeddings according to the document
collection’s topics associated with the clusters identified by HDBSCAN. We adopt a density-based
clustering method (HDBSCAN) instead of the more commonly used centroid-based methods, such
as k-means [62], because those latter methods require defining the number of centroids/clusters
a priori, which can be problematic to estimate. Moreover, finding an optimal configuration
for this parameter, for example, employing the elbow method [89], can be computationally
expensive.
To identify the clusters that better capture the specific user interests and contain discriminative

embeddings, we propose a function ϕ : Cu → R (where Cu is the set of the clusters related to a
user u) inspired by the TF-IDF formula [82] and defined as follows:

ϕ (cui ) =
|cui |∑k
j=1 |cuj |

· log
∑k

j=1 |c j |
|ci | , (1)

where k is the number of the latent semantic space regions identified by the application of HDB-
SCAN and the nearest centroid classifier to the embeddings of the document collection, cuj ∈ Cu

is the set corresponding to the cluster of the user u’s term embeddings lying in the semantic space
region j, and c j is the set corresponding to the cluster of the collection’s term embeddings lying in
that same region. Similarly, cui and ci are the sets corresponding to the cluster of the user u’s term
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Fig. 2. Offline step: user term embedding clustering.

embeddings and the cluster of the collection’s term embeddings that lie in the semantic space re-
gion i , respectively. The first part of the formula, inspired by the Term-Frequency [57], expresses
the percentage of the user’s term embeddings that lie within a specific latent region (identified
by HDBSCAN and the nearest centroid classifier). We interpret this value as the user’s interest
in the topic associated with the region ci of the semantic space. The second part of the formula
expresses the specificity of a topic (represented here by a term embedding cluster and its corre-
sponding latent region), quantified as the inverse function of the number of term embeddings of
the collection that lie in the related region ci of the latent space. We use this quantity to weigh the
user interest in a specific topic w.r.t. its discriminative power, similarly to the Inverse Document
Frequency [44] in the TF-IDF formulation. We use the function ϕ to rank and identify the top n
clusters of the user’s term embeddings from which we select the expansion terms at query time,
as will be discussed in the next section. This process is conducted for each user separately. The
whole procedure is shown in Figure 2.

We identify the clusters most representative of the user interests—from which we extract the
expansion term embeddings—independently from their semantic similarity with the query to limit
the selection of expansion terms that could be redundant w.r.t. the query terms. This way, we
promote the complementarity of the user-related information carried by the expansion terms w.r.t.
the information need expressed by the query. We cluster the term embeddings of the document
collection instead of separately generating the term clusters from each user’s vocabulary so that
the user-term clusters reflect the distribution of the collection’s topics in the embedding space.
Moreover, as the clustering procedure is independent of the number of term embeddings related
to each user, we do not incur to generate low-quality clusters when a user has few associated term
embeddings. As we will show in Section 6.4, both these choices allow us to achieve better results
than their respective counterparts. Finally, using a clustering-based approach to pre-compute bags
of candidate expansion terms for each user has two beneficial effects. First, it reduces the chances
of expanding the queries with terms that are redundant to each other, as we assign semantically
close terms to the same clusters and select only one expansion term per cluster, as later discussed
in Section 3.2. By reducing the redundancy among the expansion terms, we also avoid exacerbating
a single aspect of the query. Second, by only considering the top n most representative clusters for
each user, we reduce the computations required to choose the expansion terms at query time as
the number of candidate expansion terms is drastically lower than the total number of user-related
terms, thus allowing to achieve far better efficiency and greater scalability than other recent Query
Expansion methods (see Section 6.2).
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ALGORITHM 1: Expansion Term Selection

Require: List of the top n term embedding clusters Cu associated to the user u. List of the query
term embeddings Q .

1: function select_expansion_term_embeddings(Cu ,Q)
2: exp_term_embs← new List
3: for all c ∈ Cu do � c is one of the top n embedding clusters of the user
4: max_sims← new List
5: for all t ∈ c do � t is a user’s term embedding belonging to c
6: sims← new List
7: for all q ∈ Q do � q is the embedding of a query term
8: sim← cos(t , q)
9: sims.push(sim)

10: max_sim←max(sims)
11: max_sims.push(max_sim)

12: i ← argmax(max_sims) � index of the highest max sim
13: exp_term_embs.push(c[i])

14: return exp_term_embs

3.2 Selection of Expansion Terms

In this section, we introduce the procedure we propose to select the expansion term embeddings
from the user-related clusters, and the approximation we employ to drastically decrease its com-
putation time.
Once we have built and identified the most representative clusters for a specific user following

the method presented in the previous section, we select from each of them the term embedding
with the highestmaximum cosine similarity to the query term embeddings and employ the selected
ones for expansion. In other words, given a user-related cluster, for each term embedding in the
cluster we compute its cosine similarity with each query term embedding and take the maximum
value. Then, we rank the term embeddings in the cluster according to their maximum similarity
score and pick the one with the highest value. We repeat this operation for each of the most repre-
sentative user-related clusters identified following the method presented in the previous section.
The expansion term selection procedure is summarized by Algorithm 1.

During the selection of expansion term embeddings, we are only interested in the maximum
similarity value between each user term embedding and query term embedding. Therefore, all
the comparisons that do not produce a maximum similarity score are potentially unnecessary.
As we cannot predict which comparison will result in a maximum similarity value without ac-
tually performing all of them, we propose to approximate our selection procedure to maximize
efficiency. As reported in Algorithm 2, we first associate each user-related cluster with the query
term embedding closer to the cluster centroid. Then, from each cluster, we select the user term
embedding most similar to the query term embedding associated with that cluster to expand the
query. This way, we considerably reduce the number of comparisons needed to select the Per-
sonalized Query Expansion terms, while leaving the effectiveness practically unaltered, as later
shown in Section 6.4. For example, given a user with 16 associated term clusters of 128 terms each
and a query representation composed of four embeddings, we reduce the number of comparisons
from 16 × 4 × 128 = 8 192 to only (16 × 4) + (16 × 128) = 2 112, thus drastically decreasing the
computation time.
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ALGORITHM 2: Approximated Expansion Term Selection

Require: List of the top n term embedding clusters Cu associated to the user u. List of the query
term embeddings Q .

1: function select_expansion_term_embeddings_approx(Cu ,Q)
2: exp_term_embs← new List
3: for all c ∈ Cu do � c is one of the top n embedding clusters of the user
4: centroid ← average(c)
5: centroid_sims← new List
6: for all q ∈ Q do � q is the embedding of a query term
7: sim← cos(centroid , q)
8: centroid_sims.push(sim)

9: i ← argmax(centroid_sims) � index of the highest sim
10: q ← Q[i] � query term embedding assigned to the cluster c
11: approx_max_sims← new List
12: for all t ∈ c do � t is a user’s term embedding belonging to c
13: approx_max_sim← cos(t , q)
14: approx_max_sims.push(approx_max_sim)

15: j← argmax(approx_max_sims) � index of the highest max sim
16: exp_term_embs.push(c[j])

17: return exp_term_embs

3.3 Query Expansion with ColBERT

ColBERT is a neural retrieval model recently introduced by Khattab and Zaharia [47] that achieves
state-of-the-art performances. Unlike other recent retrieval models based on Neural Networks and
contextual word embeddings [54], ColBERT directly leverages query and document term embed-
dings to estimate the relevance scores of the documents in response to a query instead of, for
example, comparing query and document embeddings obtained by a pooling operation over their
term embeddings [35, 45, 56, 77, 99], such as taking their average. This characteristic makes Col-
BERT a good candidate model to study Query Expansion with contextual word embeddings, as we
can add the expansion term embeddings to the query representation before computing the docu-
ments’ relevance scores seamlessly. More formally, given a text t consisting of a sequence of tokens
[t1, . . . , tn], ColBERT computes a matrix of size n ×D, where n is the number of tokens in the text
and D is the dimension of each token representation. Under the hood, Colbert relies on BERT [28]
to generate contextual vector representations of queries’ and documents’ terms. On top of BERT,
a linear layer with no activation function controls the embeddings’ dimension D, compressing the
BERT representations to reduce memory consumption. In addition, Colbert leverages BERT’s ca-
pabilities to augment queries shorter than a predefined length, generating additional vectors that
contribute to the estimation of the documents’ relevance scores. The final query representations
have a fixed size of 32 embeddings. ColBERT computes the relevance score of a document d in
response to a query q as the sum of the maximum cosine similarities among the document’s and
the query’s term embeddings:

sq,d =
∑

qi ∈q
max
dj ∈d

cos(qi ,dj ), (2)

where q and d are the sets of the query term embeddings and the document term embeddings,
respectively, andqi anddj are the embeddings of specific query and document terms. In the actual
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implementation, Colbert normalizes the term representations to a unit L2 norm and evaluates the
similarity between queries’ and documents’ term embeddings using the dot product, which is
equivalent to the cosine similarity in this particular case.
Although the query augmentation mechanism leveraged by ColBERT is effective in enhancing

its retrieval effectiveness, Wang et al. [96] have shown that an additional query expansion stage
can improve it even further, paving the way for future studies on query expansion with contextual
word embeddings.

