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Abstract
Let � be a prime number. We classify the subgroups G of Sp4(F�) and GSp4(F�) that
act irreducibly on F

4
� , but such that every element of G fixes an F�-vector subspace

of dimension 1. We use this classification to prove that a local-global principle for
isogenies of degree � between abelian surfaces over number fields holds in many
cases—in particular, whenever the abelian surface has non-trivial endomorphisms
and � is large enough with respect to the field of definition. Finally, we prove that
there exist arbitrarily large primes � for which some abelian surface A/Q fails the
local-global principle for isogenies of degree �.

Keywords Local-global principle · Abelian surfaces · Galois representations ·
Isogeny · Matrix groups
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1 Introduction

Let K be a number field and A be an abelian variety over K . For all primes v of K
we denote by Fv the residue field at v, and—if A has good reduction at v—we write
Av for the reduction of A modulo v. If A/K has some kind of global level structure
(say, a K -rational isogeny or a K -rational torsion point), then so do all the reductions
Av . Local-global principles ask about the converse: if Av has some level structure
for (almost) all v, is the same true for A/K ? A question of this form was first raised
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by Katz [12], who considered the property |E(K )tors| ≡ 0 (mod m) when E is an
elliptic curve and m is a fixed positive integer (if m = � is prime, this is equivalent to
asking that E(K ) contains a non-trivial �-torsion point). He showed that this property
does not satisfy the local-global principle, but also proved [12, Theorem 2] that, if
|E(Kv)tors| ≡ 0 (mod m) for almost all v, then E is isogenous over K to an elliptic
curve E ′ with |E ′(K )tors| ≡ 0 (mod m).

Seen in this light, the local-global principle for the existence of isogenies is perhaps
more natural, because the existence of isogenies is itself an isogeny invariant. In this
paper, we consider in particular the local-global problem for (prime-degree) isogenies
of abelian surfaces. The analogous question for abelian varieties of dimension one,
namely elliptic curves, has received much attention in recent years [1, 3, 29, 31], and
is now essentially well-understood. In the setting of abelian surfaces much less is
known: the recent work [2] gives examples showing that the local-global principle
does not always hold, even for abelian surfaces over Q, but no general theory seems
to have been developed to study this phenomenon. In the present work, we address
completely the group-theoretic aspects of the question and make significant progress
on its arithmetic aspects. Formally, the question we consider may be stated as follows:

Question 1.1 Let A/K be an abelian surface and let � be a prime number. Suppose
that, for all places v of K with at most finitely many exceptions, the abelian variety
Av admits an �-isogeny defined over Fv .

• Does A admit an �-isogeny defined over K ?
• Less restrictively, is the group of �-torsion points A[�] reducible as a Gal (K/K

)
-

module?

We will say that the pair (A, �) is a weak counterexample (to the local-global
principle for cyclic isogenies) if A does not admit any �-isogenies defined over K , but
for all places v of K (with at most finitely many exceptions) the abelian variety Av

admits an �-isogeny defined over Fv . We say that (A, �) is a strong counterexample
if, in addition, A[�] is an irreducible Gal(K/K )-module.

Question 1.1 may be reformulated in the language of Galois representations. The
group A[�] of �-torsion points of A(K ) is an F�-vector space of dimension 4, and
there is an action of GK := Gal

(
K/K

)
on A[�], which we denote by ρ� : GK →

Aut(A[�]). Let v be a place of K of characteristic �= � at which A has good reduction.
The representation ρ� is then unramified at �. Choosing a Frobenius element at v,
denoted by Frobv ∈ GK , the condition that Av admits an �-isogeny defined over Fv

may be interpreted as the condition that ρ�(Frobv) acts on A[�] ∼= F
4
� fixing anF�-line.

By Chebotarev’s theorem, every element in the finite group G� = ρ�(GK ) is of the
form Frobv for infinitely many places v, so we arrive at the following characterisation
(see also [1, 29]):

Lemma 1.2 The pair (A, �) is a weak counterexample if and only if the action of G�

on A[�] leaves no line invariant, but every g ∈ G� admits an F�-rational eigenvalue.
Moreover, (A, �) is a strong counterexample if and only if the action of G� on A[�] is
irreducible, but every g ∈ G� admits an F�-rational eigenvalue.

Thus, the study of the local-global principle for isogenies of abelian surfaces nat-
urally splits into two sub-problems:
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(1) characterise the subgroups G of GL4(F�) having the properties described in
Lemma 1.2 (we will call Hasse subgroups the groups corresponding to strong
counterexamples, see Definition 3.1). We will show below that, if one is only
interested in strong counterexamples, it suffices to classify the Hasse subgroups
of the smaller group GSp4(F�), the general symplectic group with respect to a
suitable antisymmetric bilinear form (cf. Corollary 2.5).

(2) understand whether these groups may in fact arise as the image of the mod-�
Galois representation attached to some abelian surface over a fixed number field
K .

Concerning (1), previous work [6] claims to give a classification of the (maximal)
Hasse subgroups of Sp4(F�), and that this classification may be extended easily to
GSp4(F�). Unfortunately, it seems that there are several problems with the arguments
in that paper: at the beginning of our investigations, we used the algebra software
MAGMA to explicitly list the maximal Hasse subgroups of Sp4(F�) for several small
primes �, and found that the results did not agree with the main theorem of [6].
Moreover, it was not clear to us how to obtain the classification of Hasse subgroups
of GSp4(F�) starting from the corresponding classification for Sp4(F�). Concerning
(2), in the case of elliptic curves [1] shows that—for a fixed number field K—there
are only finitely many primes � for which there exists an elliptic curve E/K such that
(E, �) is a counterexample to the local-global principle for isogenies. One of our main
motivations for the present work was the desire to understand to what extent the same
holds for abelian surfaces.

In this paper, we make progress on both sub-problems (1) and (2), focusing on
strong counterexamples. One reason for this choice comes from group theory: if (A, �)

is merely a weak counterexample (and not a strong one), A[�] admits a 2-dimensional
irreducible subspace. Up to semi-simplification, G� is then contained in GL2(F�) ×
GL2(F�), so (from the group-theoretic point of view) in this case one can to a certain
extent rely on the study of Hasse subgroups of GL2(F�), see [1, 29] and especially [2]
for the case of GL2(F�) × GL2(F�). Another reason is the obvious point that strong
counterexamples constitute a more substantial violation of the local-global principle
than weak ones.

We now describe our main results, starting with group theory. In Theorem 3.2
we classify the maximal Hasse subgroups of Sp4(F�), correcting and completing
the arguments in [6]. Notice that the list given in Table 1, which agrees with our
computations in MAGMA for all primes up to 100, is significantly different from the
table of Theorem 1 in [6]. In particular, our results justify Remarks 2.6 and 2.7 in [2].
Secondly, we use this result, combined with several additional arguments, to obtain
a classification of the maximal Hasse subgroups of GSp4(F�) (see Theorem 5.5).
Together, these results completely settle the group-theoretic sub-problem (1).

Concerning the more genuinely arithmetic problem (2), we formulate a conjecture
about the ‘uniform boundedness of counterexamples’ in the setting of abelian surfaces
(see Conjecture 2.2) and make some progress towards establishing it. In particular, we
obtain several restrictions on the existence of strong counterexamples, depending on
the endomorphism algebra of A (see Sect. 6). We summarise some consequences of
this analysis in the following corollary; see Theorem 6.1 for a more detailed statement.



   18 Page 4 of 68 D. Lombardo, M. Verzobio

Corollary 1.3 (Corollary 6.2) Let K be a number field. There exists a constant C =
C(K ), depending only on K , such that the following holds: there exists no strong
counterexample (A, �) where A/K is an abelian surface with EndK (A) �= Z and
� > C. The constant C can be taken to be max{29 · 33 · 52 · [K : Q] + 1,�K }, where
�K is the discriminant of K .

We also show that semistable abelian surfaces over the rational numbers (and other
number fields of small discriminant) do not yield any strong counterexamples for any
prime �, with the possible exception of the prime 5:

Theorem 1.4 (Theorem 6.31) Let K be a number field such that every non-trivial
extension L/K ramifies at least at one finite place (for example K = Q). Let A/K
be a semistable abelian surface and let � �= 5 be a prime. The pair (A/K , �) is not a
strong counterexample to the local-global principle for isogenies.

On the other hand, we also show that—if one does not make any assumptions on the
endomorphism ring—there exist strong counterexamples (A/Q, �)with � unbounded:

Proposition 1.5 (Proposition 6.28) Let � > 5 be a prime with � ≡ 5 (mod 8). There
exists an abelian surface A, defined over Q and geometrically isogenous to the square
of a CM elliptic curve, such that (A, �) is a strong counterexample.

Thus, the situation for abelian surfaces is strikingly different from that of elliptic
curves, for which [1] provides a uniform bound for every fixed number field. In addi-
tion to showing that no such uniform bound exists in the case of abelian surfaces,
Proposition 6.28 is significant also for another reason, namely, it helps explaining
where the difficulty lies in proving Conjecture 2.2. Indeed, the latter is a statement
about Galois representations, and in order to prove it one should in particular show
that—for � large enough—the mod-� Galois representation attached to a non-CM
abelian surface A/K is non-isomorphic to the Galois representation attached to cer-
tain CM abelian surfaces. This is a notoriously difficult problem, so we suspect that a
full solution to Conjecture 2.2 is out of reach at present.
Computer calculations. While writing this paper, we have often relied on the com-
puter algebra software MAGMA to double-check our results. However, our proofs are
independent of computer calculations, except for the precise list of groups given in
Table 1 and for the proof of Theorem A.1 in the Appendix. All the MAGMA scripts to
verify these results are available online [19]. The same repository also contains tables
of the maximal Hasse subgroups of Sp4(F�) for � < 100. These tables are obtained
by a direct computation independent of the results in this paper, and agree in all cases
with Table 1.

1.1 Notation

Throughout the paper, K denotes a number field and A an abelian surface over K .
We write GK for the absolute Galois group of K , and denote by G� the image of the
natural Galois representation

ρ� : GK → Aut(A[�]),
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where we will usually fix an F�-basis of A[�] and therefore identify Aut(A[�]) with
GL4(F�). We let χ� : GK → F

×
� denote the mod-� cyclotomic character.

Let k be a field and n be a positive integer. For a subgroup G of GLn(k), we denote
by PG the image of G under the canonical projection GLn(k) → PGLn(k). Given
a matrix M ∈ GLn(k), we write M−T for the inverse of the transpose of M . As is
well-known, this is also the transpose of the inverse of M .

We say that a matrix M ∈ GL4(F�) is block-diagonal if it is of the form M =(
x 0
0 y

)
with x, y ∈ GL2(F�). IfM is block-diagonal and x and y are scalar multiples

of the identity, then we say that M is block-scalar. Moreover, we say that M is block-

anti-diagonal if it is of the form M =
(
0 x
y 0

)
with x, y ∈ GL2(F�).

Definition 1.6 For a choice of a symplectic form on F
4
� , represented by a matrix J , we

set

GSp4(F�) =
{
M ∈ GL4(F�) | ∃k ∈ F

×
� such that MT JM = k J

}
.

Given M ∈ GSp4(F�), there is a unique k ∈ F
×
� such that MT JM = k J : we call

it the multiplier of M , and denote it by λ(M). The map M 	→ λ(M) is a group
homomorphism, whose kernel is denoted Sp4(F�).

We will use several choices of symplectic forms. The two main ones correspond to
the matrices

⎛

⎜⎜
⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎟
⎠ (1)

and
⎛

⎜⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟
⎠ . (2)

1.2 Structure of the paper

In Sect. 2 we collect some preliminary observations about counterexamples to the
local-global principle for isogenies between abelian surfaces and formulate a conjec-
ture about the boundedness of counterexamples for a given number field. We also
briefly review some well-known facts about GL2(F�) and its subgroups. In Sect. 3
we classify the maximal Hasse subgroups of Sp4(F�), and in Sect. 4 we study the
Hasse subgroups H of GSp4(F�) with the property that H ∩ Sp4(F�) acts reducibly.
Combining these results, in Sect. 5 we obtain a classification of the maximal Hasse
subgroups of GSp4(F�). Finally, Sect. 6 contains our main arithmetical results about
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abelian surfaces: we give sufficient conditions (in terms of the field of definition of
the endomorphisms of A) that ensure that (A, �) is not a strong counterexample, and
provide an infinite family of counterexamples (A/Q, �) with � unbounded.

2 Preliminaries

2.1 Endomorphism rings and algebraic monodromy groups

Let A be an abelian surface over a number field K . By the classification of the geometric
endomorphism algebras of abelian surfaces, one of the following holds:

(1) A is geometrically irreducible:

(a) Trivial endomorphisms: EndK (A) = Z.
(b) Real multiplication: EndK (A) ⊗Z Q is a real quadratic field.
(c) Quaternion multiplication: EndK (A) ⊗Z Q is a non-split quaternion algebra

over Q.
(d) Complex multiplication: EndK (A) ⊗Z Q is a quartic CM field.

(2) A is geometrically reducible:

(e) AK is isogenous to the product of two non-isogenous elliptic curves E1 and
E2. This gives rise to three sub-cases, according to whether none, one, or both
of E1, E2 have CM.

(f) AK is isogenous to the square of an elliptic curve without CM.
(g) AK is isogenous to the square of an elliptic curve with CM.

We now describe certain predictions on strong counterexamples (A/K , �) that fol-
low from well-established conjectures on Galois representations. Denote by T�A =
lim←−n

A[�n] the �-adic Tate module of A, and by G� the �-adic monodromy group of
A, namely, the Zariski closure inside GLT�(A)⊗Q�

of the image of the �-adic Galois

representation Gal
(
K/K

) ρ�∞−−→ Aut(T�(A) ⊗Z�
Q�). The endomorphism ring of AK

determines the structure of G0
� , the connected component of the identity, see [8]. In

particular, the dimension of G0
� is as follows:

Case (a) (b) (c) (d) (e) (f) (g)

dim G0
�

11 7 4 3 7 or 5 or 3 4 2

where the three possibilities in (e) correspond to the three sub-cases listed above. By
general conjectures on Galois representations, one expects |G�| to differ at most by a
fixedmultiplicative constant from [G� : G0

� ]�dimG0
� . More precisely,G� is by definition

a subgroup of G�(F�), which for � > 2 is a group of order [G� : G0
� ] · |G0

� (F�)|, and one
knows that asymptotically |G0

� (F�)| ∼ �dimG0
� , see [11, Proposition 2.2]. In particular,
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we see that the ratio

|G�|
[G� : G0

� ] · �dimG0
�

is bounded above by a universal constant; it is also bounded away from zero because
the Mumford-Tate conjecture holds for abelian surfaces (see [24] for the case of
geometrically simple abelian surfaces and [16] and the references there for the case
of a product of two elliptic curves). One may then conjecture that, for a fixed number
field K , there exists a uniform lower bound c(K ) such that for every abelian surface
A/K and every prime � we have

|G�| ≥ c(K ) · [G� : G0
� ] · �dimG0

� . (3)

Remark 2.1 This conjecture does not seem to appear in print in this form. However, at
least in the case of abelian surfaces, the results of [14, 15, 17] imply that the existence of
c(K )would follow from the uniform boundedness of the degrees of minimal isogenies
for abelian varieties of a fixed dimension over a number field of fixed degree. This
latter statement has been conjectured by many authors, and is closely related to many
other well-known uniformity conjectures, see [25].

On the other hand, if (A/K , �) is a strong counterexample to the local-global
principle for cyclic isogenies of abelian surfaces, Lemma 1.2 and Theorem 5.5 show
that |G�| is bounded above by an absolute constant f times �3: if we assume that (3)
holds, we obtain

f · �3 ≥ |G�| ≥ c(K ) · [G� : G0
� ] · �dimG0

� ,

which is only possible if � is ‘small’ (that is, bounded above by a constant depending
only on K ) or dim G0

� ≤ 3. In turn, this latter inequality is satisfied only in cases (d),
(e) and (g), and we show in Theorem 6.23 and Lemma 6.24 that—for a fixed number
field K—counterexamples in cases (d) and (e) arise only for finitely many primes � (in
fact, case (e) gives no counterexamples at all). This suggests the following conjecture:

Conjecture 2.2 For every number field K there is a constant b = b(K ) such that, for
all primes � > b(K ) and for all strong counterexamples (A, �) to the local-global
principle for isogenies of prime degree between abelian surfaces, A is geometrically
isogenous to the square of an elliptic curve with complex multiplication.

We make some progress on this conjecture in Theorem 6.1, and show in Propo-
sition 6.28 that the case of A being geometrically isogenous to the square of a CM
elliptic curve does need to be excluded if we aim for a uniform bound on �. We remark
explicitly that, while we make significant headway on this conjecture for all cases
when EndK (A) �= Z, our methods do not allow us to say much for generic surfaces
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(that is, those with EndK (A) = Z). It should be pointed out that even finding exam-
ples of violations of the local-global principle for isogenies of generic abelian surfaces
seems very hard, and the examples in [2] are all non-generic.

2.2 Invariance under isogeny

We now show that the property of being a strong counterexample is an isogeny invari-
ant.

Lemma 2.3 Let (A/K , �) be a strong counterexample to the local-global principle for
isogenies of abelian surfaces. Let B/K be an abelian surface that is K -isogenous to
A. There exists an isogeny φ : A → B with � � degφ.

Proof Let ψ : A → B be an isogeny of minimal degree. If � � degψ we are done;
otherwise, kerψ contains a point of order �, so kerψ∩A[�] is a non-zeroGalois-stable
subspace of A[�]. By assumption, A[�] is irreducible, so we have kerψ∩A[�] = A[�],
which implies that ψ = [�] ◦ ψ ′ for some isogeny ψ ′ : A → B with degψ ′ < degψ .
This contradicts the minimality of ψ . ��
Corollary 2.4 Let K be a number field and A/K be an abelian surface. Suppose that
(A, �) is a strong counterexample and that B/K is an abelian variety K -isogenous to
A: then (B, �) is also a strong counterexample.

Proof By Lemma 2.3, there exists an isogeny ϕ : A → B of degree not divisible by �.
It induces an isomorphism A[�] ∼= B[�] ofGK -modules. Since the property of being a
strong counterexample depends only on the image of the mod-� Galois representation
(Lemma 1.2), the claim follows. ��

In particular, we obtain that, when (A, �) is a strong counterexample, G� preserves
a non-trivial symplectic form, even if A is not principally polarised:

Corollary 2.5 Suppose that (A/K , �) is a strong counterexample. The image G� of
the mod-� Galois representation is contained in GSp4(F�) with respect to a suitable
symplectic form on A[�].
Proof As is well-known, the dual abelian surface A∨ is isogenous to A over K . By
Lemma 2.3, there exists a K -isogeny ϕ : A → A∨ of degree prime to �. Via ϕ,
the Weil pairing A[�] × A∨[�] → μ� induces the desired non-degenerate, Galois-
invariant, antisymmetric form A[�] × A[�] → F�. For more details on the Weil
pairing, the reader is referred to [20]. In particular, [20, Lemma 16.2(e)] shows that
theWeil pairing on T�(A) constructed from any polarisationϕ : A → A∨ is an element
of Hom

(

2T�(A), Z�(1)

)
, that is, an antisymmetric form. The same statement then

holds for its reduction modulo �. ��

2.3 Group theory

We briefly review some basic group theory we will need in the rest of the paper.
We begin with a rather standard definition and a simple lemma, which we will use
repeatedly in the rest of the paper:
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Definition 2.6 Let I and J be arbitrary groups. We say that G ≤ I × J is a sub-direct
product of I and J if G projects surjectively onto both I and J .

Lemma 2.7 The following hold:

(1) An element g ∈ GL2(F�) has an F�-rational eigenvalue if and only if both its
eigenvalues are F�-rational.

(2) An element g ∈ GLn(F�) has an F�-rational eigenvalue if and only if 1 is an
eigenvalue of g�−1.

(3) Let g ∈ GLn(F�) have order prime to �. The eigenvalues of g are all F�-rational
if and only if g�−1 = Id. This applies in particular to all elements of any subgroup
G < GLn(F�) with � � |G|.

2.3.1 Subgroups of GL2(F�)

We will have to make extensive use of the classification of the maximal subgroups of
GL2(F�), so we briefly recall it here. The result is classical and goes back to Dickson
[7]; see also [26, §2].

Theorem 2.8 Let � ≥ 2 be a prime and let G be a maximal proper subgroup of
GL2(F�). One of the following holds:

(1) G contains SL2(F�).
(2) Borel: up to conjugacy, G is contained in the subgroup of upper-triangular matri-

ces.
(3) Normaliser of Split Cartan: G is conjugate to the group

{(
a

b

)
,

(
a

b

)
: a, b ∈ F

×
�

}
,

of order 2(� − 1)2.
(4) Normaliser of non-split Cartan: let d ∈ F

×
� \ F

×2
� . The group G is conjugate to

the group

{(
a bd
b a

)
,

(
a bd

−b −a

)
: a, b ∈ F�

}
, of order 2(�2 − 1).

(5) Exceptional: G contains the scalars, and PG is isomorphic to A4, S4 or A5.

Variants of the same classification also hold for SL2(F�) and PGL2(F�), see Tables 8.1
and 8.2 of [4] for amodern reference. In particular, the exceptional maximal subgroups
G of SL2(F�) are as follows: according to whether they have projective image A4, S4
or A5, they are isomorphic respectively to SL2(F3), Ŝ4 or SL2(F5), where Ŝ4, the
group with GAP identifier (48, 28), is a Schur double cover of the symmetric group
S4.

We will be especially interested in the maximal subgroup of SL2(F�) given by the
intersection of the normaliser of a split Cartan subgroup of GL2(F�) with SL2(F�).
This is a generalised quaternion group, which we now describe in more detail. The
generalised quaternion group Q4n of order 4n is generated by an element of order 2n,
that we will denote by r , and by an element of order 4, that we will denote by s and
we will call a symmetry, subject to the relations s2 = rn and s−1rs = r−1. Up to
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conjugacy, there is a unique maximal subgroup of SL2(F�) isomorphic to Q2(�−1). A
representative of the conjugacy class is generated by the matrices

r =
(

δ 0
0 δ−1

)
and s =

(
0 1

−1 0

)
,

with δ a generator of F
×
� . We will denote this specific subgroup of SL2(F�), which is

the normaliser of a split Cartan subgroup of SL2(F�), by N (Cs). When considering
the group Q4n , we denote by Z/(2n)Z the subgroup generated by r . This subgroup
is unique if n �= 2. If j | 2n, we then denote by Z/ jZ the unique subgroup of
Z/(2n)Z < Q4n of order j .

3 Hasse subgroups of Sp4(F�)

Let us formally define the group-theoretic objects we are interested in:

Definition 3.1 A subgroup G of GLn(F�) is said to have property (E) (for ‘eigenval-
ues’) if every g ∈ G possesses an F�-rational eigenvalue. We further say that G is
Hasse if it has property (E) and acts irreducibly on F

n
� .

Our objective in this section is to classify the maximal Hasse subgroups of Sp4(F�).
The result is as follows:

Theorem 3.2 Let G be a subgroup of Sp4(F�). If G is Hasse, then � ≡ 1 (mod 4) and
up to conjugacy it is contained in one of the following groups:

(1) An extension of degree 2 of the normaliser of a split Cartan subgroup ofGL2(F�).
For a full description, see Eq. (4).

(2) A subgroup of order 2(�−1)2 or 4(�−1)2 of an extension of degree 2 of Q2(�−1)×
Q2(�−1). In particular, the maximal groups of this form contain the subgroup given
in Eq. (5).

(3) An extension of degree 2 of an extension of the cyclic group of order (� − 1)/2 by
a finite group of order at most 240.

(4) A finite group of order that divides 29 · 32 · 52.
In Table 1 we give an exhaustive list containing all maximal Hasse subgroups of

Sp4(F�). More precisely, the table lists Hasse subgroups that are maximal within a
given maximal subgroup of Sp4(F�). We do not make any statement about possible
containments between (conjugates of) subgroups that are contained in maximal sub-
groups of different types (first column). The only exception to this is in Remark 3.20,
where we show that (a conjugate of) the group in the first line of the table is always
contained in the groups of the fifth or sixth line.

Remark 3.3 In order to obtain the list of groups given in Table 1 wemade extensive use
of the computer algebra software MAGMA. However, note that we prove Theorem
3.2 as stated, without the explicit list of finite groups that may arise in case (4), without
relying on any computer calculations.We use the detailed classification of themaximal
Hasse subgroups of Sp4(F�) only in order to prove a fine point of the classification of
the Hasse subgroups of GSp4(F�), see Theorem A.1.



On the local-global principle for isogenies of abelian… Page 11 of 68    18 

Ta
bl
e
1

M
ax
im

al
H
as
se

su
bg
ro
up
s
of

Sp
4
(F

�
)

Ty
pe

G
ro
up

C
on

di
tio

n
O
rd
er

M
ax
.s
ub

gr
ou

p

C 2
(N

G
L
2
(F

�
)(
C
s)

).
2

�
≡

1
(m

od
4)

2(
�

−
1)

2
G
L
2
(F

�
).
2

C 2
(C

(�
−1

)/
2
.S
L
2
(F

3
))

.2
�

≡
13

(m
od

24
),

�
�≡

1
(m

od
5)

24
(�

−
1)

G
L
2
(F

�
).
2

C 2
(C

(�
−1

)/
2
.Ŝ
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Remark 3.4 Primes � ≤ 7 cannot be handled by our methods, both because the tech-
nique of Sect. 3.2, which we use to analyse certain small groups H , requires the
assumption � � |H |, and because the classification of the maximal subgroups of
Sp4(F�) is slightly different for small �. However, a direct computation reveals that
Sp4(F�) and GSp4(F�) contain no Hasse subgroups at all for � = 2, 3. Moreover, one
can check that Theorems 3.2, 5.5, and 4.6 all hold for � ≤ 7. Hence, from now on, we
will tacitly assume that � > 7.

Remark 3.5 Table 1 is organised as follows. Every line corresponds to a Hasse sub-
group G of Sp4(F�), maximal among the Hasse subgroups contained in a given
maximal subgroup of Sp4(F�) (given in the last column). The second column gives a
description of the structure of G, and the third column gives congruence conditions
under which the group G exists, is Hasse, and is maximal in the sense above. The
fourth column gives the order of G.

For a classification of the maximal subgroup of Sp4(F�) see Table 2. In both tables,
the column ‘Type’ refers to the Aschbacher type of the maximal subgroup of Sp4(F�)

(for a definition see for example [4]).

3.1 Preliminary lemmas

Lemma 3.6 Let G < GL2(F�) be a Hasse subgroup such that every matrix in G is
diagonal or anti-diagonal. Let M ∈ GL2(F�) be a matrix that normalises G and such
that MM−T is diagonal or anti-diagonal. Then, at least one of the following holds:

• M is diagonal or anti-diagonal. There exists g ∈ G such that gM is diagonal.
• PG ∼= Z/2Z×Z/2Z and there exists g ∈ G such that gM is symmetric. This case
is only possible if � ≡ 1 (mod 4).

Proof Write M =
(
x y
z w

)
. Note that G contains a diagonal matrix D =

(
a 0
0 d

)

with a �= d, because otherwise PG would have order ≤ 2 and G would not act
irreducibly.

Let D =
(
a 0
0 d

)
∈ G be a diagonal matrix that is not a multiple of the identity.

If MDM−1 is diagonal, then by direct computation we have xy = zw = 0, so M is
diagonal or anti-diagonal. By irreducibility, G contains an anti-diagonal matrix g; if
M is anti-diagonal, gM is diagonal, and we are done.

Otherwise, wemay suppose thatMDM−1 is anti-diagonal for all diagonal matrices

D =
(
a 0
0 d

)
∈ G with a �= d. The condition that MDM−1 is anti-diagonal gives

xaw − ydz = wdx − zay = 0, which in particular implies a = −d and xw = −yz.

Thus we have a = ±d for all diagonal matrices D =
(
a 0
0 d

)
in G. By irreducibility,

not all diagonal matrices inG are scalars, soG contains some diagonal matrix D0 with
a = −d. Again by irreducibility, G also contains anti-diagonal matrices. Combined
with the condition a = ±d for all diagonal matrices, this yields PG ∼= Z/2Z×Z/2Z.

If MM−T is diagonal, we have x(y − z) = w(y − z) = 0, which gives that M is
anti-diagonal or symmetric. If MM−T is anti-diagonal, then xw− y2 = xw− z2 = 0,
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which implies y = ±z. If z = y, then M is symmetric, and if z = −y then D0M
is symmetric. Finally, we prove that � is congruent to 1 modulo 4. Let g ∈ G be an
anti-diagonal matrix, with characteristic polynomial t2 + det(g). The condition that
g has rational eigenvalues implies that − det(g) is a square. The matrix D0g is anti-
diagonal, and the condition that − det(D0g) = (−a2)(− det g) is a square implies
that −1 is a square modulo �, so � ≡ 1 (mod 4). ��
Lemma 3.7 Let G < SL2(F�) be a Hasse subgroup of N (Cs) and let M ∈ GL2(F�)

normalise G. One of the following holds:

• M is diagonal or anti-diagonal. There exists g ∈ G such that gM is diagonal;
• G ∼= Q8.

Proof If |G| > 8, the subgroup of diagonal matrices is characteristic in G, hence M
normalises it. This forces M to be diagonal or anti-diagonal; the conclusion follows
easily. ��

Remark 3.8 Let A ∈ GL4(F�) be a block-anti-diagonal matrix of the form

(
0 g1
g2 0

)

with g1, g2 ∈ GL2(F�). The eigenvalues of A are given by ±√
λ1,±√

λ2, where
λ1, λ2 are the eigenvalues of g1g2. In particular, A admits an F�-rational eigenvalue if
and only if one of the eigenvalues of g1g2 is a square in F

×
� . If det(g1g2) = λ1λ2 is a

square in F
×
� , then A has an F�-rational eigenvalue if and only if all of its eigenvalues

are F�-rational.

We nowbriefly describe the general strategy of proof of Theorem3.2, which is inspired
by [6], even though the details are significantly different. The idea is to recursively
explore the lattice of subgroups of Sp4(F�), starting with the maximal ones and con-
sidering smaller and smaller subgroups as needed. More precisely, given a subgroup
G ≤ Sp4(F�), one of the following holds:

(1) G is Hasse, in which case we add it to the list of Hasse subgroups of Sp4(F�);
(2) G acts reducibly, in which case it contains no Hasse subgroups;
(3) G acts irreducibly, but it contains elements without any F�-rational eigenvalues.

We then consider each maximal subgroup of G, and iterate the same analysis.

At the top level, we start with G = Sp4(F�) itself, which contains elements without
F�-rational eigenvalues. Thus, we need to consider the maximal proper subgroups
of Sp4(F�), which are as in Table 2 (see [4] for the notion of Aschbacher type of
a maximal subgroup and Tables 8.12 and 8.13 of op. cit. for the classification). We
exclude from our list the groups of type C1, since these act reducibly by definition.

The cases corresponding to each of these maximal subgroups will be considered
in turn in Sects. 3.4 to 3.7. It is useful to point out at the outset that most groups
H in this list have the property that all maximal subgroups of Sp4(F�) isomorphic
to H are conjugate inside Sp4(F�), so that—for our purposes—we may work with a
single, fixed maximal subgroup in the given isomorphism class. More precisely, this
property holds for all the groups but 21+4− .O−

4 (2) and 2.S6, for which two conjugacy
classes exist (these groups will be handled using the methods of Sect. 3.2 and cause
no difficulties).
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Table 2 Maximal subgroups of
Sp4(F�)

Type Group

C2 SL2(F�) � S2
C2 GL2(F�).2

C3 SL2(F�2 ).2

C3 GU2(F�).2

C6 21+4− .O−
4 (2) or 21+4− .�−

4 (2)

S SL2(F�)

S 2.S6 or 2.A6

3.2 Handling the ‘small’ groups

In this section we describe a computational technique to classify the Hasse subgroups
of Sp4(F�) that are isomorphic to a subgroup of a fixed abstract group G, as � varies
among the primes that do not divide |G|. The technique is based on basic representation
theory, so we only give a sketch, but we point out that we have implemented the
algorithm resulting from the arguments in this section as aMAGMAscript. Since there
is nothing specific about Sp4(F�), we actually consider more generally subgroups of
arbitrary matrix groups over finite fields.