In this article, we enhance ColBERT through Personalized Query Expansion with contextual
word embeddings and show that our proposed approach significantly improves its retrieval ef-
fectiveness with minimal overhead. Our proposed method outperforms the approach of Wang
et al. [96] and recent Personalized Query Expansion methods based on word embeddings [50, 108]
in both retrieval effectiveness (Section 6.1) and efficiency (Section 6.2). As said before, ColBERT
allows us to add the expansion term embeddings to the query representation seamlessly, guaran-
teeing the fairness of the comparison of different approaches of Query Expansion with contextual
word embeddings. Moreover, having a fixed backbone model allows for the clear identification of
the advantages and the deficiencies of the compared Query Expansion approaches, as there are no
other differences in the retrieval pipeline.
For Query Expansion purposes, we extend Equation (2) to account for the expansion term em-

beddings by taking a convex combination of the scores of the original query term embeddings and
those produced by the expansion term embeddings as follows:

sq,e,d = (1 − γ ) ·
∑

qi ∈q
max
dj ∈d

cos(qi ,dj ) + γ ·
∑

ek ∈e
max
dj ∈d

cos(ek ,dj ), (3)

where q, e , and d are the sets of the query term embeddings, the personalized expansion term
embeddings, and the document term embeddings, respectively; qi , ek , and dj are the embeddings
of specific query, expansion, and document terms; and γ is a parameter that controls the influence
of the original and the expansion term embeddings on the final score.

4 PERSONALIZED QUERY EXPANSION FRAMEWORK

In this section, we describe the Personalized Query Expansion framework we employed for the
comparative evaluation reported in the following sections. This framework allowed us to test dif-
ferent Personalized Query Expansion approaches isolating their contribution from the rest on the
retrieval pipeline.
Figure 3 depicts the Personalized Query Expansion framework we relied on for comparing the

Personalized Query Expansionmethods presented in Section 5.2 and our newly proposed approach
introduced in Section 3. The framework comprises one module that generates the vector represen-
tations of the terms of each document of the collection, those of the user-related documents’ terms,
and those of the query terms. Once the user-related term embeddings and the query term em-
beddings are computed, the Expansion Module selects the term embeddings for expansion among
those of the user and adds them to the query. Finally, a scoring function computes a personalized
relevance score for each document of the document collection by comparing the representations
of its terms with those of the expanded query terms. In our experiments, we rely on ColBERT
[47] to generate the term representations, one of the Personalized Query Expansion baselines
described in Section 5.2, or our novel approach introduced in Section 3 as the Expansion Module,
and we employed Equation (3) to compute the personalized relevance scores for the documents.
As the main contribution we present in this article is the novel Personalized Query Expansion
method introduced in Section 3, the framework we implement for the evaluation is functional to
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Fig. 3. Personalized query expansion framework.

comparatively evaluate the effectiveness of the proposed approach with previous methods at the
state of the art with ease, allowing us to switch between the Query Expansion models seamlessly.
Although our Personalized Query Expansion framework can be directly applied to Personalized

Search, for evaluation purposes, we use it to re-rank the results retrieved for the initial queries by
BM25 [79]. This choice was conditioned by the employed benchmark, which—by construction—
is meant to be used for re-ranking the BM25 results (i.e., all the relevant documents for a query
are within the top results retrieved by BM25), as described in Section 5.1. As reported by Tabrizi
et al. [87] and Bassani et al. [6], the lack of publicly available large-scale datasets of high qual-
ity is a known issue in Personalized Search Evaluation. Moreover, the approach used to derive
evaluation datasets for Personalized Query Expansion from the data of social tagging platforms
used in the past (see Section 2.2) has been recently criticized for the low quality of the obtained
benchmarks [6, 87]. Finally, none of the datasets from previous works on Personalized Query Ex-
pansion is currently available. We refer the reader to [6] for a detailed description of the current
state of the datasets for Personalized Search Evaluation. We also acknowledge that the re-ranking
setting is often considered for evaluation purposes of novel retrieval models [47, 54, 70] based on
contextual word embeddings and Transformer architectures [93], such as ColBERT, to leverage
the efficiency of a fast first-stage retriever while retaining much of the effectiveness on these new
models.
In Section 6, we report both retrieval effectiveness statistics when only the re-ranker scores are

employed and those obtainedwhen combining themwith the BM25 scores. In the latter case, we ag-
gregated the two relevance scores via the weighted sum fusion algorithm provided by ranx.fuse
[7]. In this context, weighted-sum fusionworks as a convex combination of the BM25 and re-ranker
scores:

final_score = (1 − λ) · a + λ · b, (4)

where a and b are the relevance scores computed by BM25 and the re-ranker, respectively, and λ
is a parameter that controls the influence of the two on the final score.
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5 EXPERIMENTAL SETUP

The experiments reported in this section aim to answer the following nine research questions:

RQ1 Can a Personalized Query Expansion approach based on contextual word embeddings
enhance ColBERT’s retrieval effectiveness?

RQ2 Is our approach more effective than previously proposed expansion methods?
RQ3 Is our approach more robust than previously proposed expansion methods?
RQ4 Is our approach more efficient than previously proposed expansion methods?
RQ5 Does our approach improve the expansion terms’ diversity compared to previous Person-

alized Query Expansion methods?
RQ6 Does clustering the user term embeddings following the clusters of the collection term

embeddings allow us to achieve better retrieval effectiveness than directly identifying the
user-related clusters from the term embeddings of each user?

RQ7 Is Equation (1) effective in identifying the user-term clusters that better represent the
user’s interests, thus enhancing the retrieval effectiveness of our proposed approach?

RQ8 Does our approximated expansion term selection perform on par with the original proce-
dure proposed in Section 3.2 in terms of retrieval effectiveness?

RQ9 Does the approximation proposed to select the personalized expansion terms increase the
efficiency w.r.t. the original procedure proposed in Section 3.2?

To answer the research questions RQ1, RQ2, RQ3, RQ4, and RQ5, we conduct a comparative
evaluation of the retrieval effectiveness, robustness, and efficiency of different personalized and
non-personalized Query Expansion methods and analyze the similarity among the terms they se-
lect for expansion. Similarly, to answer the research questions RQ6, RQ7, RQ8, and RQ9, we
compare our proposed Personalized Query Expansion approach described in Section 3 with sev-
eral variants.
In the following sections, we present the dataset we employ for conducting our evaluations

(Section 5.1), introduce the baselines we have selected (Section 5.2), outline the training setup (Sec-
tion 5.3) and the hyper-parameter optimization procedure (Section 5.4), and introduce the evalua-
tion metrics (Section 5.5) used to assess the models’ effectiveness. We make all our code available
for future works and reproducibility purposes.5

5.1 Datasets

In this section, we introduce the datasets employed to conduct our experimental evaluation. Due
to the lack of standardized test collections for Personalized Search, we rely on the Personalized
Results Re-Ranking benchmark proposed recently by Bassani et al. [6]. This benchmark accounts
for 18 million documents and 1.9 million queries divided into four datasets in the following
domains: Computer Science, Physics, Psychology, and Political Science. The authors built their
datasets by applying and refining the PERSON methodology [87], which consists in leveraging
academic papers to derive user-query-document triplets. Specifically, the authors of PERSON
proposed to consider, for each paper, the title as a query, the documents listed in its reference
section as relevant documents, and one of its authors as the user submitting the query. To validate
their approach, the authors performed several experiments. Their findings suggest that equivalent
conclusions can be drawn from the comparison of Personalized Information Retrieval systems
applied to a dataset built following PERSON and human judgments. As reported by Bassani et al.
[6], some limitations that affect the methodologies for building synthetic datasets for Personalized
Search evaluation also affect PERSON. Most notably, (1) the derived datasets cannot be employed

5We will add a link to the repository upon acceptance.
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Table 1. Statistics of the Employed Benchmark Datasets

Computer Science Physics Political Science Psychology

# documents 4 809 684 4 926 753 4 814 084 4 215 384
# users 5 260 279 5 835 016 6 347 092 4 825 578
# train queries 552 798 728 171 162 597 544 882
# validation queries 5 583 7 355 1 642 5 503
# test queries 6 497 6 366 5 715 12 625
# relevant (avg ± sd) 3.25 ± 3.27 4.17 ± 4.15 3.88 ± 5.17 4.73 ± 4.4

for evaluating session-based personalization approaches due to the lack of search sessions, and
(2) the synthetic user-query-document triplets are unique as they derive from non-repeatable
user actions, such as writing a scientific manuscript. Therefore, approaches relying on re-finding
behavior cannot be evaluated.
To compose their benchmark datasets, Bassani et al. [6] started by collecting paper titles, ab-

stracts, references, and other metadata for several millions of papers across multiple disciplines
from theMicrosoft Academic Knowledge Graph [31, 85]. Once the document collections were com-
posed and cleaned, the authors generated candidate queries following the approach we previously
discussed. Then, to ensure the personalization potential for those queries, the authors discarded the
queries whose users published fewer than 20 papers before the one used as the query. Since titles of
academic papers are well-formed natural language, Bassani et al. [6] proposed to apply stop-word
removal and Krovetz stemming to obtain queries closer to real-world ones. As discussed by Tabrizi
et al. [87], the authors of PERSON, not all the documents listed in the reference section of a paper
are necessarily relevant—from an Information Retrieval perspective—to the topic expressed by a
query constructed from the paper’s title. Therefore, to reduce the presence of spurious relevant
documents and malformed queries, Bassani et al. [6] considered well-formed queries only those
for which BM25 [79] places relevant documents in the top-ranking positions. Likewise, for each of
the remaining queries, the authors retained only the relevant documents present in the top results
retrieved by BM25. Finally, to closely resemble real-world scenarios—where all searches in the test
set happen after those in the training set—the datasets were split chronologically into training and
test sets. Training sets were then randomly split into training sets and validation sets, using a split-
ting ratio of 99 : 1. Table 1 reports some statistics about the datasets. As intended by their authors,
we considered the four benchmark datasets separately for both training and evaluation. Specifi-
cally, we trained the compared models and fine-tuned their hyper-parameters independently on
each dataset and considered the documents of each domain as separate collections.
Although the employed datasets rely on academic documents, we did not employ any domain-

specific information in our proposed approach to ensure applicability to other domains. The doc-
uments used for conducted personalization—the papers published by each user/author—could be
intended, for example, as previously accessed documents in a generic search context, such as Web
Search.

5.2 Baselines

In this section, we introduce the baselines employed in our comparative evaluation. First, we com-
pare our proposed Personalized Query Expansion-enhanced ColBERT to its original implementa-
tion, to assess whether our proposed approach is able to improve its retrieval effectiveness. Then
we consider other query expansion approaches based on word embeddings, three of which take
into account the user preferences, to verify if our proposed approach is improving over the state
of the art. In all our experiments, we consider BM25 [79], our first-stage retriever, for reference.
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• ColBERT: ColBERT [47] is the recent BERT-based retrieval model introduced in Section 3.3.
We consider ColBERT as a baseline to assess whether the compared query expansion meth-
ods are able to enhance its retrieval capabilities.
• ColBERT-PRF: ColBERT-PRF [96] is a recently introduced query expansion method based
on ColBERT relying on pseudo-relevance feedback [80] implemented in PyTerrier [61].
Specifically, given a query, it first ranks the documents using ColBERT, then clusters the
term embeddings of a certain number of feedback documents with k-Means [62] and selects
the tokens corresponding to the cluster centroids with higher Inverse Document Frequency
scores for expanding the original query. We consider ColBERT-PRF as a baseline to assess
whether personalization is meaningful for query expansion in our context.
• Baseline 1: It is a Personalized Query Expansion method introduced by Kuzi et al. [50] that
selects expansion terms based on the cosine similarity between their embeddings and the
query term embeddings. Specifically, it first computes the cosine similarity between each
user-related term embedding and each query term embedding. Then, it softmax-normalizes
those similarities to get a probability distribution of the importance of user-related term em-
beddings w.r.t. each query term embedding. Finally, it sums the log probabilities of each user-
related term embedding and selects the top-scored ones for expanding the original query.
• Baseline 2: It is a Personalized Query Expansion method introduced by Zhou et al. [108]
that selects expansion terms based on the cosine similarity between their embeddings and
the sum of the query term embeddings. That is, it simply computes the cosine similarities
among the user-related term embeddings and the sum of the query term embeddings and
selects the top-scored ones for expanding the original query.
• Baseline 3: It is a variant of Baseline 2 we introduce by using the CLS token embedding in
place of the sum of the query term embeddings. The CLS token is a special token appended by
BERT [28] at the beginning of each text before computing its contextual word embeddings.
It was originally introduced for sentence-level classification tasks, but its embedding was
also used in Information Retrieval as a single embedding representation of queries and doc-
uments [45, 56, 77, 99]. At a theoretical level, the CLS token embedding is a sort of weighted
sum of the other token embeddings and represents the semantic meaning of the input text
as a whole.

We apply all the expansion methods before re-ranking the BM25 results with ColBERT. We do not
consider the Personalized Query Expansion approach based on word embeddings proposed byWu
et al. [98] as it requires data unavailable in our setting. We also do not consider other Personalized
Query Expansion approaches based on word embeddings, such as that proposed by Amer et al. [2],
as they are almost identical to the considered baselines or their authors did not report encouraging
results. Unfortunately, due to the hardware limitations described in Section 5.3, we are unable
to compare the Query Expansion-enhanced variants of ColBERT with recent Transformer-based
retrieval models without incurring an unfair comparison. For the sake of completeness, we show
in Appendix A that vanilla ColBERT outperforms other retrieval models at the state of the art on
the benchmark datasets employed in our experimental evaluation.

5.3 Implementation Details

We relied on PyTorch [72], HuggingFace’s Transformers [97], and PyTorch Lightning [30] for im-
plementing and training ColBERT. We employed the cuML’s GPU-based implementation of HDB-
SCAN [76] for clustering purposes. Finally, we implemented and optimized all the considered ex-
pansion methods with Numpy [37] to allow for a fair CPU-based efficiency comparison. To further
ensure the reproducibility of the experiments, we relied on Hydra [102] to store the experiments’
configurations.
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We trained ColBERT on an NVidia® RTX A6000 GPU for 20 epochs following the instruction
reported in its original paper [47]: learning rate set to 3 × 10−6, batch size set to 32, number of
embeddings per query set to 32, Adam optimizer [48], and pairwise softmax cross-entropy loss
over a triplet composed of a query, a relevant document, and a non-relevant document. Dur-
ing training, we sampled hard negatives from the top results retrieved by BM25 and used the
other documents in the batch as random negative samples. For tuning the hyper-parameters of
the compared Query Expansion approaches as described in Section 5.4, we need to pre-compute
the representations of the terms of the documents in the collection and load them into the com-
puter’s main memory so as to make the hyper-parameter search feasible. However, the hardware
employed to run the experiments has 64 GB of RAM only, which is not enough to store the em-
beddings of all the terms appearing in the document collection. Therefore, we set the maximum
number of embeddings per document to 128 and truncated the longer ones to reduce the mem-
ory footprint. We also set the dimension of the embeddings produced by ColBERT to 16 to re-
duce the memory footprint further. As all the compared models but BM25 share the embeddings
generated by ColBERT, they are all affected equally, thus preserving the fairness of our compari-
son. To reduce the time needed to find the term embedding clusters with HDBSCAN, we heavily
down-sampled the embeddings of each collection from ~500 to 10 million. For ColBERT and all
its Query Expansion-enhanced variants, we aggregated the newly computed document relevance
scores with the BM25 scores shared with the employed datasets [6], using the weighted sum fu-
sion algorithm provided by ranx.fuse [7] after optimization on the validation set. Finally, we
removed the term embeddings of stop-words from the possible embeddings to choose for query
expansion.