Notice first that since � � |G| all representations of G in characteristic � are semi-
simple (Maschke’s theorem) and come by reduction from representations defined in
characteristic 0, so that we have at our disposal all the usual machinery of characters
and representation theory in characteristic 0. In particular, for a fixed k ≥ 1 we can
describe all representations G ↪→ GLk(F�e ) (and even G ↪→ Spk(F�e )):

(1) we construct all k-dimensional representations of G by looking at complex char-
acters;

(2) by [27, Theorem 24, p. 109], the representation corresponding to each complex
character can be realised over the number field K := Q(ζ|G|). The prime � is
unramified in this field, so by reducing modulo a place p of K of characteristic �

we obtain a corresponding representation defined over a finite extension of F�;
(3) we may also determine the minimal extension of F� over which a given represen-

tation is defined: by [27, Corollaire on p. 108], since the Brauer group of any finite
field vanishes, a representation ρ over F� is defined over the finite field F�e if and
only if F�e contains the field generated by the image of the character of ρ (which
we obtain by reducing the corresponding complex character modulo the place p);

(4) finally,when the dimension k is even, in order to testwhether a given representation
V has image in Spk(F�e ) (that is, whether V admits an invariant alternating bilinear
form), it suffices to test whether
2V ∗ contains a copy of the trivial representation.
This can also be understood in terms of characters: the character of V determines
the character of 
2V ∗, and in order to check whether 
2V contains a copy of the
trivial representation we simply need to take the scalar product of this character
with the trivial character. An obvious variant of this procedure, using Sym2 V ∗,
can be used to test whether a representation is orthogonal.
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Suppose now that we wish to know for which primes � (not dividing |G|) there
exist

• an embedding ρ : G ↪→ Spk(F�)

• a subgroup H of G

such that ρ(H) is a Hasse subgroup. The inclusion ρ gives in particular a symplectic
representation of G on a k-dimensional space, which comes by reduction from a faith-
ful representation ρ : G ↪→ GLk(K ). Since we can list all irreducible k-dimensional
representations of G, we may assume that the representation ρ is fixed. We may then
proceed as follows:

(1) for each subgroup H of G, we restrict ρ to H ;
(2) we decompose ρ|H as a direct sumof representations of H , using character theory;
(3) for each sub-representation W of ρ|H we test whether W is defined over F�.

Notice that this amounts to testing whether � splits completely in the sub-field of
K generated by the traces of the character of ρ|H . Since the field K is cyclotomic,
by class field theory (or even just the Kronecker-Weber theorem) this amounts to
some congruence conditions on �. If no non-trivial sub-representation W of ρ|H
is defined over F�, then ρ|H is irreducible over F�;

(4) for each h ∈ H we compute the characteristic polynomial of ρ(h). Its roots
are all roots of unity, of orders (say) n1, . . . , nk . The condition that ρ(h) has an
F�-rational eigenvalue again translates into a congruence condition: � must be
congruent to 1 modulo at least one of the integers n1, . . . , nk .

The output of this algorithm is a collection of pairs (H , congruence conditions
on �): the Hasse subgroups of ρ(G) < Spk(F�) are precisely the ρ(H) for which
the corresponding congruence conditions on � are met. Notice that each subgroup
H of G will correspond to different conditions in general, and for some subgroups
the conditions will correspond to the empty set of prime numbers. Naturally we can
also list themaximal Hasse subgroups by checking for inclusions between the various
subgroups. We shall use this procedure repeatedly to handle cases when the relevant
subgroups of Sp4(F�) to be studied have order independent of the prime �.

3.3 Further input from representation theory

LetG be a finite group and let � be a prime such that � � |G|. As recalled in the previous
section, there is a bijective correspondence between irreducible representations of G
over F� and over C.

Proposition 3.9 Let G and � be as above, let G0 be a subgroup of G of index 2, and let
ρ : G → GLn(F�) be a representation. Suppose that, for every g ∈ G, all eigenvalues
of ρ(g) are F�-rational. Then the following hold:

(1) ρ is irreducible if and only if it is absolutely irreducible.
(2) Letχ be the character of the complex representation liftingρ. Thenρ is irreducible

if and only if 〈χ, χ〉G = 1, where 〈·, ·〉G is the usual scalar product on characters.
(3) Suppose that the restriction of ρ to G0 decomposes as the direct sum of two

isomorphic representations over F�. Then ρ is reducible.
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Proof (1) One implication is trivial. For the other, let χ be the character of the com-
plex representation lifting ρ, and let χ1 be an irreducible character appearing as
a summand of χ . For every g ∈ G, the reduction modulo � of χ1(g) is a sum of
eigenvalues of g, hence is F�-rational. By [27, Corollaire on p. 108], the repre-
sentation ρ1 with character (the reduction modulo � of) χ1 is defined over F� and
is a subrepresentation of ρ.

(2) Follows combining (1), the correspondence between representations over C and
F�, and the well-known fact that a complex representation is irreducible if and
only if its character has norm 1 with respect to the natural scalar product.

(3) Let χ be as above. The assumption yields 〈χ, χ〉G0 = 1
|G0|

∑
g0∈G0

|χ(g0)|2 ≥ 4,
since χ |G0 is the sum of two copies of the same representation. Hence

〈χ, χ〉G = 1

|G|
∑

g∈G
|χ(g)|2 ≥ 1

2|G0|
∑

g∈G0

|χ(g)|2 ≥ 2,

so the representation ρ is reducible by (2).
��

3.4 G of type C2: G < GL2(F�).2

In this section we prove:

Proposition 3.10 Let G < Sp4(F�) be a Hasse group contained in a group isomorphic
to GL2(F�).2. Then, one of the following holds:

• � ≡ 1 (mod 4) and G is contained (up to conjugacy) in G ′, the group described
in Eq. (4).

• G is contained in one of the groups of Proposition 3.17.

The group GL2(F�).2 sits in the exact sequence

1 GL2(F�)
i

GL2(F�).2
π

S2 0

and up to conjugacy in Sp4(F�), considered as the group of isometries of the symplectic
form given in (1), we have

GL2(F�).2 =
{ (

A 0
0 A−T

)
,

(
0 B

−B−T 0

) ∣∣ A, B ∈ GL2(F�)

}
,

see the beginning of [6, Section 3.1]. Let G < GL2(F�).2 be a Hasse subgroup and

let G0:=G ∩ ker π : every element of G0 can be written as

(
A 0
0 A−T

)
. Then we can

identify G0 to a subgroup of GL2(F�) via the isomorphism

(
A 0
0 A−T

)
	→ A.

Since there are elements of GL2(F�) that do not have any rational eigenvalues,
G0 is a proper subgroup of GL2(F�). By Theorem 2.3.1, G0 contains SL2(F�) or is
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contained in the normaliser of a Cartan subgroup, in a Borel subgroup, or in groups
that have projective image A4, S4, or A5. Observe that there are elements of SL2(F�)

without a rational eigenvalue: it follows that G0 does not contain SL2(F�), hence it is
a subgroup of one of the groups above.

3.4.1 Case G0 in the normaliser of a split Cartan subgroup

In a suitable basis, the normaliser NCs of a split Cartan can be written as

NCs =
{(

δi 0
0 δ j

)
,

(
0 δi

δ j 0

) ∣∣ δ generates F
×
� , i, j = 0, . . . , � − 2

}
.

G is Hasse and then contains a block-anti-diagonal matrix

(
0 M

−M−T 0

)
with M ∈

GL2(F�) that normalises G0. The possible matrices M are described in Lemma 3.6.
If we are in the second case of Lemma 3.6, then PG0 ∼= Z2 × Z2 and � ≡ 1

(mod 4). It follows that G0 is exceptional, and we will study this case in Sect. 3.4.4.
If we are in the first case of Lemma 3.6, then M is diagonal or anti-diagonal. Put

A(i, j) =
(

δi 0
0 δ j

)
and B(i, j) =

(
0 δi

δ j 0

)
, so that

G ≤
{ (

A(i, j) 0
0 A(i, j)−T

)
,

(
0 A(i, j)

−A(i, j)−T 0

)
,

(
B(i, j) 0

0 B(i, j)−T

)
,

(
0 B(i, j)

−B(i, j)−T 0

) }
.

Since G is Hasse, it must contain matrices of all four types above (for otherwise
it would stabilise a 2-dimensional subspace). In particular, the set G \ G0 is non-

empty and contains an element of the form

(
0 A(i, j)

−A(i, j)−T 0

)
. A matrix of

this form has characteristic polynomial (t2 + 1)2, so it has a rational eigenvalue if
and only if −1 is a square modulo �. Hence, in order for every element of G to
have a rational eigenvalue, we need � ≡ 1 (mod 4), which we assume from now
on. As above, G0 contains at least one element of the form B(i0, j0). The matrix
B(i, j) has a rational eigenvalue if and only if δi+ j is a square, hence i0 + j0 is even.
Since A(i, j)B(i0, j0) = B(i + i0, j + j0) is also an element of G, we must have
i + i0 + j + j0 ≡ 0 (mod 2). So i + j is even and

G0 ≤
{
A(i, j), B(i, j) | i + j ≡ 0 (mod 2)

}
.

Moreover, G contains an element of the form

(
0 B(i, j)

−B(i, j)−T 0

)
. The char-

acteristic polynomial of this matrix is (t2 + δi− j )(t2 + δ j−i ), so it has a rational
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eigenvalue if and only if i − j ≡ 0 (mod 2) (recall that −1 is a square modulo � ≡ 1
(mod 4)). We conclude that G ≤ G ′, where

G ′ =

⎧
⎪⎪⎨

⎪⎪⎩

(
A(i, j) 0

0 A(i, j)−T

)
,

(
0 A(i, j)

−A(i, j)−T 0

)
,

(
B(i, j) 0

0 B(i, j)−T

)
,

(
0 B(i, j)

−B(i, j)−T 0

)
∣∣∣i + j ≡ 0 (mod 2)

⎫
⎪⎪⎬

⎪⎪⎭
.

(4)

On the other hand, if � ≡ 1 (mod 4) one checks immediately that the group G ′ is a
(necessarily maximal) Hasse subgroup.

3.4.2 Case G0 in the normaliser of a non-split Cartan subgroup

Up to conjugacy, the normaliser NCns of a non-split Cartan is

N (Cns):=
{(

a δb
b a

)
,

(
a δb

−b −a

)
| (a, b) �= (0, 0) ∈ F

2
�

}
,

where δ is a non-square in F
×
� , see Sect. 2.3.1. The groupG contains a matrix with b �=

0, since otherwise it would not act irreducibly. For b �= 0 the matrix

(
a δb
b a

)
does

not have a rational eigenvalue, because its characteristic polynomial is (t −a)2 − δb2.
Moreover, by direct computation, the product of two different matrices of the form(

a δb
−b −a

)
does not have a rational eigenvalue, unless the two matrices differ by a

scalar. Hence, if G0 contains a matrix M of the form

(
a δb

−b −a

)
for b �= 0, then this

is the only element of G0 of this form up to scalars. It follows that G0 is contained
in the group generated by the scalar matrices and by M . In particular, G0 fixes the
eigenspaces of M , so G0 is contained in a Borel subgroup, which we treat next.

3.4.3 Case G0 in a Borel subgroup

Let 〈v〉 be a line in F
4
� fixed by G0. Let g ∈ G \G0 and consider the two-dimensional

subspace V = 〈v, gv〉: one checks immediately that V is G-invariant, hence G does
not act irreducibly.

3.4.4 Cases PG0 ≤ A4, PG0 ≤ S4, and PG0 ≤ A5

Lemma 3.11 Let H be a Hasse subgroup of GL2(F�).2. Consider the subgroup H1

of GL2(F�).2 consisting of the matrices of the form

(
λ Id 0
0 λ−1 Id

)
for λ ∈ F

×
� . The

subgroup of GL2(F�).2 generated by H and H1 is Hasse.
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Proof One can see that HH1 = H1H , hence that HH1 is a group.We check that HH1
is Hasse. By assumption every h ∈ H has at least one F�-rational eigenvalue. If h is
block-diagonal, then it is easy to see that any element of the form hh1 for h1 ∈ H1

has at least one F�-rational eigenvalue. On the other hand, if h =
(

0 B
−B−T 0

)
is

block-anti-diagonal, then we know that h has F�-rational eigenvalues if and only if
−BB−T admits an eigenvalue which is a square in F

×
� (see Remark 3.8). Let h1 =(

λ−1 Id 0
0 λ Id

)
be any element of H1. Therefore, multiplying the off-diagonal blocks

of the product hh1 =
(

0 λB
−λ−1B−T 0

)
weget again−BB−T , which by assumption

has an eigenvalue that is a square in F
×
� , so hh1 has at least one F�-rational eigenvalue,

as desired. Finally, since H acts irreducibly on F
4
� , then a fortiori so does HH1, hence

HH1 is Hasse as claimed. ��
Corollary 3.12 Every subgroup ofGL2(F�).2, maximal among Hasse subgroups, con-
tains the group H1 of the previous lemma.

Corollary 3.13 Let � > 3 be a prime and let H be a subgroup of GL2(F�).2 that
contains H1. Let H0 = H ∩ ker π and assume H �= H0. If H0 ≤ GL2(F�) acts
irreducibly on F

2
� , then H acts irreducibly on F

4
� .

Proof Let W be a subspace of F
4
� stable under the action of H . We will show that

either W = {0} or W = F
4
� . We write V1 (resp. V2) for the F�-span of the first two

(resp. last two) basis vectors of F
4
� . First we observe that W = (W ∩ V1) ⊕ (W ∩ V2).

To see this, simply notice that W is stable under the action of H1, hence in particular
under the action of

1

λ − λ−1

( (
λ Id 0
0 λ−1 Id

)
− λ−1 Id

)
,

which—for λ �= ±1 (and there is such an element inF
×
� , since � > 3)—is the projector

on V1; one reasons similarly for the projection on V2. The subspace W ∩ V1 is stable
under the action of H0, so by assumption it is either trivial or all of V1 (and the same
applies to W ∩ V2). Finally, since H contains an element that exchanges V1 with V2,
the subspacesW ∩ V1 andW ∩ V2 are either both trivial or both 2-dimensional. In the
two cases, one obtains W = {0} or W = F

4
� . ��

It is clear that if H ≤ GL2(F�).2 is a Hasse subgroup, then H0 = H ∩ ker π is
a Hasse subgroup of GL2(F�): the condition on rational eigenvalues is satisfied, and
if F

2
� were reducible under the action of H0, then H0 would be contained in a Borel

subgroup, which contradicts the arguments of Sect. 3.4.3.
By [29, Lemma 1] we see that if PH0 is not contained in PSL2(F�), then PH0

cannot be an exceptional group, so we fall back into the cases of the previous sections.
Hence we may assume that PH0 is contained in PSL2(F�). By [1, Lemma 3.5] we
then obtain that � is 1 modulo 4 and PH0 is isomorphic to one among A4, S4, A5.
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Notice that GL�
2 (F�) := {g ∈ GL2(F�)

∣∣ det(g) ∈ F
×2
� } coincides with the subgroup

of GL2(F�) generated by SL2(F�) and the scalar matrices. We record what we have
just shown as a lemma:

Lemma 3.14 If H < GL2(F�).2 is a maximal Hasse subgroup, then we have � ≡ 1
(mod 4) and H0 < GL�

2 (F�), where H0 := H ∩ker π . Moreover, H0 contains F
×
� Id.

We now recover H from H0 using that H normalises it.

Lemma 3.15 Let � ≡ 1 (mod 4) be a prime. Let H0 be a subgroup of GL2(F�),
contained in GL�

2 (F�) and containing F
×
� Id.

(1) Suppose that H0 has projective image isomorphic to S4 or A5. Then the normaliser
N of H0 in GL2(F�).2 satisfies [N : H0] = 2, and an element of the non-trivial

coset is given by J ′ :=
(

J2
−J2

)
, where J2 =

(
0 1

−1 0

)
.

(2) Suppose that H0 has projective image isomorphic to A4. Then the normaliser N
of H0 in GL2(F�).2 satisfies [N : H0] = 4, and representatives of the three non-

trivial cosets are given by J ′,
(

σ 0
0 σ−T

)
, J ′

(
σ 0
0 σ−T

)
, where σ ∈ GL2(F�)

is such that 〈H0, σ 〉 has projective image S4.
(3) With notation as in (2), assume that PH0 ∼= A4 is a maximal subgroup of

PSL2(F�). The coset J ′
(

σ 0
0 σ−T

)
H0 contains matrices that do not have F�-

rational eigenvalues.

Proof We begin by noticing the following matrix identity: for every A ∈ GL2(F�) one
has

−J2A
−T J2 = 1

det A
A.

(1) The normaliser N0 of H0 in GL2(F�) is H0 itself: indeed, PN0 is a subgroup
of PGL2(F�) containing PH0, and S4, A5 are maximal subgroups of PGL2(F�),
so we have PN0 = PH0, which – since H0 contains all the scalars—implies
N0 = H0. Now let g1, g2 ∈ GL2(F�).2 \GL2(F�) both normalise H0. Then g1g2
is in GL2(F�) and normalises H0, so it is in H0. This proves that [N : H0] ≤ 2.
The fact that J ′ is in N follows from a simple calculation using the above matrix
identity.

(2) The group PGL2(F�) contains a subgroup isomorphic to S4 for all � > 2 (see
[26, Remarque on page 281]). The inverse image H̃ in GL2(F�) of this subgroup
contains H0 with index 2. Let σ be a representative of the non-trivial coset of H0

inside H̃ , as in the statement. It is clear that both

(
σ 0
0 σ−T

)
and J ′ normalise H0.

On the other hand, H̃ is a maximal subgroup of GL2(F�), so—reasoning as in the
previous part—we see that [N : H̃ ] ≤ 2. This shows [N : H0] ≤ 4, from which
the claim follows.
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(3) Observe that det(σ ) is not a square in F
×
� , for otherwise P〈H0, σ 〉 would be a

proper overgroup of PH0 in PSL2(F�). Let

(
A 0
0 A−T

)
be an element in H0 and

notice that

J ′
(

σ 0
0 σ−T

)(
A 0
0 A−T

)
=

(
0 J2σ−T A−T

−J2σ A 0

)
.

By Remark 3.8, in order to check if this matrix has F�-rational eigenvalues, we
need to test whether the matrix −J2σ−T A−T J2σ A has an eigenvalue that is a
square in F

×
� . Using the matrix identity at the beginning of the proof, we need to

understand whether 1
det(σ A)

(σ A)2 admits an eigenvalue in F
×2
� . We may choose

A in such a way that σ A represents a transposition in S4. Notice that det(A) is a
square (since this is true for all elements in H0). From the choice of A it follows
that (σ A)2 = Id, so the eigenvalues of 1

det(σ A)
(σ A)2 are all equal to 1

det(σ A)
, which

is not a square (since det(A) ∈ F
×2
� but det σ /∈ F

×2
� ).

��
Corollary 3.16 Let � ≡ 1 (mod 4) be a prime. Let H0 be a subgroup of GL2(F�),
contained in GL�

2 (F�) and containing F
×
� Id. Suppose that H0 is Hasse.

(1) Suppose that one of the following holds:

(a) PH0 ∼= S4;
(b) PH0 ∼= A5;
(c) PH0 ∼= A4 and PH0 is maximal in PSL2(F�).

Then H := 〈H0, J ′〉 is Hasse and is the unique maximal Hasse subgroup G <

GL2(F�).2 such that G0 = H0.
(2) Suppose that PH0 ∼= A4 and that PH0 is contained in a maximal subgroup of

PSL2(F�) isomorphic to S4. Then there is no maximal Hasse subgroup G of
GL2(F�).2 for which G0 = H0.

Proof (1) All matrices in H \ H0 are of the form

(
A 0
0 A−T

) (
J2

−J2

)
=

(
0 AJ2

−A−T J2 0

)

for some A ∈ H0. Such a matrix has an F�-rational eigenvalue if and only if the
product (AJ2)(−A−T J2) has an F�-rational eigenvalue that is a square in F

×
� .

Writing A = λB with det(B) = 1 and using the matrix identity in the proof of
Lemma 3.15 one checks easily that (AJ2)(−A−T J2) = B2. Since by assumption
A (and hence also B) has an F�-rational eigenvalue, this matrix has an F�-rational
eigenvalue that is a square. Combining this observation with Corollary 3.13 we
see that H is Hasse.
Now, if G is any Hasse subgroup of GL2(F�).2 such that G0 = H0, then H0 is
normal in G, so G is contained in N , the normaliser of H0 in GL2(F�).2.



   18 Page 24 of 68 D. Lombardo, M. Verzobio

In the cases PH0 ∼= S4 or A5, it follows immediately from the previous lemma
that either G = H0 (which, however, is not Hasse, since H0 obviously stabilizes
two 2-dimensional subspaces) or G = N = H , as claimed.
If PH0 ∼= A4, then [N : H0] = 4, and G is a union of H0-cosets of N . By
part (3) of Lemma 3.15 we see that G cannot meet the coset represented by

J ′
(

σ 0
0 σ−T

)
. This implies [G : H0] ≤ 2, and since H0 itself is not Hasse we

must have [G : H0] = 2. If the non-trivial coset of H0 in G were represented by(
σ 0
0 σ−T

)
the action of G on F

4
� would be reducible, contradiction, so we must

have G = 〈H0, J ′〉 = H as claimed.
(2) Consider the normaliser N of H0 in GL2(F�).2. By Lemma 3.15 we know that

N = (H0�
(

σ 0
0 σ−T

)
H0)�(H0�

(
σ 0
0 σ−T

)
H0)J ′, where det(σ ) is a square

inF
×
� , because by assumptionPH0 extends to a subgroup of PSL2(F�) isomorphic

to S4. Note that this happens only if � ≡ ±1 (mod 8), and since � ≡ 1 (mod 4)
we obtain � ≡ 1 (mod 8). Reasoning as in the proof of part (3) of Lemma 3.15 we
see easily that N is Hasse (notice that the elements of S4 \ A4 have order dividing
4, so their lifts to SL2(F�) have order dividing 8; it follows that the elements of
the coset H0σ have F�-rational eigenvalues since � ≡ 1 (mod 8)). If G is a group
with G0 = H0, then H0 is normal in G and hence G ≤ N . By maximality of G
we should have G = N , but N0 �= H0, as desired.

��
Combining the previous lemmas we obtain:

Proposition 3.17 Let G ′ be a maximal subgroup of Sp4(F�) isomorphic toGL2(F�).2.
The maximal Hasse subgroups G of G ′ with PG0 isomorphic to A4, S4 or A5 are as
follows:

Group Condition

(C(�−1)/2.SL2(F3)).2 � ≡ 13 (mod 24), � �≡ 1 (mod 5)
(C(�−1)/2.Ŝ4).2 � ≡ 1 (mod 24)
(C(�−1)/2.SL2(F5)).2 � ≡ 1 (mod 60)

Proof Let G be a Hasse subgroup of G ′ and such that PG0 is isomorphic to A4, S4
or A5. If G is maximal with such properties, then by Corollary 3.12 we know that it
contains the group H1. By Lemma 3.14, we have � ≡ 1 (mod 4) andPG0 is contained
in PSL2(F�), so G0 is contained in GL�

2 (F�) and contains F
×
� Id. The hypotheses

imply that G0 has elements of order 3, so the condition that every element of G0 has
F�-rational eigenvalues implies � ≡ 1 (mod 12). Consider the following cases:

(1) if � ≡ 1 (mod 5), then by [4, Table 8.2] the group SL2(F�) contains a maximal
subgroup isomorphic to SL2(F5) with projective image A5. This group satisfies
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the assumptions of Corollary 3.16, so we get a maximal subgroup isomorphic to

〈SL2(F5), F
×
� Id, J ′〉 = (C(�−1)/2.SL2(F5)).2.

From the previous discussion it is clear that the conditions � ≡ 1 (mod 60) are
necessary and sufficient in order for this subgroup to be Hasse. Moreover, in this
case we do not get any Hasse maximal subgroup X such that PX0 ∼= A4: this is
proven exactly as in part (2) of Corollary 3.16, using the fact that in this case PX0
extends to a subgroup isomorphic to A5.

(2) if � ≡ 1 (mod 8), then SL2(F�) contains a maximal subgroup isomorphic to Ŝ4,
and reasoning as above we find a maximal Hasse subgroup of GL2(F�).2 isomor-
phic to (C(�−1)/2.Ŝ4).2. Moreover, by Corollary 3.16 (2) we see that GL2(F�).2
cannot contain maximal subgroups X with PX0 ∼= A4.

(3) if � �≡ 1 (mod 5) and � ≡ 5 (mod 8), then SL2(F�) contains a maximal sub-
group isomorphic to SL2(F3) whose projective image is a maximal subgroup
of PSL2(F�) isomorphic to A4. This group satisfies the assumptions of Corol-
lary 3.16 (1), so we get a maximal Hasse subgroup of GL2(F�).2 isomorphic to
〈SL2(F3), F

×
� , J ′〉 ∼= (C(�−1)/2.SL2(F3)).2.

��

3.5 G of type C2: G < SL2(F�) � S2
In this section we prove:

Proposition 3.18 Let G < Sp4(F�) be a Hasse group contained (up to conjugacy) in
SL2(F�) � S2. Then, one of the following holds:

• � ≡ 1 (mod 4) and G is contained in a group that is isomorphic to (Q2(�−1) ×
Q2(�−1)).C2.

• G is contained in one of the groups described in Sect. 3.5.5.

Let π : SL2(F�) � S2 → S2 be the natural projection and consider ker π ∼= SL2(F�)×
SL2(F�). We write elements of SL2(F�) � S2 as triples (g, h, ε) with g, h ∈ SL2(F�)

and ε ∈ {±1}, where (g, h, 1) denotes the matrix

(
g 0
0 h

)
and (g, h,−1) denotes

(
0 g
h 0

)
. If π(G) = {1}, then G is a subgroup of SL2(F�) × SL2(F�) and does not act

irreducibly. Therefore, π(G) = {±1}. Let (g, h,−1) ∈ G and let G1 (resp. G2) be
the projection of G0 = ker π ∩G to the first (resp. second) factor SL2(F�). Note that

(g, h,−1)(g1, g2, 1)(g, h,−1)−1 = (gg2g
−1, hg1h

−1, 1),

so the map ϕh : G1 → G2 given by ϕ(g1) = hg1h−1 is well-defined and bijective,
with inverse g2 	→ h−1g2h. Thus, G1 and G2 are conjugate inside SL2(F�). Up to a

change of basis via the (symplectic) matrix

(
Id 0
0 h

)
, we can assume that G1 = G2.

Hence,G0 is a sub-direct product of SL2(F�)with itself or is contained in M×M with
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M a maximal subgroup of SL2(F�). By the classification of the maximal subgroups of
SL2(F�)we have that (up to conjugacy) M can be Q2(�−1), Q2(�+1), a Borel subgroup,
or E , where E is a group such that PE is A4, A5, or S4. Recalling that the only
non-trivial normal subgroup of SL2(F�) is {±1} and applying Goursat’s Lemma, one
sees that every non-trivial sub-direct product of SL2(F�) with itself is contained in
G = {(g,±g,±1) | g ∈ SL2(F�)}.

3.5.1 Case G0 < G

Since SL2(F�) contains matrices without a rational eigenvalue, G0 cannot be all of
G. Hence G0 is contained in a group of the form {(g,±g, 1) | g ∈ M} for a certain
proper maximal subgroup M of SL2(F�). In particular, G0 is a subgroup of M × M
with M a maximal subgroup of SL2(F�), so this case is included in one of the cases
below.

3.5.2 CaseM Borel

Recall that G0 = G ∩ ker π . The group G0 fixes a line 〈v〉, and G does not act
irreducibly by the same argument as in Sect. 3.4.3, so G is not Hasse.

3.5.3 CaseM ∼= Q2(�+1)

Assume first that � ≡ 3 (mod 4). Every element of G0 has order that divides (� + 1).
Any element (q1, q2, 1) ∈ G0 has a rational eigenvalue, hence q1 or q2 has a rational
eigenvalue and therefore its order divides �−1. Hence, at least one between q1 and q2
has order that divides gcd(� − 1, � + 1) = 2. The only elements in Q2(�+1) of order
that divides 2 are ±1. Therefore, G0 is contained in {(q,±1, 1) | q ∈ Q2(�+1)} ∪
{(±1, q, 1) | q ∈ Q2(�+1)}, hence G0 ≤ Q2(�+1) × Z/2Z or G0 ≤ Z/2Z × Q2(�+1).
In both cases, G0 fixes a line and G does not act irreducibly, contradiction. The case
� ≡ 1 (mod 4) is similar: one proves that q1 or q2 has order that divides 4, hence
G0 ≤ Z/4Z × Z/4Z, and this subgroup fixes a line. So, G is not Hasse.

3.5.4 CaseM ∼= Q2(�−1)

Recall the description of the group Q4n from Sect. 2.3.1. Assume first � ≡ 3 (mod 4).
Observe that G0 cannot contain an element (s1, s2, 1) with s1, s2 /∈ Z/(� − 1)Z since
such an element does not have a rational eigenvalue as ord(s1) = ord(s2) = 4 � �− 1.
Therefore, G0 ⊆ {Z/(� − 1)Z × Q2(�−1)} ∪ {Q2(�−1) × Z/(� − 1)Z}. Proceeding as
in the previous case we conclude that G does not act irreducibly.

Assume now that � ≡ 1 (mod 4). We start by showing that the exponent of G
divides � − 1. The elements of G0 have order dividing � − 1. Let g ∈ G \ G0. Its
characteristic polynomial is of the form x4 + bx2 + 1, hence its eigenvalues are of
the form ±λ±1. If one such eigenvalue is rational, then they all are, and it follows as
desired that the order of g divides �−1. LetH be the set of subgroups of SL2(F�) � S2
with exponent that divides � − 1, that act irreducibly, and such that the intersection
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with ker π is contained in Q2(�−1) × Q2(�−1). Observe that (up to conjugacy) G is
contained in a maximal element of H with respect to inclusion. We want to classify
these maximal elements. Let H be a maximal element ofH, let H0 = H ∩ ker π and
(z, w,−1) ∈ H \ H0.

Assume that each of z and w is diagonal or anti-diagonal. Let H ′ be the subgroup
of Q2(�−1) � S2 defined by

H ′:={(x, y, 1) | x, y ∈ Q2(�−1) and xy ∈ Z/((� − 1)/2)Z}. (5)

The group H ′ is normalised by H , so 〈H , H ′〉 = HH ′. One can easily show that,
given g ∈ H with ord(g) | � − 1, we have ord(gh′) | � − 1 and ord(h′g) | � − 1 for
all h′ ∈ H ′. Therefore, 〈H , H ′〉 is inH and hence H ′ ≤ H .

Otherwise, assume that at least one between z and w is neither diagonal nor anti-
diagonal. By Lemma 3.7 we have H0 ∼= Q8 × Q8.

In conclusion, the maximal groups inH are isomorphic to (Q8×Q8).C2 or contain
H ′. SinceG isHasse, it is contained in amaximal subgroup inH. IfG ≤ (Q8×Q8).C2,
then G0 ≤ Q8 × Q8 and it is contained in (E × E), where PE ∼= S4. We study this
case in Sect. 3.5.5. If G is contained in a maximal group H of H that contains H ′,
then � ≡ 1 (mod 4). Since H ′ has index 4 in Q2(�−1) × Q2(�−1), we have that H has
order 2(� − 1)2 or 4(� − 1)2. Observe that H is non-empty for all � ≡ 1 (mod 4)
since it contains 〈H ′, (Id, Id,−1)〉.