5.4 Hyper-parameter Tuning

All the baseline expansion methods considered in our comparison and the proposed one have
hyper-parameters controlling their behavior, which we optimize on the validation set. Specifically,
they all have a parameter controlling the number of expansion terms to add to the queries,
which in the case of PQEWC also corresponds to the number of user-related term embedding
clusters to consider as the most representative of the user interests. ColBERT-PRF, Baseline 1,
and PQEWC also have a parameter controlling the importance of the expansion terms when
computing the document relevance scores, i.e., the expansion terms’ weight (in the case of
PQEWC, γ from Equation (3)). Finally, ColBERT-PRF has a parameter controlling the number of
feedback documents to consider as pseudo-relevance feedback and a parameter controlling the
number of clusters for grouping the feedback documents’ term embeddings. We also report here
the best values for the λ parameter of Equation (4) found on the validation set of each dataset
for each model. We consider the following intervals and sets to generate the hyper-parameter
configurations during optimization:

• Number of expansion terms in the interval [1, 32]
• Expansion term weight in the interval [0.1, 0.9] with a step of 0.1
• Number of feedback documents in the interval [1, 10]
• Number of clusters in the set [8, 16, 24, 32, 40, 48, 56, 64]
• λ in the interval [0.1, 0.9] with a step of 0.1

We optimized Baseline 2 and Baseline 3 with a greed search on the validation set as they have only
one hyper-parameter, the number of expansion terms. We fine-tuned the hyper-parameters of
ColBERT-PRF, Baseline 1, and PQEWC with the Python optimization package Optuna [1], testing
100 hyper-parameter configurations for each of them. After the models’ parameter optimization,
we optimized the λ parameter of Equation (4) using the greed search already implemented in
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Table 2. Best Hyper-parameter Configurations

Model
# Feedback Docs # Clusters # Expansion Terms Exp. Terms Weight λ

CS PHY PS PSY CS PHY PS PSY CS PHY PS PSY CS PHY PS PSY CS PHY PS PSY

ColBERT — — — — — — — — — — — — — — — — 0.8 0.8 0.8 0.9
ColBERT-PRF 6 1 1 1 16 24 24 16 8 22 3 13 0.1 0.1 0.1 0.1 0.8 0.8 0.8 0.8
Baseline 1 — — — — — — — — 25 29 18 3 0.2 0.2 0.2 0.1 0.9 0.9 0.8 0.9
Baseline 2 — — — — — — — — 16 14 32 22 — — — — 0.9 0.9 0.9 0.9
Baseline 3 — — — — — — — — 8 4 10 3 — — — — 0.8 0.9 0.8 0.9
PQEWC — — — — — — — — 32 32 31 32 0.3 0.3 0.4 0.3 0.9 0.9 0.9 0.9

CS, PHY, PS, PSY stand for Computer Science, Physics, Political Science, and Psychology, respectively.

ranx, the Python library we employed for score fusion. Table 2 reports the best hyper-parameter
configuration for each method and dataset.

5.5 Evaluation Metrics

To evaluate the effectiveness of the considered models, we re-ranked the top 1,000 results retrieved
by BM25 and we employed (1) Mean Average Precision (MAP), (2) Mean Reciprocal Rank

(MRR), (3) Normalized Discounted Cumulative Gain (NDCG), and (4) Rank-biased Preci-

sion (RBP). MRR and NDCG were computed on the top 10 documents retrieved by each model,
whereas MAP was computed on the top 100. RBP’s persistence was set to 0.95. Statistical signifi-
cance testing was conducted using a Bonferroni corrected Two-sided Paired Student’s t-Test [86]
with p < 0.005. To evaluate the robustness of the query expansion methods, we employ the Ro-

bustness Index (RI) [26]. RI is defined as N +−N −
|Q | , where N + and N − are the amounts of queries

whose result lists are improved or worsened by an expansion method in terms of Average Preci-
sion (at 100) w.r.t. ColBERT, and |Q | is the total number of queries. The higher the RI, the more
robust an expansion method is. Computation and comparison of metrics were conducted using the
Python evaluation library ranx [5].

6 RESULTS AND DISCUSSION

In this section, we present the results of our comparative evaluation. First, we discuss the retrieval
effectiveness, efficiency, and diversity of the terms chosen for expansion by the compared models
in Sections 6.1 to 6.3, respectively. Then, we ablate the design choices of our proposal in Section 6.4.
Finally, we summarize our findings in Section 6.6.

6.1 Effectiveness

In this section, we discuss the performances of each of the compared models as well as the results
of their fusion with the first-stage retriever, BM25, aiming to answer our research questions RQ1,
RQ2, and RQ3.
First, we compare the results of the re-rankingmodels without the document score interpolation

of Equation (4). As shown in Table 3, all the ColBERT-based re-rankers were able to consistently
outperform the first-stage retriever, BM25, by a considerablemargin. However, there are some clear
differences in the benefits brought by the Query Expansion methods to ColBERT. ColBERT-PRF,
our non-personalized Query Expansion baseline, achieved statistically significant improvements
over vanilla ColBERT for all the considered datasets in MAP, NDCG, and RBP, but not MRR. In two
cases, Physics and Psychology, ColBERT-PRF even decreased in MRR w.r.t. ColBERT. The Person-
alized Query Expansion baselines (Baseline 1, Baseline 2, and Baseline 3) caused a degradation of
the effectiveness of vanilla ColBERT in the large majority of cases. The only exception is Baseline
3 on the Physics dataset, which achieved statistical improvements over vanilla ColBERT in MAP,
NDCG, and RBP. The worst case is Political Science, where all the Personalized Query Expansion
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Table 3. Effectiveness of the Compared Models

Model
Computer Science Physics

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 12.25 48.92 22.45 13.22 — 12.77 53.68 26.88 16.05 —
ColBERT 18.10 56.56 28.24 17.62 — 17.91 61.86 32.92 20.20 —

ColBERT-PRF 18.56† 56.82 28.68† 17.90† 20 18.77† 61.50 33.76† 20.75† 17
Baseline 1 18.13 56.32 28.15 17.63 −1 17.83 61.18 32.58 20.09 −5
Baseline 2 17.92 56.23 28.11 17.47 0 17.93 61.83 32.97 20.26 4

Baseline 3 18.18 56.86 28.43 17.66 6 18.05† 62.56 33.14† 20.30† 10

PQEWC 19.03‡ 57.66† 29.23‡ 18.23‡ 15 19.17‡ 63.81‡ 34.46‡ 21.12‡ 22

Model
Political Science Psychology

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 13.27 50.23 24.07 14.24 — 12.58 51.19 23.93 13.84 —
ColBERT 16.06 53.51 26.40 16.11 — 21.39 62.78 33.39 20.17 —

ColBERT-PRF 16.42† 53.51 26.86† 16.33† 11 21.92† 62.53 33.83† 20.43† 10
Baseline 1 15.98 53.05 26.22 16.08 −3 21.42 62.85 33.41 20.18 4
Baseline 2 15.92 52.80 26.11 16.04 −1 21.22 63.26 33.40 19.99 −2
Baseline 3 15.49 52.85 25.84 15.74 −5 21.37 62.76 33.37 20.15 4

PQEWC 17.24‡ 55.10‡ 27.71‡ 16.99‡ 14 22.30‡ 64.21‡ 34.47‡ 20.75‡ 12

The symbols † and ‡ denote significant improvements in a Bonferroni corrected Two-sided Paired Student’s t-Test

with p < 0.005 over ColBERT model only and over all models, respectively. Best results are highlighted in boldface.