Remark 3.19 Let H be a maximal Hasse subgroup that contains H ′. Note that H ′ is
normal in Q2(�−1) � S2 and (Q2(�−1) � S2)/H ′ ∼= (Z/2Z)3. So, H corresponds to a
subgroup H of (Q2(�−1) � S2)/H ′ ∼= (Z/2Z)3. Let X−1 be the subset of (Q2(�−1) �
S2)/H ′ given by the classes of elements of the form (x, y,−1). Since H is Hasse, H
contains an element in X−1. If � ≡ 5 (mod 8), the only class in X−1 that can belong
to H is the class of (Id, Id,−1)H ′, since the other classes contain elements without
a rational eigenvalue. Hence, H = 〈H ′, (Id, Id,−1)〉 and |H | = 2(� − 1)2. If � ≡ 1
(mod 8), three of the four classes in X−1 have the property that every element in the
class has a rational eigenvalue. By maximality we obtain that H is generated by two
of these three classes, hence that it has order 4. It follows that there are 3 possible
choices of H , each leading to a maximal subgroup H of order 4(� − 1)2.

Remark 3.20 Let G ′ be the maximal Hasse subgroup described in Eq. (4), that is,
the group listed in the first line of Table 1. The base change corresponding to M :=⎛

⎜⎜
⎝

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1

⎞

⎟⎟
⎠ takes the symplectic formof Eq. (1) into the symplectic formof Eq. (2).

Simultaneously, it conjugates G ′ into a subgroup G ′′ of Q2(�−1) � S2 which, in the
notation of this section, isG ′′ = 〈H ′, (Id, Id,−1)〉. Hence, the group (NGL2(F�)(Cs)).2
of the first line of Table 1 is always contained (up to conjugacy) in the groups of the
fifth or sixth line of the table.
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3.5.5 CaseM ∼= E

All these cases can be treated using the algorithm of Sect. 3.2. The results are listed
in Table 1 and correspond to (part of) Proposition 2 in [6].

3.6 G of type C3

The goal of this section is to prove the following.

Proposition 3.21 Let G ′ be a maximal subgroup of Sp4(F�) of type C3, hence iso-
morphic to SL2(F�2).2 or GU2(F�).2. In the first case, G ′ does not contain Hasse
subgroups. In the second case, the maximal Hasse subgroups of G ′ are as follows:

Group Condition

SL2(F3) � ≡ 5 (mod 24)
Ŝ4 � ≡ 17 (mod 24)

This result follows from Propositions 3.25 and 3.27 below. We start by describing
explicitly the two (conjugacy classes of) maximal subgroups of Sp4(F�) of type C3.
Table 8.12 in [4] shows that all the maximal subgroups of type C3 that are abstractly
isomorphic form a single conjugacy class, so it suffices to study a specific subgroup
of each type.

A subgroup G of type C3 consists of all transformations in Sp4(F�) that act either
F�2 -linearly or F�2 -anti-linearly for a given F�2 -vector space structure on F

4
� . In order

to construct such groups we start with the vector space V2 = F
2
�2
, whose basis vectors

we denote by e1 =
(
1
0

)
and e2 =

(
0
1

)
. We denote by σ the non-trivial element of

Gal(F�2/F�) and equip V2 with one of the following forms:

(1) the symplectic form characterised by 〈e1, e2〉 = 1;
(2) the Hermitian form characterised by 〈e1, e1〉H = 〈e2, e2〉H = 0 and 〈e1, e2〉H =√

d .

Remark 3.22 Recall that a Hermitian form on V2 ∼= F
2
�2
is a map 〈·, ·〉 : V2×V2 → F�2

that is F�2 -linear in the first argument and satisfies 〈v2, v1〉 = σ(〈v1, v2〉) for all
v1, v2 ∈ V2.

We fix once and for all d ∈ F
×
� a non-square; in case � is congruent to 3 modulo

4, we take d = −1. Setting e3 = √
de1 and e4 = √

de2, we obtain that e1, e2, e3, e4
is an F�-basis of V2. We will represent F�-linear transformations of V2 in the basis
e1, . . . , e4. In particular, we let

τ :=

⎛

⎜⎜
⎝

1
1

−1
−1

⎞

⎟⎟
⎠ (6)
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denote the matrix giving the natural action of σ on V2. We are now ready to describe
the maximal subgroups of Sp4(F�) of type C3.
The subgroupSL2(F�2).2. Consider the subgroup SL2(F�2) ofGL2(F�2). An element

g =
(
a11 + b11

√
d a12 + b12

√
d

a21 + b21
√
d a22 + b22

√
d

)
∈ GL2(F�2)

acts on F
4
� (with respect to our coordinates) via

ι(g) =

⎛

⎜⎜
⎝

a11 a12 db11 db12
a21 a22 db21 db22
b11 b12 a11 a12
b21 b22 a21 a22

⎞

⎟⎟
⎠ , (7)

and it is easy to check that the condition det(g) = 1 implies that ι(g) preserves the

symplectic form with matrix

⎛

⎜⎜
⎝

1
−1

d
−d

⎞

⎟⎟
⎠. Notice that this is the F�-bilinear form

obtained as trF
�2/F�

(〈·, ·〉). The subgroup ι(SL2(F�2)) of Sp4(F�) is normalised by
τ , and we write SL2(F�2).2 for the group generated by ι(SL2(F�2)) and by τ . This
subgroup preserves the bilinear form just described. From now on, we shall identify
SL2(F�2) with its image via ι. For a subgroup G of SL2(F�2).2, we denote by G0 the
intersection of G with SL2(F�2).

Remark 3.23 Let g ∈ SL2(F�2) that has eigenvalues λ, 1/λ. So, the eigenvalues of ι(g)
are λ, σ (λ), λ−1, σ (λ)−1. In particular, ι(g) has an F�-rational eigenvalue if and only
if all of its eigenvalues are F�-rational. Moreover, τ ι(g) has characteristic polynomial
of the form t4+at2+1 for some a ∈ F�, so its eigenvalues are of the form±μ,±μ−1.
It follows that an element in SL2(F�2).2 has an F�-rational eigenvalue if and only if
all of its eigenvalues are F�-rational.

The subgroupGU2(F�).2. LetGU2(F�) ⊆ GL2(F�2) be the isometry group of 〈·, ·〉H ,
that is, the subgroup of GL2(F�2) consisting of those g that satisfy

〈gv1, gv2〉H = 〈v1, v2〉H ∀v1, v2 ∈ V2,

or equivalently, t g

(
0

√
d

−√
d 0

)
σ(g) =

(
0

√
d

−√
d 0

)
.

Lemma 3.24 Let μ ∈ F
×
�2

be an element of norm −1 and let H be the group

{
λg : g ∈ SL2(F�), λ ∈ ker

(
NF

�2/F�
: F

×
�2

→ F
×
�

)}
.

The groupGU2(F�) coincides with H �H ·
(

μ/
√
d 0

0 μ
√
d

)
. In particular,GU2(F�)

is contained in F
×
�2
Id ·GL2(F�), and PGU2(F�) coincides with PGL2(F�).
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Proof One checks that all the elements given in the statement preserve 〈·, ·〉H , hence
that they are in GU2(F�). On the other hand, by [4, Theorem 1.6.22] we have

|GU2(F�)| = 2 · � + 1

2
· �(�2 − 1) =

∣∣∣
∣H � H

(
μ/

√
d 0

0 μ
√
d

)∣∣∣
∣ ,

which concludes the proof. ��

The F�-bilinear form on V2 ∼= F
4
� given by

〈v,w〉 := 〈v,w〉H − 〈w, v〉H
2
√
d

is anti-symmetric and invariant under the action ofGU2(F�) by definition of this group.
We consider Sp4(F�) and GSp4(F�) as the groups of transformations that preserve
(resp. preserve up to scalars) this symplectic form. We denote by GU2(F�).2 the
subgroup of Sp4(F�) generated by ι(GU2(F�)) and τ (this latter element normalises
ι(GU2(F�))). For a subgroup G of GU2(F�).2, we denote by G0 the intersection of G
with ι(GU2(F�)).

3.6.1 Subgroups of SL2(F�2).2

LetG be amaximalHasse subgroupofSL2(F�2).2.WeconsiderG0 = G∩ι(SL2(F�2))

as a subgroup of SL2(F�2). We now distinguish cases according to which maximal
subgroups of SL2(F�2) contain G0; we rely on Table 8.1 of [4].

(1) G0 = SL2(F�2). It is clear that G0 contains elements that do not have F�-rational
eigenvalues, so G cannot be Hasse.

(2) G0 is contained in a Borel subgroup. Using the fact that all the eigenvalues of the
elements of G0 are rational (Remark 3.23), we see that the group G0 ⊆ Sp4(F�)

stabilises a 1-dimensional subspace V of F
4
� . If G �= G0, let g be an element of

G\G0: then g normalisesG0 (since [G : G0] = 2) and the subspaceW = V+gV ,
of dimension at most 2, is stable under the action of G. Thus G cannot be Hasse.

(3) G0 is contained in Q2(�2+1). An element g ∈ G0 has one F�-rational eigenvalue
if and only if both its eigenvalues are F�-rational (their product is 1), if and only if
g�−1 = Id. This implies that the order of every g ∈ G0 divides (�2+1, �−1) = 2,
so G0 is either Z/2Z or (Z/2Z)2. In both cases, G0 stabilizes a line in F

2
�2

and
we are reduced to the previous case. The conclusion is that G cannot be Hasse.

(4) G0 is contained in Q2(�2−1). Reasoning as in the previous case, we obtain that G0
is contained in Q2(�−1), which—up to conjugacy—is a subgroup of SL2(F�).
More generally, we prove thatG0 cannot be (conjugate to) a subgroup of SL2(F�).
Indeed, if this is the case, ι(G0) stabilizes the non-trivial subspaces 〈e1, e2〉F�

and
〈e3, e4〉F�

of F
4
� . Moreover, it acts on both subspaces with the same character.

Proposition 3.9 (3), which we can apply by Remark 3.23, implies that G cannot
be Hasse.
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(5) G0 is isomorphic to a subgroup of SL2(F3), Ŝ4, or SL2(F5). In the first two cases,
the subgroup G0 is conjugate to a subgroup of SL2(F�), and by what we proved in
the previous case we obtain thatG cannot be Hasse. In the case SL2(F5), eitherG0
is again conjugate to a subgroup of SL2(F�), or � ≡ ±3 (mod 10), see [4, Table
8.2]. However, in the latter case no element of G0 of order 5 can have F�-rational
eigenvalues, so 5 � |G0|. Any such G0 is conjugate to a subgroup of Ŝ4, so we
obtain a contradiction as above.

(6) G0 is contained in SL2(F�).2. Let G00 be the intersection of G0 with SL2(F�).
If the order of G00 is not divisible by �, then � � |G0| and G0 is contained in a
subgroup maximal among those of order not divisible by �, which are covered by
the previous points. On the other hand, if � | |G00|, then by the classification of the
subgroups of SL2(F�) we know that either G00 = SL2(F�) or G00 is contained in
a Borel subgroup. In the former case, G00 contains elements that do not have F�-
rational eigenvalues, which is impossible since G is assumed to be Hasse. In the
latter case, G00 is normal inside G0, of index at most 2. Since G00 fixes precisely
one line 〈w〉 in F

2
� (any element of order � in SL2(F�) has this property, and we

know that � | |G00|), by normality we obtain that G0 also fixes that line (let g
be a representative of the possible non-trivial coset of G00 inside G0. Then g〈w〉
is G00-stable, hence it must coincide with 〈w〉). This implies that G stabilizes
a non-trivial subspace, contradiction. The conclusion is that G cannot be Hasse,
unless it is already covered by one of the previous cases. But since no Hasse
subgroup existed for any of the previous cases, putting everything together we
have established:

Proposition 3.25 The maximal subgroups of Sp4(F�) isomorphic to SL2(F�2).2 con-
tain no Hasse subgroups.

3.6.2 Subgroups of GU2(F�).2

Let G be a maximal Hasse subgroup of GU2(F�).2. We consider G0 as subgroup
of GU2(F�), hence of F

×
�2

· GL2(F�). We will show below that the group G fixes a

non-trivial subspace of F
4
� (of dimension at most 2) whenever G0 fixes a line in F

2
�2
.

Therefore, if G is a maximal Hasse subgroup of GU2(F�).2, then all the elements in
G0 have F�-rational eigenvalues and G0 does not stabilize any line in F

2
�2
. We now

distinguish cases according to the structure of PG0, relying on the classification of the
maximal subgroups of PGL2(F�) = PGU2(F�), see Sect. 2.3.1.

(1) Assume PG0 = PSL2(F�) or PG0 = PGL2(F�). The derived subgroup (G0)
′ ⊆

SL2(F�) satisfies P((G0)
′) = (PG0)

′ = (PSL2(F�))
′ = PSL2(F�). It is easy to

show that the only subgroup of SL2(F�) that projects onto PSL2(F�) is SL2(F�)

itself. But this would imply that (G0)
′ (hence also G0) contains SL2(F�), contra-

dicting the fact that every element of G0 has F�-rational eigenvalues.
(2) PG0 is contained in a Borel subgroup. Then (up to conjugating by a matrix in

GL2(F�)) all matrices in G0 are of the form λ

(
μ1 �

0 μ2

)
with μ1, μ2 ∈ F

×
� and

λ ∈ F
×
�2
. Such a matrix admits a rational eigenvalue if and only if λ is in fact in
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F
×
� . This implies that G0 is contained in GL2(F�), so it stabilises an F�-line 〈v〉.

As [G : G0] ≤ 2, this implies that G stabilises a subspace of dimension at most
2, contradiction.

(3) PG0 is contained in the normaliser of a split Cartan subgroup. Up to conjugacy,
G0 is then contained in

{
λ

(
α 0
0 β

)
: α, β ∈ F

×
� , λ ∈ F

×
�2

}
∪

{
λ

(
0 α

β 0

)
: α, β ∈ F

×
� , λ ∈ F

×
�2

}
.

Amatrix of the form λ

(
α 0
0 β

)
has F�-rational eigenvalues if and only if λα or λβ

are in F�; since α, β are in F
×
� , this implies that λ is also in F

×
� . On the other hand,

consider a matrix of the form λ

(
0 α

β 0

)
. The condition of rational eigenvalues

translates to the fact that λ2αβ is in F
×2
� . Since α, β are in F

×
� , this implies that λ

is either in F
×
� or in F

×
�

√
d .

Notice that the set of matrices of the form λ

(
0 α

β 0

)
is a coset for the subgroup

{
λ

(
α 0
0 β

)
: α, β ∈ F

×
� , λ ∈ F

×
�

}
,

all of whose elements have F�-rational coefficients. This shows that either all

elements λ

(
0 α

β 0

)
satisfy λ ∈ F

×
� (case 1), or they all satisfy λ ∈ F

×
�

√
d (case 2).

In case (2), applying ι we see that G0 acts on F
4
� via the matrices

ι

(
λ

(
α 0
0 β

))
= λ

⎛

⎜⎜
⎝

α

β

α

β

⎞

⎟⎟
⎠ , ι

(
λ

(
0 α

β 0

) )
= λ√

d

⎛

⎜⎜
⎝

dα

dβ

α

β

⎞

⎟⎟
⎠ .

From this description we see that V1 = 〈e1, e4〉 and V2 = 〈e2, e3〉 are stable
under the action of G0, and that the characters of G0 on V1 and V2 are equal. By
Proposition 3.9, we conclude that G does not act irreducibly, contradiction. Note
that, in order to apply Proposition 3.9, we need that all eigenvalues of every matrix
of G0 are rational. All the eigenvalues of the diagonal matrices are rational. The

matrices ι

(
λ

(
0 α

β 0

) )
have eigenvalues ±√

λ2αβ (with multiplicity 2), that are

F�-rational since, as we noted before, λ2αβ is a square. In case (1) the proof is
similar, but simpler.

(4) PG0 is contained in the normaliser N of a non-split Cartan subgroup C , which is
the maximal cyclic subgroup of N .
Suppose first that PG0 is contained in C . This implies in particular that PG0
is cyclic, say generated by the projective image of g ∈ G0. Since the kernel of
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G0 → PG0 consists of scalars that lie inF
×
�2
and have bothF�-rational eigenvalues

and norm equal to 1, we see that this kernel is contained in {± Id} (and in fact, by
maximality of G, equal to it). This implies that G is generated by ι(g), ι(− Id),
and any element h inG \G0 (assumingG �= G0). Notice that h2 ∈ G0 and that by
assumption g ∈ GU2(F�) has at least oneF�-rational eigenvalue, so ι(g) possesses
that same eigenvalue. Letting v ∈ F

4
� denote a corresponding eigenvector, one

checks easily that 〈v, hv〉F�
is a non-trivial subspace of F

4
� stable under the action

of G, contradiction.
Suppose now that PG0 meets N \ C , the non-trivial coset of the cyclic group
C inside the dihedral group N . Recall from Sect. 2.3.1 that—up to conjugacy
in PGL2(F�)—elements in N \ C are (projective classes of) matrices of the

form

(
α dβ

−β −α

)
with α, β ∈ F�. Any lift of such a matrix is of the form

λ

(
α dβ

−β −α

)
, with characteristic polynomial t2 − λ2(−α2 + dβ2), hence eigen-

values ±λ
√−α2 + dβ2. Since −α2 + dβ2 is in F�, we see that λ is either in F

×
�

or in F
×
�

√
d. Now consider two elements of G0 that project to classes lying in

N \ C . The group G0 contains their product:

λ1

(
α1 dβ1

−β1 −α1

)
λ2

(
α2 dβ2

−β2 −α2

)
= λ1λ2

(
α1α2 − dβ1β2 d(α1β2 − α2β1)

−α2β1 + α1β2 α1α2 − dβ1β2

)
.

The eigenvalues of this matrix are

λ1λ2

(
(α1α2 − dβ1β2) ± √

d(α1β2 − α2β1)
)
,

where λ1λ2 is in F
×
� or in F

×
�

√
d . In particular, there can be an F�-rational eigen-

value only if we have

α1α2 − dβ1β2 = 0 or α1β2 − α2β1 = 0. (8)

Suppose now that for at least one element of PG0 ∩ (N \ C) we have β1 �= 0
(otherwise, PG0 ∩ (N \C) consists of at most one element, the projective class of(
1 0
0 −1

)
, hence |PG0| = 2. We will rule out below the possibility that |PG0| | 4).

Then the Eq. (8) imply the equality

β1

(
α2 dβ2

−β2 −α2

)
=

(
β1α2 dβ1β2

−β1β2 −β1α2

)

=
(

β1α2 α1α2

− 1
d α1α2 −β1α2

)
or

(
β2α1 dβ1β2

−β1β2 −β2α1

)
,
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which—at the level of projective classes—means

(
α2 dβ2

−β2 −α2

)
=

(
β1 α1

− 1
d α1 −β1

)
or

(
α1 dβ1

−β1 −α1

)
.

Since

(
α2 dβ2

−β2 −α2

)
is an arbitrary element in PG0 ∩ (N \ C), this shows that

PG0 ∩ (N \ C) consists of at most 2 elements, so PG0 has cardinality at most
4 and all elements of order at most 2. It follows that PG0 is isomorphic to a
subgroup of (Z/2Z)2. Since any subgroup of PGL2(F�) isomorphic to (Z/2Z)2

acts on P(F2
�) with a fixed point, this implies that (up to conjugacy in PGL2(F�))

the group PG0 is contained in a Borel subgroup, contradicting what we already
proved.

(5) PG0 is contained in an exceptional subgroup isomorphic to A4, S4 or A5. As
observed above, the kernel of the projection map G0 → PG0 is {±1}, so G0 is a
central extension of degree 2 of a subgroup of one among A4, S4, and A5. In fact,
one checks easily that if PG0 is a proper subgroup of A4, or a proper subgroup of
S4 distinct from A4, or a proper subgroup of A5 distinct from A4, then PG0 falls
in one of the previous cases, so we may assume PG0 ∈ {A4, S4, A5}.

Lemma 3.26 The following hold:

(a) PG0 ∼= A4;
(b) � ≡ 1 (mod 4);
(c) � ≡ 2 (mod 3).

Proof Notice that P((G0)
′) = (PG0)

′. In particular, if PG0 ∼= A5 we have (PG0)
′ ∼=

A5, and if PG0 ∼= S4 then (PG0)
′ ∼= A4. Also notice that (G0)

′ is a subgroup of
SL2(F�) (which, by Lemma 3.24, is the derived subgroup of GU2(F�)). In the case
P(G0)

′ ∼= A5 we obtain that (G0)
′ is an extension of degree 2 of A5 (so by cardinality

reasons) (G0)
′ = G0. This shows in particular that G0 < SL2(F�).2, so G cannot be

Hasse by the work done for the case of SL2(F�2).2.
Next suppose that PG0 ∼= S4. Then reasoning as above we obtain that (G0)

′ is a
subgroup of SL2(F�) having projective image the exceptional subgroup A4, so (G0)

′ ∼=
SL2(F3). Since elements in (G0)

′ < SL2(F�) have one F�-rational eigenvalue if and
only if they have all their eigenvalues in F�, and since SL2(F3) contains elements of
order 3 and 4, we obtain � ≡ 1 (mod 12). Take an element g in PG0 that under the
isomorphism PG0 ∼= S4 corresponds to a transposition. The element g has exactly
two lifts ±g in GL2(F�) with order 4. Since 4 | � − 1, the elements ±g have all
their eigenvalues in F�. It follows that no multiple λg with λ ∈ F�2 \ F� has any
F�-rational eigenvalues, hence the elements of G0 that project to g must be precisely
±g ∈ GL2(F�). Since transpositions generate S4, it follows that all elements ofG0 are
contained inGL2(F�). Reasoning as in the case of SL2(F�).2, this gives a contradiction
to the fact that G acts irreducibly on F

4
� . Having excluded the possibilities PG0 ∼=

S4, A5, this concludes the proof of (a).
Suppose now that PG0 ∼= A4, hence P((G0)

′) ∼= (Z/2Z)2. It is easy to see that
(G0)

′ contains elements of order 4: otherwise, the 2-Sylow subgroup would only have
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elements of order 2 and would therefore be commutative. Since elements of order 2
are diagonalisable, and they all commute, all matrices in the 2-Sylow of (G0)

′ would
be simultaneously diagonalisable in GL2(F�2); but there are only 4 diagonal elements
of order at most 2 in GL2(F�2), while the 2-Sylow of (G0)

′ has order 8. Reasoning as
abovewe then obtain that � ≡ 1 (mod 4), that is, (b). Finally, suppose by contradiction
� ≡ 1 (mod 3). Any element g of PG0 has a lift g in GL2(F�), and such an element
has order dividing 6 or 4. Since � ≡ 1 (mod 12), the element g has both its eigenvalues
in F

×
� , so no multiple of g by a scalar in F�2 \ F� has any F�-rational eigenvalues. It

follows that the elements of G0 whose projective image is g are precisely ±g, hence
that G0 ⊆ GL2(F�). Reasoning as above, this gives a contradiction to the fact that G
acts irreducibly on F

4
� . ��

The above analysis shows that |G| = 48, thatG contains a subgroupG0 isomorphic to
SL2(F3), and that � ≡ 2 (mod 3). The problem can now be handled by the methods
of Sect. 3.2, and the result is as follows:

Proposition 3.27 Let G ′ be a maximal subgroup of Sp4(F�) isomorphic toGU2(F�).2.
The maximal Hasse subgroups G of G ′ are as follows:

Group Condition

SL2(F3) � ≡ 5 (mod 24)
Ŝ4 � ≡ 17 (mod 24)

3.7 G of type C6 andS

These cases can be handled by the algorithm in Sect. 3.2. For groups of class S, one
also needs to contend with certain subgroups of SL2(F�) whose order depends on �,
but these can be excluded using the arguments in [6, Proposition 4]. The results are
listed in Table 1 and correspond to Propositions 3 and 4 and Lemmas 2 and 3 of [6].

4 Hasse subgroups of GSp4(F�) that become reducible upon
intersection with Sp4(F�)

Let G be a Hasse subgroup of GSp4(F�).

Definition 4.1 Let G be a subgroup of GLn(F�). The saturation Gsat of G is the
subgroup of GLn(F�) generated by G and by F

×
� · Id. We say that G is saturated if

G = Gsat.

The following lemma is obvious:

Lemma 4.2 Let G be a subgroup of GLn(F�).

(1) The groups G and Gsat (acting on F
n
� ) have the same invariant subspaces. In

particular, G acts irreducibly if and only if Gsat does.
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(2) G has property (E) if and only if Gsat does.
(3) G is Hasse if and only if Gsat is.

We note the following formal consequence of the above:

Corollary 4.3 Every maximal Hasse subgroup of GSp4(F�) satisfies G = Gsat.

Remark 4.4 Let G be a saturated subgroup of GSp4(F�) and let G1 := G ∩ Sp4(F�).
Then (G1)sat coincides with

G� := ker
(
G

λ−→ F
×
� → F

×
� /F

×2
�

)
,

the subgroup of G consisting of elements having square multiplier, which has index
at most 2 in G.

Lemma 4.5 Let G be a maximal Hasse subgroup of GSp4(F�) such that G ∩ Sp4(F�)

is reducible. Then, λ(G) = F
×
� .

Proof By Corollary 4.3 we have (F×
� )2 ⊆ λ(G). If (F×

� )2 = λ(G), then G = (G1)sat

and so G1 acts irreducibly, contradiction. So, there is δ ∈ F
×
� \ (F×

� )2 in the image of
λ(G). Hence, λ(G) = F

×
� . ��

Given a Hasse subgroup G of GSp4(F�) there are two possibilities: either G1 = G ∩
Sp4(F�) is irreducible, in which case it is one of the groups described in Theorem 3.2,
or G1 is reducible, and is then described by the following result.

Theorem 4.6 Let G be a maximal Hasse subgroup of GSp4(F�) such that G1 :=
G ∩ Sp4(F�) acts reducibly. One of the following holds:

• � ≡ 1 (mod 4) and G is conjugate to (C(�−1)/2.G1).2, where G1 is a subgroup
of N (Cs) × N (Cs) ∼= Q2(�−1) × Q2(�−1). Under the action of G1, the module F

4
�

decomposes as the direct sum of two non-singular subspaces of dimension 2.
• � ≡ 3 (mod 4) and G is conjugate to (C(�−1)/2.H).2, where H is a subgroup of

NGL2(F�)(Cs) of index 2. Under the action of G1, the module F
4
� decomposes as

the direct sum of two totally isotropic subspaces of dimension 2.
• |PG| ≤ 27 · 32 · 52.

We split the proof into several lemmas. Theorem 4.6 follows from Lemmas 4.12
and 4.13 below, which also give a more explicit description of the groups in question.

Remark 4.7 In the third case of the Theorem, one can prove that PG has order dividing
29 · 32 · 52.
Remark 4.8 Let G be a maximal Hasse subgroup such that G1 acts reducibly and
corresponds to one of the groups of the first two cases of the theorem. In both cases,
G has a subgroup of index 2 that decomposes the module F

4
� as the direct sum of two

non-singular subspaces of dimension 2. In the same way, G has a subgroup of index 2
that decomposes F

4
� as the direct sum of two isotropic subspaces of dimension 2. This

follows easily from the description of the groups given in Lemmas 4.12 and 4.13. In
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both cases, the base change that exchanges the two non-singular spaces with the two
isotropic spaces is the same as in Remark 3.20. The main difference between the two
cases is that, when � ≡ 1 (mod 4), then G� (that has index 2) decomposes F

4
� in two

non-singular subspaces, and, when � ≡ 3 (mod 4), then G� decomposes F
4
� in two

isotropic subspaces.

Lemma 4.9 Let G be a maximal Hasse subgroup of GSp4(F�). Suppose that G1 acts
reducibly: then there exist two subspaces V1, V2 of F

4
� , both of dimension 2 and irre-

ducible under the action of G1, such that F4
�

∼= V1 ⊕ V2 and with the property that for
every g ∈ G \ G� one has g(Vi ) = V3−i for i = 1, 2. Finally, either the restriction
of the symplectic form to both V1 and V2 is trivial, or the restriction of the symplectic
form to both V1 and V2 is non-degenerate.

Proof By Corollary 4.3 we know that G is saturated. By Lemma 4.2 (1) we know that
G1 and (G1)sat = G� have the same invariant subspaces, so it suffices to prove the
resultwithG1 replacedbyG�. Since [G : G�] ≤ 2, it follows fromClifford’s theorem
that the irreducible G-module F

4
� either stays irreducible upon restriction to G� or

splits as the direct sum of two irreducible sub-modules of the same dimension. As the
first possibility is ruled out by the assumption of the lemma, the first claim follows.
As G acts irreducibly, there is an element in G \G� that exchanges V1 and V2 (hence
the same holds for every element in G \ G�). Let ω be the anti-symmetric bilinear
form we consider on F

4
� . The radical of ω|Vi is a G�-submodule of the irreducible

module Vi , hence (for each i = 1, 2) it is either trivial or all of Vi . Since any element
of G \G� exchanges V1 with V2, the same case must happen for both representations
Vi . ��
Lemma 4.10 Let G be a maximal Hasse subgroup of GSp4(F�) such that G1 acts
reducibly. Write F

4
� = V1 ⊕ V2 as in the previous lemma.

(1) If V1, V2 are both non-singular, then up to conjugacy in GL4(F�) the group G is
contained in the group

Gns :=
{(

g1 0
0 g2

)
,

(
0 g1
g2 0

) ∣∣ g1, g2 ∈ GL2(F�), det(g1) = det(g2)

}
.

This group preserves the symplectic form of Eq. (2).
(2) If V1, V2 are both totally isotropic, then up to conjugacy in GL4(F�) the group G

is contained in

Gs :=
{ (

g 0
0 λg−T

)
,

(
0 g

−λg−T 0

) ∣∣ g ∈ GL2(F�), λ ∈ F
×
�

}
.

This group preserves the symplectic form of Eq. (1).

The following hold:

(a) for h =
(
g1 0
0 g2

)
∈ Gns or h =

(
0 g1
g2 0

)
∈ Gns we have λ(h) = det(g1) =

det(g2);
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(b) for h =
(
g 0
0 λg−T

)
∈ Gs or h =

(
0 g

−λg−T 0

)
∈ Gs we have λ(h) = λ;

(c) given a subgroup G of

{(
g1 0
0 g2

)
,

(
0 g1
g2 0

) ∣∣ g1, g2 ∈ GL2(F�)

}
, denote by

G0 the subgroup of G consisting of block-diagonal matrices. If G is as in the
statement of the lemma, all matrices h ∈ G0 satisfy λ(h) ∈ F

×2
� , and all matrices

h ∈ G \ G0 satisfy λ(h) ∈ F
×
� \ F

×2
� .

Proof Let e1, . . . , e4 be the standard basis of F
4
� . Up to conjugacy, we may assume

that the invariant subspaces are 〈e1, e2〉, and 〈e3, e4〉. The claim is then easy to check
by direct computation, taking into account the fact that every h ∈ G either stabilizes
both V1, V2 or exchanges them. Part (c) follows from the fact that, by Lemma 4.9,
(G1)sat = G� is precisely the subgroup of matrices that send each Vi into itself. ��
Lemma 4.11 Let I be a subgroup of Q2(�−1) not contained in the subgroup generated
by r (see Sect. 2.3.1). Let G ≤ I × I be a sub-direct product of I by itself. The group
G contains an element of the form (s1, s2) with s1 and s2 symmetries of Q2(�−1).

Proof As I is not contained in 〈r〉, the group G contains two elements of the form
g1 = (s′

1, q1) and g2 = (q2, s′
2), where s′

1, s
′
2 are symmetries. One of the elements

g1, g2, g1g2 satisfies the conclusion of the lemma. ��
Recall that we defined G1 = G ∩ Sp4(F�). We now set G1

0 = G0 ∩ G1, where G0 is
as in Lemma 4.10.

Lemma 4.12 Let G be a maximal Hasse subgroup ofGSp4(F�). Suppose that G1 acts
reducibly on F

4
� and that we are in case 1 of Lemma 4.10. Then, � ≡ 1 (mod 4).