Best baselines’ results are underlined.

baselines decreased vanilla ColBERT performance w.r.t. all the considered evaluation metrics.
Those results clearly show the unsuitability of previous Personalized Query Expansion Methods
based on word embeddings when applied in the presence of contextual word embeddings.
Our proposed Personalized Query Expansion method, PQEWC, achieved the best results on all

the considered datasets and significantly improved over ColBERT and all the considered baselines
in all the considered search scenarios. On average, it improved over ColBERT by 6%, 2%, 4%, and 4%
in MAP, MRR, NDCG, and RBP, respectively, and over the best-performing baselines by 4%, 2%, 2%,
and 2% in MAP, MRR, NDCG, and RBP, respectively. Furthermore, it scored a higher Robustness
Index than all the other Personalized Query Expansion methods for all the considered datasets
and higher than ColBERT-PRF on three datasets out of four. We also notice that our proposed
approach is the only Query Expansion approach to achieve statistically significant increments
over ColBERT w.r.t. MRR. These results clearly show the benefits of our proposed procedure for
Personalized Query Expansion with contextual word embeddings. Moreover, they corroborate our
intuition regarding the need for a pre-processing phase to identify the most relevant user interests
and reduce the impact of redundant expansion terms.
When the document scores produced by ColBERT and its Query Expansion-enhanced variants

are aggregated with the scores produced by the first-stage retriever (BM25) following Equation (4),
we record much less difference between vanilla ColBERT and its variants, with the sole exception
of the one employing our proposed Personalized Query Expansion method PQEWC. As shown
in Table 4, there is generally little to no difference between vanilla ColBERT and the considered
baselines regarding retrieval effectiveness. Conversely, PQEWC-enhanced ColBERT achieved the
best performances for all the considered metrics and datasets. These results highlight that our
proposed method captures personalized relevance signals that are complementary to those of both
vanilla ColBERT and BM25. On average, it improved over BM25 + ColBERT by 4%, 2%, 3%, and 3%
in MAP, MRR, NDCG, and RBP, respectively.
With and without interpolation, PQEWC outperformed ColBERT and all the other considered

baselines and generally reached a higher Robustness Index. These results positively answer our
first, second, and third research questions, RQ1, RQ2, and RQ3.
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Table 4. Effectiveness of the Compared Models When the Document Scores They Compute Are

Interpolated with Those Computed by the First-stage Retriever BM25 Using Equation (4)

Model
Computer Science Physics

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 12.25 48.92 22.45 13.22 — 12.77 53.68 26.88 16.05 —
BM25 + ColBERT 20.08 60.72 30.99 18.83 — 19.93 65.26 35.74 21.74 —

BM25 + ColBERT-PRF 20.21† 60.56 30.95 18.87† 6 20.12† 64.96 35.77 21.80† 1
BM25 + Baseline 1 19.97 60.47 30.74 18.78 −1 19.88 65.17 35.76 21.70 −1
BM25 + Baseline 2 19.87 60.55 30.86 18.70 1 20.06† 65.56 36.00† 21.88† 8

BM25 + Baseline 3 20.21† 60.72 31.04 18.88 4 19.98 65.73 35.91 21.80 4

BM25 + PQEWC 20.73‡ 61.45† 31.53‡ 19.26‡ 11 20.92‡ 66.28† 36.85‡ 22.45‡ 21

Model
Political Science Psychology

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 13.27 50.23 24.07 14.24 — 12.58 51.19 23.93 13.84 —
BM25 + ColBERT 19.03 59.55 30.39 18.15 — 23.06 66.02 35.73 21.22 —

BM25 + ColBERT-PRF 19.13† 59.21 30.43 18.23† 4 23.02 65.55 35.48 21.12 −4
BM25 + Baseline 1 19.07 59.51 30.43 18.21† −1 23.09† 66.03 35.74 21.23† −4
BM25 + Baseline 2 18.95 59.32 30.37 18.10 0 23.11 66.53 35.98† 21.22 0
BM25 + Baseline 3 18.82 58.97 30.22 18.07 0 23.07 66.02 35.74 21.22 5

BM25 + PQEWC 19.81‡ 60.57‡ 31.24‡ 18.72‡ 11 23.96‡ 67.14‡ 36.71‡ 21.76‡ 14

The symbols † and ‡ denote significant improvements in a Bonferroni corrected Two-sided Paired Student’s t-Test

with p < 0.005 over BM25 + ColBERT and over all models, respectively. Best results are highlighted in boldface. Best

baselines’ results are underlined.

6.2 Efficiency

In this section, we compare the efficiency of the considered expansion methods in terms of the
average time required to expand a query on the CPU (an AMD Ryzen™ 5950X, in our case), aim-
ing to answer our research question RQ4. We suppose to have already loaded all the data needed
for query expansion into memory. This assumption is supported by the fact that embeddings of
user-related terms should be already available in the computer’s main memory as they are part of
the searchable documents, which must reside in the main memory to be processed by ColBERT, re-
gardless of personalization. It is important to note that our evaluation scenario is akin to a generic
personalized search setup, where personalization is achieved by leveraging the documents previ-
ously accessed by the user, which would reside in the main memory to be accessed by ColBERT.
An example of such a search scenario is Personalized Web Search [88]. This way, we can focus on
the expansion term selection latency. Note that all the compared models took less than 1 millisec-
ond to re-rank the top 1,000 BM25 results with ColBERT on our GPU. Therefore, we do not report
the re-ranking times.
The second to fifth rows of Table 5 report the expansion time required by the considered Query

Expansion methods on the datasets employed in our evaluation. ColBERT-PRF was the least effi-
cient of them, requiring 32 ms to expand a query on average. Baseline 1 required 4 ms to expand a
query on average, almost 10 times less than ColBERT-PRF, but it was not able to improve over Col-
BERT. Baseline 2 and Baseline 3, which delivered similar results in terms of effectiveness, both took
less than 1 millisecond to expand a query on average. Finally, our proposed Personalized Query
Expansion approach, PQEWC, achieved an expansion time inferior to 1 ms while delivering the
best retrieval performances across the line.
Although all the considered PersonalizedQuery Expansionmethods are very efficient in our con-

text, the number of operations needed by PQEWC is much lower than the other methods. PQEWC
only compares the query term embeddings with small subsets of the user term embeddings, as
discussed in Section 3.1, allowing our proposed method to be much more scalable than the others.
On average, it compares the query term embeddings with less than 15% of the term embeddings
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Table 5. Query Expansion Methods’ Execution Time in Milliseconds

Dataset Emb Size Embs / User File Size (MB) Load Time (ms) ColBERT-PRF Baseline 1 Baseline 2 Baseline 3 PQEWC

Computer Science 16 12 000 < 1 — 39 5 < 1 < 1 < 1
Physics 16 13 000 < 1 — 34 5 < 1 < 1 < 1
Political Science 16 6 500 < 1 — 28 2 < 1 < 1 < 1
Psychology 16 11 000 < 1 — 27 4 < 1 < 1 < 1

Synthetic 16 10 000 < 1 < 1 — 5 < 1 < 1 < 1
Synthetic 16 100 000 3 1 — 61 7 7 < 1
Synthetic 16 1 000 000 32 10 — 651 88 88 1

Synthetic 128 10 000 3 < 1 — 7 1 1 < 1
Synthetic 128 100 000 26 8 — 72 12 12 < 1
Synthetic 128 1 000 000 256 80 — 740 141 140 9

Synthetic 768 10 000 15 5 — 8 2 2 < 1
Synthetic 768 100 000 154 50 — 147 23 23 3
Synthetic 768 1 000 000 1 536 500 — 1494 249 249 26

Emb Size is the embedding dimension. Embs / User is the average number of term embeddings related to a specific user.

File Size is the average file size in megabyte of the term embeddings for each user. Load Time is the time needed on

average to load from disk the term embeddings related to a specific user in a cold start scenario. In the case of the

datasets employed for our evaluation, the values are affected by document truncation as described in Section 5.3.

associated with a user. In contrast, all the other methods consider all of them. Moreover, as intro-
duced in Section 3.2, it only compares a single query term embedding with the most representative
ones of each user.
To further prove our claims on PQWEC scalability, we conducted an empirical evaluation based

on synthetically generated data. Since ColBERT-PRF latency was already high on our test sets,
we did not consider it in this additional experiment. For each personalized expansion method,
we investigated several different scenarios. Specifically, we considered three different embedding
sizes and three different amounts of average user-associated term embeddings. As for embedding
sizes, we considered 16, 128, and 768, which are the dimension of the embedding we used in the
experiment previously reported, the embedding dimension originally proposed for ColBERT, and
the dimension of the uncompressed BERT embeddings, respectively. As for the average number of
user term embeddings, we considered 10,000, 100,000, and 1,000,000.
As reported in Table 5, Baseline 1 rapidly saturates as more user-related terms becomes avail-

able, making it not suitable for real-world scenarios with high availability of user-related texts. On
average, Baselines 2 and 3 require the same time to expand a query. Their applicability is mainly af-
fected by the number of available user term embeddings rather than their dimension. As expected,
PQEWC is the most scalable of the compared query expansion methods, and it is suited even for
data-intensive scenarios. As shown in the table, it took just a fraction of the time required by the
other models to expand the queries in each considered scenario. The embedding dimension has a
noticeable impact on all the Personalized Query Expansions’ execution times. However, the effi-
ciency advantages of PQEWCmake it the solemodel able to scale to both high user data availability
scenarios and high-dimensional vector spaces. To conclude, these results corroborate our claims
regarding the scalability of PQEWC and positively answer our fourth research question, RQ4.
As previously described, in our evaluation setting, all the user-related term embeddings are

already available in the computer’s main memory as they belong to the searchable documents,
which must be in the main memory to be evaluated by ColBERT. Similarly, in Personalized Web
Search based on previously accessed Web pages [88], the user-related data would be available in
the computer’s mainmemory for similar reasons. However, in other scenarios, offloading the mem-
ory from the user-related data could be convenient to reduce memory consumption. Therefore, in
those cases, the system must load the user-related data when needed. We performed a further ex-
periment to evaluate how Personalized Query Expansion methods are affected in those scenarios.
Specifically, we analyzed the loading time of the user-related data to assess whether and how it
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affects the Query Expansion time for the Personalized approaches in the synthetic scenarios pre-
viously introduced. To do so, we compared the average size of the user-related term embeddings
when saved on disk using Numpy [37] and our disk read speed in the cold start scenario to factor
out cached data (∼ 3 000 MB/s). As reported in Table 5, the loading time in the synthetic scenario
most similar to the considered benchmark datasets (embedding size 16, 10 000 embeddings per
user) was inferior to 1 ms. Therefore, in our search setting, the user would not notice any delay
even if the system has to load his or her related data from the disk. Surprisingly, we also recorded a
sub-millisecond loading time in the case of embeddings of size 128, the original embedding size of
ColBERT. Therefore, even factoring out our hardware limitations described in Section 5.3 and the
specificity of our evaluation scenarios, the user-related data loading time would not affect the user
experience in the case of Personalized Query Expansion methods. For the sake of brevity, we now
discuss only themost data-intensive simulated scenario (1M embeddings per userwith a dimension
of 768), as similar conclusions can be drawn for the others. In this specific scenario, our system took
500 milliseconds on average to load user-related data, introducing a noticeable latency. However,
in a real-world scenario, the system could load the user-related data when a specific user connects
to it, after login, or while the user types the first query of his or her search session, which would
probably take at least a few hundred milliseconds. The system could offload specific user-related
data at the end of the user’s search session without re-loading them for each query separately,
overcoming the data loading time entirely for each search after the initial one. Therefore, we con-
clude that, if carefully handled, loading user-related data when needed should not introduce any
latency perceivable by the user. We highlight that, in this analysis, we did not consider that our
proposed approach only compares the query with the term embeddings belonging to the clusters
that better represent the user interests as identified by our proposed Equation (1). As previously
discussed in this section, we found out that our approach compares the query with less than 15%
of the term embeddings associated with a user on average. Therefore, the reported loading times
reflect the worst-case scenarios, i.e., when the system must load all the user-related embeddings,
which is the usual case for the other considered Personalized Query Expansion approaches.

6.3 Expansion Term Diversity

In this section, we compare the diversity of the user term embeddings selected for expansion by
the considered Personalized Query Expansion methods aiming at answering our fifth research
question, RQ5. Moreover, this analysis allows us to verify our intuitions regarding the potential
issues of employing previous Personalized Query Expansion methods based on word embeddings
with contextual word embeddings, as discussed in Section 1. In this regard, we introduce a novel
metric to evaluate the percentage of semantically non-overlapping expansion terms per query.
For each query, we first count the number of expansion term embeddings having a maximum
cosine similarity score w.r.t. the other expansion term embeddings below a certain semantic overlap
threshold. Then, we divide this counter by the number of terms selected for expansion and take
the average across all queries. Our Expansion Terms Diversity (ETD) metric is as follows:

ETDτ =
1

n

n∑

q=1

1

k

k∑

i=1

1 if max
ej�i ∈Eq

cos(ei ,ej ) < τ and , 0 otherwise, (5)

wheren is the number of queries,k is the number of expansion terms for the queryq, Eq is the set of
expansion term embeddings selected for the query q, ei is the ith expansion term embedding, and
τ is the semantic overlap threshold. We further propose to evaluate ETD with the following values
for the semantic overlap threshold parameter τ : 0.99, 0.95, and 0.90. The rationale behind those
values is as follows: low ETD.95/ETD.99 scores mean the query expansion method selects term
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Table 6. Expansion Term Diversity of the Compared Personalized Query Expansion Methods

Model
Computer Science Physics Political Science Psychology

ETD.99 ETD.95 ETD.90 ETD.99 ETD.95 ETD.90 ETD.99 ETD.95 ETD.90 ETD.99 ETD.95 ETD.90

Baseline 1 88.63 62.03 46.30 89.68 63.15 50.11 90.65 61.58 50.64 94.76 79.88 73.89
Baseline 2 85.05 41.35 20.37 83.43 33.82 11.14 91.40 42.44 13.16 88.86 34.13 11.94
Baseline 3 89.52 40.44 17.99 89.02 27.91 7.71 93.04 39.02 15.12 86.14 33.90 14.38
PQEWC 99.56 88.38 64.39 99.41 81.24 50.06 99.68 84.72 55.35 99.38 82.41 53.93

Higher is better for ETD.99 and ETD.95. Values near 0.5 for ETD.90 are better. Reported results are in percentages.

Best results are highlighted in boldface.

embeddings with high/extremely high semantic overlap, i.e., almost duplicate term embeddings,
while we interpret EDT.90 scores near 0.5 as an indication that the expansion terms are topically
focused but not semantically overlapping, and thus they are diverse but semantically related. Note
that a high EDT.90 score means the expansion terms are loosely correlated. We highlight that
the expansion term diversity score is not directly correlated or proportional to the effectiveness
gain brought by a Query Expansion method. However, it can help us understand why a method
performs better or worse than another relative to a specific application domain.
Table 6 shows the ETD scores for the compared Personalized Query Expansion methods. The

low ETD.99 and ETD.95 scores that Baseline 1, Baseline 2, and Baseline 3 achieved in all datasets
tell us those methods are prone to select expansion term embeddings that suffer from semantic
overlap. The semantic overlap among the expansion terms can cause the exacerbation of a single
aspect of the queries, thus reducing the diversity of the search results, a property not desirable
in our search evaluation domains given the unsatisfactory results achieved by those methods, as
discussed in Section 6.1. Those results corroborate our intuitions regarding the potential issues
of employing previous Personalized Query Expansion methods based on word embeddings with
contextual word embeddings discussed in Section 1. By employing a clustering-based procedure to
group and find the term embeddings that better represent the user interests and preferences (Sec-
tion 3.1) and selecting only one embedding per user-related term embedding cluster for query ex-
pansion purposes (Section 3.2), PQEWC achieved very high ETD.99 and ETD.95 scores. Therefore,
term embeddings selected for query expansion by PQEWC benefit from great diversity. Moreover,
the EDT.90 scores tell us that PQEWC generally selects topically focused but not semantically
overlapping expansion term embeddings. These results show the ability of PQEWC to enhance
multiple aspects of the queries without affecting its topic coherence and positively answer our
fifth research question, RQ5.

6.4 Ablation Study

In this section, we conduct the ablation study of our proposal to assess whether our design choices
are effective.

Effectiveness. To evaluate whether our design choices are functional effectiveness-wise and the
approximation method we proposed in Section 3.2 does not harm the retrieval effectiveness of our
proposal, we compared it with the three following variants:

• Local: This variant derives the clusters of user term embeddings by directly applying HDB-
SCAN to the term embeddings of each user instead of mapping the user term embeddings
into the clusters derived from the document collection, as described in Section 3.1. As there
are no direct relations between local and global clusters (i.e., Equation (1) is not applicable),
we consider the local clusters with the highest number of associated user term embeddings
as the most representative of the user interests and preferences. This variant allows us to
assess whether clustering the user terms following the collection topic distribution in the
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Table 7. Effectiveness of Our Proposal Variants and Those of ColBERT

Model
Computer Science Physics

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

ColBERT 18.10 56.56 28.24 17.62 — 17.91 61.86 32.92 20.20 —
Local 18.52� 57.27 28.68� 17.88� 7 18.48� 62.83� 33.57� 20.60� 11

Top Clusters 18.80�† 58.47�† 29.33�† 17.98� 11 18.59� 63.36� 33.97�† 20.66� 13

Non-approximated 19.05�†‡ 57.58� 29.25�† 18.24�†‡ 15 19.17�†‡ 63.88�† 34.44�†‡ 21.12�†‡ 23