Moreover, one of the following holds:

(1) G1 is conjugate to a subgroup of Q2(�−1) ×Q2(�−1). The matrices with multiplier
a square are block-diagonal with blocks diagonal or anti-diagonal. The matrices
with multiplier not a square are block-anti-diagonal with blocks diagonal or anti-
diagonal.

(2) PG has order smaller than 27 · 32 · 52
In case (1), one of the following holds:

(i) G \ G0 contains a block-anti-diagonal matrix M =
(
0 x
y 0

)
with both x and y

diagonal.
(ii) The fourth power of any block-anti-diagonal matrix is a scalar.

Proof By definition we have G1
0 < SL2(F�)×SL2(F�). Let I (resp. J ) be the projec-

tion of G1
0 on the first (resp. second) factor SL2(F�), and let δ be a fixed generator of

F
×
� . Since G acts irreducibly on F

4
� , it contains an element of the form M =

(
0 x
y 0

)

with x, y ∈ GL2(F�) and, by Lemma 4.5, we have det x = det y /∈ F
×2
� . Multiplying

thematrixM by a rational constant (recall thatG contains allmatricesλ Id forλ ∈ F
×
� ),

we can assume det x = det y = δ. The group G0 has index 2 in G, so it is normal in it,
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and M belongs to NG(G0). The map ϕx : J → I defined as ϕx ( j) = x j x−1 induces
an isomorphism I → J .

We now proceed as in Sect. 3.5. The group G1
0 cannot be a sub-direct product of

SL2(F�) by itself, hence G1
0 ≤ I × J with I ∼= J proper subgroups of SL2(F�).

• If I is contained in a Borel subgroup, then G1
0 fixes a line and G does not act irre-

ducibly on F
4
� , contradiction. Note that (G

1
0)

sat = G0 by part (3) of Lemma 4.10.
• If I is contained in Q2(�+1), then imposing that all of its elements have an F�-
rational eigenvalue yields that G does not act irreducibly, unless |I | ≤ 8, in which
case |PG| is smaller than 27 · 32 · 52. This follows from arguments very similar to
those in Sect. 3.5.

• If I is exceptional, then PG has cardinality that divides 2(|I |)2. We know that |I |
has order at most 120, which implies |PG| ≤ 27 · 32 · 52.

• If I ≤ Q2(�−1) and � ≡ 3 (mod 4), then we can prove that G is not Hasse
reasoning as in Sect. 3.5. So, we only need to treat the case I ≤ Q2(�−1) and � ≡ 1
(mod 4).
Assume that PG is greater than 27 · 32 · 52. Thanks to Lemma 3.7, x and y are
diagonal or anti-diagonal.
Note that I is not cyclic since otherwise G would not act irreducibly. By
Lemma 4.11, G contains a matrix of the form (s1, s2). If the blocks x and y
of M are both anti-diagonal, then multiplying M by (s1, s2) we find that G con-
tains a block-anti-diagonal matrix with x and y diagonal. Thus, the following are
equivalent:

(a) G contains no block-anti-diagonalmatrix

(
0 x ′
y′ 0

)
with x ′ and y′ both diagonal;

(b) for every A =
(
0 x ′
y′ 0

)
in G \ G0 we have that x ′ is diagonal and y′ is anti-

diagonal, or vice-versa.

Assume that property (i) in the statement of the lemma does not hold. Then (a) is

true, hence so is (b). Let A

(
0 x ′
y′ 0

)
be any element inG\G0. By (b), x ′y′ det(x ′)−1

is an anti-diagonal matrix in Q2(�−1), so its square is scalar. We conclude that A4

is a scalar, that is, (ii) holds.

��
Lemma 4.13 Let G be a maximal Hasse subgroup of GSp4(F�) and suppose that we
are in case (2) of Lemma 4.10. Then we have � ≡ 3 (mod 4) and up to conjugacy in
GSp4(F�) the group G is given by

{
μ

(
A 0
0 A−T

)
, μ

(
0 A

A−T 0

) ∣∣ μ ∈ F
×
� , A ∈ H

}
,

where H is a subgroup of index 2 of NGL2(F�)(Cs). In particular, G has order (�−1)3.
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Proof Observe that the group G1
0 is of the form

{(
g 0
0 g−T

) ∣∣ g ∈ H

}
, with H a

subgroup of GL2(F�). Proceeding as in the case GL2(F�).2, we can easily show that

H ≤ N (Cs) or H is exceptional. Note that the diagonal matrix

(
g 0
0 g−T

)
has an

F�-rational eigenvalue if and only if g ∈ GL2(F�) does.
We consider first the case when H is exceptional. We will show that no Hasse

subgroups arise in this case. If � ≡ 3 (mod 4), then H cannot contain any elements
of order 4, because such elements would not have F�-rational eigenvalues. It is easy to
check that a subgroup of GL2(F�) of exceptional type and without elements of order
4 has cyclic projective image, hence it acts reducibly on F

2
� , contradiction.

Suppose now that � ≡ 1 (mod 4). Arguing as in Corollary 3.12, we may assume
that H contains all the scalars. By the assumption that we are in case (2) of Lemma
4.10 and the surjectivity of the symplectic multiplier (Lemma 4.5) we know that, for

everyμ ∈ F
×
� \F

×2
� , there exists in G an element of the form M :=

(
0 x

−μx−T 0

)
that

normalisesG�. This implies that thematrixv =
(

0 x
−x−T 0

)
,which is in the subgroup

GL2(F�).2 of Sp4(F�), normalises H sat. Notice that v is not in G (its multiplier is 1,
but v is not block-diagonal). We have described the normaliser of a group like H sat

inside GL2(F�).2 in Lemma 3.15. With notation as in that lemma, this allows us to

conclude that x = gJ2 or x = gJ2σ−T . Multiplying M by

(
g 0
0 g−T

)−1

∈ H , we

obtain an element of G of the form

u′ =
(

0 J2
−μJ2 0

)
or u′′ =

(
0 J2σ−T

−μJ2σ 0

)
,

where the second case can only arise if PH is isomorphic to A4 and PA4 is not
maximal in PSL2(F�) (see Lemma 3.15 (3)). In particular, H sat is normalised by an
element σ ∈ SL2(F�) with Pσ representing a transposition in P(〈H , σ 〉) ∼= S4. Note
that σ 2 = − Id.

If G contains an element of the form u′ (which is automatic if PH � A4), then we
get a contradiction: it is clear that u′ does not have F�-rational eigenvalues, since the
product of the off-diagonal blocks is −μJ 22 = μ, whose eigenvalues are not squares
in F

×
� (see Remark 3.8). If instead G contains an element of the form u′′ (hence in

particular PH ∼= A4), then similarly −μJ2σ−T J2σ = −μ σ 2

det σ = μ, contradiction.
Hence H cannot be an exceptional subgroup.

So we may assume that H is a subgroup of N (Cs) and H = H sat. In particular, the
condition that every element of H has an F�-rational eigenvalue gives

H ≤ {A(i, j), B(i, j) | i + j ≡ 0 (mod 2)},

where A(i, j) =
(

δi 0
0 δ j

)
and B(i, j) =

(
0 δi

δ j 0

)
and δ is a generator of F

×
� .
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Let M =
(

0 x
−μx−T 0

)
be as above. Since M2 belongs to G0, we have xx−T ∈ H .

If x is not diagonal or anti-diagonal, then we are in the second case of Lemma 3.6
and � ≡ 1 (mod 4). In this case, up to multiplying M by an element of G1

0, we
can then assume that x is symmetric, which implies M2 = −μ. Therefore, M�−1 =
(−μ)(�−1)/2 = − Id since μ is not a square, which is absurd since M must have
a rational eigenvalue. Otherwise, if we are in the first case of Lemma 3.6, up to
multiplying M by an element of G1

0 we can assume

M =
(

0 A(i1, j1)
−μA(i1, j1)−T 0

)
.

Observe that M2 = (−μ) and M�−1 = (−μ)(�−1)/2. If −1 is a square mod �, then
M�−1 = − Id and M does not have a rational eigenvalue, contradiction. Therefore,
−1 must not be a square, that is, � ≡ 3 (mod 4), and we can take μ = −1. One

checks that

(
0 B(i, j)

B(i, j)−T 0

)
has F�-rational eigenvalues iff i + j is even, hence

G ≤ F
×
� · G ′, where

G ′ =
{ (

A(i, j) 0
0 A(i, j)−T

)
,

(
0 A(i, j)

A(i, j)−T 0

)
,

(
B(i, j) 0

0 B(i, j)−T

)
,

(
0 B(i, j)

B(i, j)−T 0

)
| i + j ≡ 0 (mod 2)

}
.

(9)

If we show that G ′ is Hasse, then necessarily G = F
×
� · G ′ since G is maximal. The

fact that G ′ acts irreducibly follows from the character formula, similarly to the case
GL2(F�).2. The fact that every matrix has a rational eigenvalue follows from the fact
that every matrix has order that divides � − 1. ��

5 Hasse subgroups of GSp4(F�)

The goal of this section is to describe all maximal Hasse subgroups of GSp4(F�)

having surjective multiplier.

Definition 5.1 LetG1 be a Hasse subgroup of Sp4(F�). IfG1 is not contained in one of
the groups of the first three cases of Theorem 3.2, then we say that G1 is exceptional.

Lemma 5.2 Let G be a subgroup of GSp4(F�) containing the scalar multiples of Id
and such that λ(G) = F

×
� . Let G

1 = G ∩ Sp4(F�). The index [PG : PG1] is at most
2.

Proof The kernel of the projection π : G → PG has order |F×
� | = � − 1, while

G1 → PG1 has kernel of order k ≤ 2 (the only scalar matrices in Sp4(F�) are ± Id).
On the other hand, |G|/|G1| = |λ(G)| = � − 1. It follows that [PG : PG1] =
|π(G)|
|π(G1)| = |G|/(�−1)

|G1|/k = k ≤ 2. ��
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Lemma 5.3 Let G be a maximal Hasse subgroup of GSp4(F�) with λ(G) = F
×
� such

that G1 = G ∩ Sp4(F�) acts irreducibly. One of the following holds:

• G1 is of class C2. In particular, as in Sect. 3.5 we can choose a basis of F
4
�

with respect to which all elements in G are either block-diagonal or block-anti-
diagonal.

• G1 is exceptional.

Proof As G1 acts irreducibly, it is a Hasse subgroup of Sp4(F�). The assumption
λ(G) = F

×
� implies thatPG is not contained inPSp4(F�). Thus there exists amaximal

subgroup M of PGSp4(F�) with M �= PSp4(F�) and M containing PG. We let M be
the inverse image of M in GSp4(F�). The maximal subgroups M of PGSp4(F�) are
classified in [4, Tables 8.12 and 8.13].

(1) Suppose first that M is of Aschbacher type Ci for some i �= 2, or lies in class S.
Then by definition G1 is contained in a maximal subgroup of Sp4(F�) of the same
Aschbacher type, or is of class S. By Theorem 3.2, Table 1, and Definition 5.1,
G1 is exceptional.

(2) Suppose instead that M is of Aschbacher type C2. By definition, M (hence alsoG)
preserves a decomposition ofF4

� as the direct sumof two 2-dimensional subspaces:
thus, in a suitable basis, all matrices in M are either block-diagonal or block-anti-
diagonal. Note that by Theorem 3.2 we know that G1 is contained in a maximal
subgroup isomorphic to SL2(F�) � S2 and the present choice of basis is compatible
with that of Sect. 3.5.

��
Lemma 5.4 Let G be a Hasse subgroup of GSp4(F�) such that λ(G) = F

×
� . If G

1 is
not exceptional, then it acts reducibly.

Proof Suppose by contradiction that G1 acts irreducibly. Up to conjugacy, G1 is con-
tained in amaximalHasse subgroup of one of the first three types listed in Theorem3.2.
In particular, we have � ≡ 1 (mod 4). ByLemma5.3,we can assume that everymatrix
inG is block-diagonal or block-anti-diagonal.Wewill find a contradiction by showing
that G contains a matrix without rational eigenvalues. Note that we can assume that
G contains all the scalars.

(1) Assume G1 ≤ (Q2(�−1) ×Q2(�−1)).C2. As we did in Sect. 3.5, we write elements
of (Q2(�−1) × Q2(�−1)).C2 as triples (g, h,±1). As above, G1 contains a block-
anti-diagonal matrix. Let M ∈ G be an operator with λ(M) = δ. Multiplying
if necessary M by a block-anti-diagonal matrix in G1, we can assume that M

is block-diagonal. So, M =
(
M1 0
0 M2

)
with det(M1) = det(M2) = δ. If M1

or M2 is neither diagonal nor anti-diagonal, then G1 ≤ (Q8 × Q8).C2 thanks
to Lemma 3.7. In this case G1 is exceptional, contradiction. So, we can assume
that M1 and M2 are diagonal or anti-diagonal. By Lemma 4.11, we can assume
that M ′ = (s1, s2, 1) is in G1. So, without loss of generality, we can assume that
M1 is diagonal. If M2 is diagonal, then M ′M does not have a rational eigenvalue
and G is not Hasse. If M2 is anti-diagonal, then M2 = δ(ra,±1, 1) with a
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odd. Let M3 ∈ G1 \ G1
0. As we showed in Sect. 3.5.4, M3 = (q1, q2,−1) with

q1, q2 ∈ Q2(�−1). There are three possible cases:

• M3 = (rc, rd ,−1). Under the assumption that M3 has a rational eigenvalue,
the order ofM3 divides �−1 and c+d is even. So,M2M3 = δ(ra+c,±rd ,−1)
does not have a rational eigenvalue since a + c + d is odd. Hence, G is not
Hasse.

• M3 = (s3, s4,−1) with s3 and s4 symmetries. Then, M ′
3 = M ′M3 is of the

form (rc, rd ,−1). So, one between M ′
3 and M2M ′

3 does not have a rational
eigenvalue, as we proved in the previous case.

• M3 = (q1, q2,−1) with q1q2 a symmetry. Multiplying by M , we see that G

contains an element of the form N =
(

0 N1
N2 0

)
with det(N1) = det(N2) = δ

and N1 and N2 both diagonal. Since N has a rational eigenvalue, we have
(N1N2)

(�−1)/2 = 1. In this case, M2N does not have a rational eigenvalue,
contradiction.

(2) Assume that G1 ≤ (NGL2(F�)(Cs ).2). By Remark 3.20, the group G1 is contained
in a maximal group of the previous case and so the lemma holds.

(3) AssumeG1 ≤ (C(�−1)/2.E).2with E exceptional.We know thatG1
0 has projective

image A4, A5, or S4.
Assume G1

0 has projective image A5 or S4. Proceeding as above, we obtain that

G contains an element of the form N =
(

0 x
−δx−T 0

)
. Observe that x normalises

G1
0, so, as we pointed out in the proof of Lemma 3.15, x is in G1

0 (when we see

it as a subgroup of GL2(F�)). So, M =
(
x 0
0 x−T

)
belongs to G. Letting M ′ =

M−1N ∈ G, by direct computation one has M ′2 = −δ and (M ′)�−1 = − Id, so
M ′ does not have a rational eigenvalue.
Assume that G1

0 has projective image A4. The normaliser of G1
0 in GL2(F�), that

we denotewithG ′, has projective image contained in S4. SinceG1 acts irreducibly,

it contains a matrix of the form M2 =
(

0 y
−y−T 0

)
, and since λ(G) = F

×
� the

group G contains a matrix of the form M1 =
(

0 x
−δx−T 0

)
(notice that, up to

multiplication by M2, we can assume that M1 is block-anti-diagonal). Since x
normalises G1

0, it belongs to G ′. If x ∈ G1
0, we conclude as in the case projective

image A5 or S4. Otherwise, we may assume that PG ′ = S4 and that x is an
element of G ′ \ G1

0. Since [G ′ : G1
0] = 2 all elements in G ′ \ G1

0 appear as x for
some choice of M1 (simply multiply by a suitable element in G1

0). Since M2
1 =

−δ

(
xx−T 0
0 x−T x

)
we have xx−T ∈ G ′, hence x−T is in G ′ for all x ∈ G ′ \ G1

0.