PQEWC 19.03�†‡ 57.66� 29.23�† 18.23�†‡ 15 19.17�†‡ 63.81�† 34.46�†‡ 21.12�†‡ 22

Model
Political Science Psychology

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

ColBERT 16.06 53.51 26.40 16.11 — 21.39 62.78 33.39 20.17 —
Local 16.14 53.24 26.38 16.28� 1 21.56� 62.94 33.56 20.27� 3

Top Clusters 16.78�† 54.92�† 27.41�† 16.56�† 9 21.89�† 64.02�† 34.17�† 20.43�† 12

Non-approximated 16.87�† 53.91 27.18�† 16.73�†‡ 7 22.33�†‡ 64.24�† 34.51�†‡ 20.76�†‡ 12

PQEWC 17.24�†‡ 55.10�† 27.71�† 16.99�†‡ 14 22.30�†‡ 64.21�† 34.47�†‡ 20.75�†‡ 12

The symbols �, †, and ‡ denote significant improvements in a Bonferroni corrected Two-sided Paired Student’s t-Test

with p < 0.005 over ColBERT, Local, and Top Clusters, respectively.

embedding space improves the retrieval performances over partitioning the embedding
space user-wise (RQ6).
• Top Clusters: Instead of relying on the user-term clusters that better represent the user
interests as identified by our proposed Equation (1), this variant focuses on the user-term
clusters that are most related to the query, i.e., those most similar to the query in terms of
cosine similarity. First, it selects the top n user-term clusters most similar to the query. Then,
following the procedure proposed in Section 3.2, it chooses from each top user-term cluster
a term embedding to use for query expansion. This variant allows us to assess whether
considering the user-term clusters identified with Equation (1) as the best clusters to draw
the expansion term embeddings from is an effective design choice (RQ7).
• Non-approximated: This variant does not employ the approximated expansion term se-
lection strategy described in Section 3.2. It allows us to assess the impact on the retrieval
effectiveness of the approximation we proposed to reduce the expansion term selection time
(RQ8).

As for the main evaluation, all the expansion methods are applied before re-ranking the BM25
results with ColBERT, and their hyper-parameters have been optimized on the validation set.
Table 7 reports the retrieval effectiveness of PQEWC, those of its considered variants, and—for

reference—those of ColBERT. The results show that building the user-related clusters following the
clusters of the collection term embeddings as proposed in Section 3.1 and considering those top-
ranked by Equation (1) as the best from which to draw the expansion term embeddings is more
effective than the considered alternatives for all the considered datasets and evaluation metrics.
Furthermore, PQEWC and its Non-approximated variant reached comparable effectiveness and
robustness on all datasets but Political Science, where PQEWC even increased over Non-
approximated. In general, our intuition regarding the computation of many unnecessary compar-
isons between the query term embeddings and the user-related term embeddings, discussed in
Section 3.2, proved to be true. These results positively answer our research questions RQ6, RQ7,
and RQ8.

Efficiency. In this section, we compare the efficiency of PQEWC with that of its Non-
approximated variant. This comparison aims to evaluate in which contexts the approximation
mechanism proposed in Section 3.2 is required and in which it is not. As shown in Table 8, for
all the considered datasets PQEWC and its Non-approximated variant achieved sub-millisecond
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Table 8. Execution Time of PQEWC Variants in Milliseconds

Dataset Emb Size Embs / User Non-approximated PQEWC

Computer Science 16 12 000 < 1 < 1
Physics 16 13 000 < 1 < 1
Political Science 16 6 500 < 1 < 1
Psychology 16 11 000 < 1 < 1

Synthetic 16 10 000 < 1 < 1
Synthetic 16 100 000 2 < 1
Synthetic 16 1 000 000 13 1

Synthetic 128 10 000 < 1 < 1
Synthetic 128 100 000 2 < 1
Synthetic 128 1 000 000 20 9

Synthetic 768 10 000 1 < 1
Synthetic 768 100 000 5 3
Synthetic 768 1 000 000 49 26

Emb Size is the embedding dimension. Embs / User is the average number of term embeddings

related to a specific user. In the case of the datasets employed for our evaluation, the values are

affected by document truncation as described in Section 5.3.

execution time. This result means the prominent factor in achieving top efficiency is limiting the
search for expansion term embeddings to only the most representative user-term embedding clus-
ters. However, the reader should consider that the similar expansion times of PQEWC and Non-
approximated are also due to the efficient vector operations offered by the Intel® Math Kernel
Library [94], which we use as the back-end for Numpy [37]. In fact, the number of term com-
parisons performed without approximation is 32 times larger than when employing our approxi-
mation mechanism, as ColBERT’s query representations are always composed of 32 embeddings.
Table 8 also reports the average expansion time needed by the two approaches in the same sim-
ulated scenarios described in Section 6.2. As shown in the table, the Non-approximated variant
suffers in very data-rich scenarios. Nonetheless, it achieves far better efficiency than all the con-
sidered Personalized Query Expansion baselines, whose execution times are reported in Table 5.
These results positively answer our ninth research question, RQ9. We conclude that the most
important factor efficiency-wise is restricting the expansion term embedding selection to a small
portion of the user-related term embeddings (15% of all of them, in our case). However, as the
effectiveness of PQEWC is not inferior to its Non-approximated variant, the additional efficiency
brought by the proposed approximation mechanism comes at no cost and still noticeably improves
Query Expansion latency.

6.5 Qualitative Analysis

In this section, we carry out a qualitative analysis of the expansion terms selected by our proposed
approach and highlight some limitations tied to the intelligibility of contextual word embeddings.
Table 9 lists some examples of tokens—obtained with the tokenizer used by BERT—

corresponding to the expansion embeddings selected by the proposed approach. In many cases,
highlighted in violet, it is straightforward to relate the tokens with the vocabulary of the topics
underlying the original queries. We find that most of those tokens can carry supplementary infor-
mation w.r.t. the corresponding query, thus clarifying the information needs and the user prefer-
ences. However, in other cases, we find understanding the relations between the original query
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Table 9. Examples of Tokens Corresponding to the Embeddings Selected by the Proposed Approach for

Expanding Queries from the Computer Science Dataset

Original Query Tokens Corresponding to the Embeddings Selected for Expansion

zipf law password solving called known signatures ##ecure provide schemes based

key ##ing crypt clear others ##ing signing corresponding

random key un attack ve whose authentication ##tion ##aries

enables another storage distributed signatures normal

##ocation

time aware click model believe million years users simply always click ##ting ##mming

search would effectiveness sentiment micro correspond spa

query behavior regardless results topic recommendation

technically billion news examining usually user challenging

##ing ranking behaviors

5g internet things survey considered aims presents through large ##t io ##ero current paper

capabilities show drawn sensor introduced networks ga vu

##ns able internet things ##ization novel wireless

concurrent ##it ##ch measurements data routing security

fundamental nonparametric
bayesian inference

as posterior us distribution mixture prior dir ##ich applied

##pt bay ##esian ##tor ##iate ##s density developed

estimation method ##metric rates ##let applications ##para
compute important ##sities based est den est several

differential angular image
material recognition

##es method develop applications ##ance disc ##ity challenging

illumination images realize in performance coarse scenes

##per looks real un propose geometric appearances amount

##s recognition material scale objects applications 2d travels

textures

Intelligible expansion tokens are highlighted.

terms and the tokens corresponding to the embeddings selected for expansion not as simple. For
example, for the query “time aware click model” we can identify tokens related to the vocabulary
of Personalization, Information Retrieval, and Recommender Systems. However, for many others,
it is unclear how they relate to the query terms.
This situation is due to factors independent of the proposed approach itself: (1) many tokens

are not intelligible due to the BERT tokenizer, as it splits some terms into multiple parts, and
(2) all the tokens carrying the meaning of their context in their vector representation are unclear
if analyzed as raw symbols. In the future, it may be worthwhile to employ a POS tagger to remove
expansion embeddings that do not correspond to noun tokens, in case it was necessary to show
expanded queries to users for explainability purposes. However, from our experience, in real-world
applications, expansion terms are generally not shown to the user to avoid disorientation. Thus,
as long as the expansion terms improve the retrieval effectiveness of the system, we believe this
is a non-issue in most applications.

6.6 Summary

In this section, we summarize our findings w.r.t. the research questions introduced in Section 5,
which we report here for simplicity.
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• RQ1 Can a Personalized Query Expansion approach based on contextual word embeddings en-
hance ColBERT’s retrieval effectiveness? Although none of the considered Personalized Query
Expansion baselines was able to consistently improve over ColBERT, our proposed approach
PQWEC consistently and significantly outperformed ColBERT in all the considered datasets
and for all the considered evaluation metrics.
• RQ2 Is our proposed Personalized Query Expansion approach more effective than pre-
viously proposed expansion methods? Among both the compared Query Expansion ap-
proaches, PQWEC performed the best, significantly improving over the other approaches
w.r.t. MAP@100, MRR@10, NDCG@10, and RBP.95 in almost all cases.
• RQ3 Is our proposed Personalized Query Expansion approach more robust than previously pro-
posed expansion methods? Robustness-wise, PQEWC achieved much higher Robustness In-
dex scores than all the other considered Personalized Query Expansion methods. It also
outperformed ColBERT-PRF in all cases but one, Computer Science without BM25’s score
fusion.
• RQ4 Is our proposed Personalized Query Expansion approach more efficient than previously
proposed expansion methods? PQEWC is more efficient than every other expansion method
in our experimental evaluation, especiallyw.r.t. the best-performing baseline (ColBERT-PRF),
and achieved sub-millisecond expansion time even in very data-rich scenarios.
• RQ5 Does our approach improve the expansion term diversity compared to previous Personal-
ized Query Expansion methods? Our approach selects topically coherent but not semantically
overlapping expansion term embeddings, thus enhancing multiple aspects of the queries.
Compared with those chosen by previous methods, the expansion terms selected by PQEWC
benefit from higher diversity. These characteristics allowed our approach to reach signif-
icantly higher retrieval effectiveness than all the considered baselines in our comparative
evaluation.
• RQ6 Does clustering the user term embeddings following the clusters of the collection term
embeddings allow us to achieve better retrieval effectiveness than directly identifying the user-
related clusters from the term embeddings of each user? The procedure for clustering the user
term embeddings we proposed in Section 3.1 allowed us to reach far better improvements
over ColBERT than building the user-related clusters directly from the term embeddings of
each user, which often achieved mixed results.
• RQ7 Is Equation (1) effective in identifying the user-term clusters that better represent the user’s
interests, thus enhancing the retrieval effectiveness of our proposed approach? Using Equa-
tion (1) for identifying the user-term clusters that better represent the user’s interests was
generally more effective than selecting user-term clusters using other means.
• RQ8 Does our approximated expansion term selection perform on par of the original procedure
proposed in Section 3.2 in terms of retrieval effectiveness? For all the considered datasets, the
approximation we proposed to improve the efficiency of the original expansion term selec-
tion procedure proposed in Section 3.2 did not negatively affect the retrieval effectiveness
improvements brought by our Personalized Query Expansion method.
• RQ9 Does the approximation proposed to select the personalized expansion terms increase the
efficiency w.r.t. the original procedure proposed in Section 3.2? Although the original expansion
term selection procedure proposed in Section 3.2 is already very efficient, our approximated
variant still significantly improved the time needed to expand a given query.

7 CONCLUSION AND FUTURE WORK

In this work, we have addressed some issues arising from employing contextual word embeddings
with current Personalized Query Expansionmethods and proposed PQEWC, an approach designed

ACM Transactions on Information Systems, Vol. 42, No. 2, Article 61. Publication date: December 2023.



61:28 E. Bassani et al.

to counteract those problems and take full advantage of contextual word embeddings. Specifically,
our proposed method employs a clustering-based technique to group and identify the term embed-
dings most representative of the user interests and preferences, and an approximation procedure
of the personalized expansion term selection to increase efficiency. Experimental evaluation shows
the benefits of our proposed approach in terms of both efficiency and effectiveness. Moreover, it
highlights how the effectiveness and efficiency of Personalized Query Expansion methods based
on word embeddings can be greatly improved by adopting specialized procedures. Finally, the ab-
lation study we conducted clearly illustrates the benefits of our design choices and the lack of
drawbacks deriving from those.
Despite the significant improvements brought by our proposed Personalized Query Expansion

method in terms of both efficiency and effectiveness, we think there still are related topics worth
further study. As in previous works, we relied on cosine similarity to rank and select the expansion
term embeddings. However, cosine similarity could be replaced by amore sophisticated parameter-
ized function that, instead of just selecting the expansion terms by their semantic similarity with
the original query terms, could evaluate their utility and assign them specific importance weights.
Moreover, all the compared methods define the number of terms to add to the query as a fixed
parameter, but this number is only generally good and not optimal for all the queries. Different
queries could benefit from more expansion terms or work better without expansion. Furthermore,
a weighing mechanism that can balance the importance of expansion terms one by one could
improve the effectiveness brought by Query Expansion. Therefore, trying to predict the number
of and the related weights for the expansion terms is a research direction still with much unex-
plored potential. How to adapt our Personalized Query Expansion technique to learned sparse re-
trieval models could also be a direction worth pursuing. Finally, the employment of more advanced
user modeling techniques could further improve the retrieval effectiveness of Personalized Query
Expansion.

A APPENDIX

Here we report an additional experiment to show that the relative performance of recent
Transformer-based retrieval models on the benchmark datasets employed for our evaluation is sim-
ilar to that shown in previous works on the standard dataset used nowadays for evaluating these
models, MSMARCO [4]. Specifically, we compare ColBERT [47], BiEncoder [78], SpladeMAX[32],
and CrossEncoder [70]. We additionally report BM25 performance scores for reference. We do not
consider models fine-tuned with Knowledge Distillation [38–40, 103] or multi-step training proce-
dures [99, 105] as there are no architectural differences w.r.t. the considered models, and they can
be applied to all of them. An extensive comparison of those approaches on the benchmark datasets
employed for our experimental evaluation is out of the scope of our work.
We trained all the considered models from scratch following the procedure described in

Section 5.3, without limiting the embedding dimension of ColBERT to 16. Instead, we set it to 128,
as proposed in the original paper [47]. We stress that although we can conduct this experiment
by computing the representations of the queries and those of the documents to re-rank on the fly,
we need to pre-compute those representations to tune the Query Expansion methods compared in
Section 6.1, which is not possible with the hardware at our disposal, as described in Section 5.3.
Table 10 reports the result of this additional experiment. As expected, CrossEncoder performed

the best across all the datasets. The second best model was ColBERT, followed by SpladeMAX and
BiEncoder. These results reflect the relative performance of recent Transformer-based retrieval
models shown in previous works. Moreover, the robust improvements of ColBERT w.r.t. those of
SpladeMAX and BiEncoder corroborate the choice of this model as the backbone of the retrieval
pipeline employed in the experiments presented in Section 6.1. Although the re-ranking time
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of the CrossEncoder amounts to over 1 second on GPU, making its applicability in real-world
applications—one of the goals of our work—not feasible, its results suggest room for improvement.

Table 10. Effectiveness of the Compared Models

Model
Computer Science Physics

MAP@100 MRR@10 NDCG@10 RBP.95 MAP@100 MRR@10 NDCG@10 RBP.95

BM25 12.25 48.92 22.45 13.22 12.77 53.68 26.88 16.05
BiEncoder 19.20 58.93 29.62 18.30 18.70 62.17 33.59 20.84
SpladeMAX 19.29 59.58 30.16 18.36 18.77 63.06 34.18 20.91

ColBERT 20.11† 60.24 30.75† 18.87† 19.69† 64.63† 35.08† 21.51†
CrossEncoder 21.80‡ 64.61‡ 33.22‡ 19.97‡ 21.12‡ 67.56‡ 36.98‡ 22.48‡

Model
Political Science Psychology

MAP@100 MRR@10 NDCG@10 RBP.95 MAP@100 MRR@10 NDCG@10 RBP.95

BM25 13.27 50.23 24.07 14.24 12.58 51.19 23.93 13.84
BiEncoder 17.54 54.74 27.64 17.23 22.64 64.85 34.87 21.01
SpladeMAX 18.39 57.16 29.18 17.77 22.52 65.43 35.04 20.92

ColBERT 19.07† 58.42† 29.96† 18.15† 23.52† 66.66† 36.06† 21.47†
CrossEncoder 20.59‡ 61.14‡ 31.93‡ 19.23‡ 25.31‡ 68.74‡ 38.10‡ 22.66‡

The symbols † and ‡ denote significant improvements in a Bonferroni corrected Two-sided Paired Student’s t-Test

with p < 0.005 over BM25, SpladeMAX, and BiEncoder and over all models, respectively. Best results are highlighted in

boldface.
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