Every element z of G1
0 is the product of two elements x, x ′ ∈ G ′ \ G1

0, hence
z−T = (xx ′)−T = x−T (x ′)−T ∈ G ′. Thus x 	→ x−T gives an automorphism of
G ′. Passing to the projective quotient, this induces an automorphism ϕ of order
≤ 2 of PG ′ ∼= S4. All automorphisms of S4 are inner, so ϕ is conjugation by some
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elementw ∈ S4 of order≤ 2. In particular, ϕ(w) = w, so if x ∈ G ′ \G1
0 liftsw we

have x−T = ±x and xx−T = ± Id. Now for this x we have M2
1 = ±δ Id, hence

M�−1
1 = − Id and M1 does not have any rational eigenvalues, contradiction.

��
Theorem 5.5 Let G be a maximal Hasse subgroup of GSp4(F�) with λ(G) = F

×
� . Let

G1 = G ∩ Sp4(F�). One of the following holds:

• G1 acts reducibly, � ≡ 1 (mod 4), and G1 is a subgroup of Q2(�−1) × Q2(�−1).
• G1 acts reducibly, � ≡ 3 (mod 4), and G = C(�−1)/2.(H .2), where H is a
subgroup of NGL2(F�)(Cs) of index 2.

• |PG| ≤ 27 · 32 · 52 and |PG| divides 29 · 32 · 52.
Proof ByLemma5.4,G1 acts reducibly or is exceptional. In the first case, we conclude
by using Theorem 4.6. In the second case G1 has order smaller than 27 · 32 · 52
and dividing 29 · 32 · 52 by Theorem 3.2 (see Table 1 and Remark 4.7). Note that
|G| = 2|G�| = 2(� − 1)/2|G1| and |G| = (� − 1)|PG| since G contains F

×
� · Id. So,

|PG| = |G1| ≤ 27 · 32 · 52 and |PG| divides 29 · 32 · 52. ��
Remark 5.6 In “Appendix A” we will prove a slightly stronger version of this theorem,
showing that, for any Hasse subgroup G of GSp4(F�) with λ(G) = F

×
� , the subgroup

G1 acts reducibly.

Remark 5.7 With more work in the style of Sect. 3, one could probably improve the
bound on the order of |PG| in the third case of the theorem, and also classify the
groups of the form PG that arise from the Hasse subgroups of GSp4(F�). We have
decided not to pursue this, since the qualitative form of the result given above will be
enough for our applications.

Remark 5.8 The assumption λ(G) = F
×
� is less restrictive than it may seem: indeed,

by Corollary 4.3 we know that for every maximal Hasse subgroup G of GSp4(F�) the
multiplier group λ(G) contains λ(F×

� Id) = F
×2
� . The assumption λ(G) = F

×
� is then

equivalent to the requirement that G contains an element whose multiplier is not a
square. If this is not the case, then G is simply the saturation of G1, which is a Hasse
subgroup of Sp4(F�). These cases are therefore already covered by Theorem 3.2.

6 Strong counterexamples

6.1 Statement of themain result

Theorem 6.1 Let A be an abelian surface defined over a number field K . There exists a
constant C1, depending only on K , such that the following hold for all primes � > C1.

• If EndK (A) is an order O in a real quadratic field, then there exists an extension
K ′/K, of degree at most 2, such that EndK (A) = EndK ′(A). If � is unramified in
K ′, then (A, �) is not a strong counterexample. In particular, if all the endomor-
phisms of A are defined over K , then (A, �) is not a strong counterexample.
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• If AK is isogenous to the square of an elliptic curve E without CM, then there exists
an extension K ′/K of degree at most 3 such that AK ′ is either isogenous to the
product of two elliptic curves or satisfies that EndK ′(A) ⊗ Q is a quadratic field.
If [K ′ : K ] = 1 or 3, then (A, �) is not a strong counterexample. If [K ′ : K ] = 2
and � is unramified in K ′, then (A, �) is not a strong counterexample.

• If EndK (A) is an order in a (nonsplit) quaternion algebra and EndK (A) is an
order in a quaternion algebra or an order in a quadratic field, then (A, �) is not a
strong counterexample. If EndK (A) = Z, then there is a field extension K ′/K of
degree 2 such that EndK ′(A) is an order in a quadratic field. If � is unramified in
K ′, then (A, �) is not a strong counterexample.

• If EndK (A) is an order in a CM field, then (A, �) is not a strong counterexample.

Strong counterexamples (A, �) for which A is geometrically isogenous to the square of
an elliptic curve with CM are not bounded in the same sense as in the above theorem.
Indeed, as we will show in Proposition 6.28, we can find infinitely many � such that
there exists an abelian surface defined over Q and geometrically isogenous to the
square of an elliptic curve with CM such that (A, �) is a strong counterexample.

We will also obtain the following consequence of Theorem 6.1:

Corollary 6.2 Let A be an abelian surface over a number field K . Assume that
EndK (A) �= Z. There exists a constant C1, depending only on K , such that (A, �) is
not a strong counterexample for � > C1.

We will make the following assumptions on �:

• � is unramified in K .
• � > 29 · 33 · 52 · [K : Q] + 1. By Theorem 6.6, this implies |PG�| > 27 · 32 · 52.

These assumptions clearly hold if

� > C1:=max{29 · 33 · 52 · [K : Q] + 1,�K },

where �K is the discriminant of K . Recall that G� is defined in Sect. 1.1 as the image
of the Galois representation ρ� : Gal(K/K ) → Aut(A[�]).

6.2 Lower bounds on the image of Galois

We shall need the following result, proven in [30]:

Theorem 6.3 Let A be an abelian surface over a number field K , and let v be a place
of K . Let L be a minimal extension of K over which A acquires semistable reduction
at a place w above v. Suppose that the residue characteristic of v is at least 7: then
the ramification index e(w|v) is bounded by 12.

From now on, we will always assume that � ≥ 7, so that the previous theorem applies.

Theorem 6.4 ([22, Corollaire 3.4.4]) Let A be an abelian variety over a number field
K and let v be a finite place of K of characteristic � at which A has semistable
reduction. Let Iv = Iv(K/K ) be the inertia group at v and I tv be its tame quotient.
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Let V be a simple Jordan-Hölder quotient of A[�] (as a module over Iv). Suppose that
V has dimension n over F�. The action of Iv on A[�] factors through I tv . Moreover,
there exist integers e1, . . . , en such that:

• V has a structure of an F�n -vector space;
• the action of I tv on V is given by a character ψ : I tv → F

×
�n ;• ψ = ϕ

e1
1 . . . ϕ

en
n , where ϕ1, . . . , ϕn are the fundamental characters of I tv of level

n;
• for every i = 1, . . . , n the inequality 0 ≤ ei ≤ e holds.

Remark 6.5 Raynaud’s theorem is usually stated for places of good reduction. How-
ever, as shown in [18, Lemma 4.9], the extension to the semi-stable case follows easily
upon applying results of Grothendieck [9].

Theorem 6.6 Let A/K be an abelian surface over a number field K . Given a finite
group G, we write exp(G) = lcm{ord(g) : g ∈ G}.
(1) Let � > 2[K : Q] be a prime. If A has semi-stable reduction at a place v of K of

characteristic �, then exp(PG�) ≥ � − 1

[K : Q] .
(2) Without the assumption of semi-stable reduction, we have

exp(PG�) ≥ 1

12

� − 1

[K : Q]
for every prime � > 24[K : Q].

Proof We first show that the first statement implies the second. Let L/K be a min-
imal extension of K over which A acquires semi-stable reduction at some place
of characteristic �. Since � > 5, by Theorem 6.3 we have [L : K ] ≤ 12 (hence
[L : Q] ≤ 12[K : Q]), and since clearly exp(Pρ�(GK )) ≥ exp(Pρ�(GL)) the claim
follows from part (1) applied to A/L .

We now prove part 1. Consider the action of an inertia group Iv at v on A[�]. If the
wild inertia subgroup (which is pro-�) acts non-trivially, then G� contains an element
of order �, and since ker(G� → PG�) has order prime to �we see thatPG� contains an
element of order �, so that exp(PG�) ≥ � and we are done. We may therefore assume
that the wild inertia subgroup acts trivially, hence that the action of Iv on A[�] factors
through I tv , the tame inertia quotient. Recall that this is a pro-cyclic group, hence all
its finite homomorphic images are cyclic.

The representation ρ� induces, by restriction to Iv and then passage to the quotient
I tv , a group homomorphism (whichwe still denote by ρ�) from I tv toG�. By composing
with the projection G� → PG�, we obtain a map φ : I tv → PG�, and it suffices to
show that the image of this map has order at least �−1

[K :Q] . Indeed, the image of this map
is cyclic, hence exp(PG�) ≥ exp(φ(I tv)) = |φ(I tv)|. Since |φ(I tv)| = [I tv : ker φ], we
now want to study the kernel of φ. Furthermore, since [K : Q] ≥ e(v|�), it suffices to
show the theorem with [K : Q] replaced by the ramification index e := e(v|�).

If σ ∈ I tv lies in the kernel of φ, then ρ�(σ ) is a scalar matrix. Notice that A[�] is
a semisimple I tv-module, because ρ�(Iv) has no elements of order �. Write A[�] ∼=
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⊕
Wi , where Wi is irreducible and of dimension li . By Theorem 6.4, the eigenvalues

of ρ�(σ )|Wi are given by the conjugates of ψi = ϕ
ai
li
, where ϕli is a fundamental

character of level li and if we write ai = ai,0 + ai,1� + · · · + ai,li−1�
li−1 we have

0 ≤ ai, j ≤ e. Moreover, if i > 1 then we cannot have ai,0 = . . . = ai,li−1 (otherwise,
ψi = χ

ai,0
� would take values in F

×
� and Wi would not be irreducible, see also [15,

Proposition 3.15]). We distinguish several cases:

(1) At least one li is 2 or more. Without loss of generality, assume that l1 ≥ 2, and
let ϕb = ϕ

a1
l1

be a character giving one of the eigenvalues of the action of inertia.

Write for simplicity ϕ := ϕl and b := a1 = b0 +b1�+· · ·+bl−1�
l−1, with every

bi in N ∩ [0, e] and l = l1.
Notice that ϕ(σ)b and ϕ(σ)�b are both eigenvalues of ρ�(σ ), so if ρ�(σ ) is a
scalar we must have ϕ(σ)b(�−1) = 1. Since I tv is a pro-cyclic group, the subgroup
H = {σ ∈ I tv : ϕ(σ)b = ϕ(σ)b�} is also pro-cyclic, and its index in I tv is

�l − 1
(
b(� − 1), �l − 1

) = �l − 1

(� − 1)
(
b0 + b1� + · · · + bl−1�

l−1, 1 + � + · · · + �l−1
) .

(10)

Now
(
b0 + b1� + · · · + bl−1�

l−1, 1 + � + · · · + �l−1
)
is equal to

(
(b0 − bl−1) + (b1 − bl−1)� + · · · + (bl−2 − bl−1)�

l−2, 1 + � + · · · + �l−1
)
,

where (b0 − bl−1)+ (b1 − bl−1)�+ · · ·+ (bl−2 − bl−1)�
l−2 is non-zero since we

already remarked that the bi cannot all be equal. It follows that the denominator

of (10) is at most e(1 + � + · · · + �l−2) = e �l−1−1
�−1 , and therefore |(I tv/H)| ≥

1
e

(�l−1)(�−1)
�l−1−1

≥ 1
e �(� − 1). It follows in particular that Pρ�(Iv) has order at least

�(�−1)
e > �−1

e .
(2) All li are equal to 1, at least one character ψi is trivial, and at least one

character ψ j is non-trivial. Write ψ j = χb
� with b > 0. For every σ ∈ I tv the

endomorphism ρ�(σ ) admits 1 as an eigenvalue, and therefore ker φ is contained
in {σ ∈ I tv : χb

� (σ ) = 1}, which has index (� − 1, b) in I . Since b ≤ e, the claim
follows.

(3) All li are equal to 1, and there are two indices i, j such that ai �= a j . Write
b1 = ai and b2 = a j . We have ker φ ⊆ {σ ∈ Iv : χ�(σ )b1−b2 = 1}, which again
has index at least �−1

(�−1,b1−b2)
≥ �−1

e in I tv .
(4) All li are equal to 1 and all the ai are equal to each other. We show that this

case cannot arise for � > 2[K : Q]. All the characters ϕ
ai
li
are equal to χb

� for some

b with 0 ≤ b ≤ e. Then for every σ ∈ I tv we have χ�(σ ) = λ(ρ�(σ )) = χ2b
� (σ ),

whence � − 1 | 2b − 1 ≤ 2e − 1 ≤ 2[K : Q] − 1, contradicting our assumption
� > 2[K : Q].

��
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Corollary 6.7 Let � ≥ C1 be a prime. Using the notation of Theorem 6.4, let
I = ρ�(Iv(K/K )). Suppose that all elements of I have four F�-rational eigenval-
ues. There exists e ≤ 12 such that, for all σ ∈ Iv(K/K ), the automorphism ρ�(σ

e)

has eigenvalues 1, 1, χ�(σ
e), and χ�(σ

e).

Proof In the notation of Theorem6.3, let e be the ramification index of v in L/K . Given
σ ∈ Iv(K/K ) we have σ e ∈ Iw := Iw(L/L), hence, by Theorem 6.4, ρ�(σ

e) acts
with eigenvalues that are (products of) fundamental characters of level at most 4. Since
ρ�(σ

e) has four rational eigenvalues for every σ , the fundamental characters are all of
level 1, so the eigenvalues are of the form χ

a1
� (σ e), . . . , χ

a4
� (σ ) for some exponents

0 ≤ ai ≤ e independent of σ . Choosing σ so that χ�(σ ) generates F
×
� we obtain

det ρ�(σ
e) = χ�(σ )2e = χ�(σ )e

∑
ai , which (since � ≥ C1) implies

∑4
i=1 ai = 2.

Finally, up to renumbering, the eigenvalues λ1, . . . , λ4 of a matrix in GSp4(F�) satisfy
λ1λ4 = λ2λ3, which then forces a1 = a2 = 0, a3 = a4 = 1 (up to reordering). ��

6.3 Preliminary lemmas

For simplicity of notation, from now on we write ρ instead of ρ�. We choose a place
v of K of characteristic � and let Iv < Gal

(
K/K

)
be a corresponding inertia group.

Lemma 6.8 Let A be an abelian surface defined over a number field K . Let � > C1 be
a prime and let G = ρ(Gal(K/K )). Assume that (A, �) is a strong counterexample, so
that G is Hasse. The order of PG is strictly greater than 27 · 32 · 52. Up to conjugacy,
G contains only block-diagonal and block-anti-diagonal matrices, with blocks that
are diagonal or anti-diagonal. The matrices whose multiplier is a square are block-
diagonal, and the matrices whose multiplier is not a square are block-anti-diagonal.
Moreover,

• If � ≡ 1 (mod 4), then G is contained in a group as in Lemma 4.12, case (1).
• If � ≡ 3 (mod 4), then G is contained in the group described in Lemma 4.13.

Every element of G has four rational eigenvalues and λ(G) = F
×
� . Finally, G contains

a matrix M of the form

(
0 x
y 0

)
such that the following all hold: x and y are either

both diagonal or both anti-diagonal, λ(M) generates F
×
� , and M4 is not a scalar.

Proof Since � is unramified in K by the assumption � > C1, we have that themultiplier
of G is χ�(Gal

(
K/K

)
) = F

×
� . As (A, �) is a strong counterexample, it follows that

up to conjugacy G is contained in one of the groups described in Theorem 5.5. By
Theorem 6.6, the order of PG is greater than 27 · 32 · 52 since � > C1. So, if � ≡ 3
(mod 4), then G is necessarily contained in the group described in Lemma 4.13. If
� ≡ 1 (mod 4), then G is contained in a group as in Lemma 4.12, case (1). From
these explicit descriptions the first part of the lemma follows easily.

Let M = ρ(σ) be an element in ρ(Iv) such that λ(M) generates F
×
� . Such an

element exists because � is unramified in K (since � > C1). By Corollary 6.7, M4e

is not a scalar, hence M4 is not a scalar. Since the multiplier of M is not a square,

M is a block-anti-diagonal matrix of the form

(
0 x
y 0

)
. By what we already proved,
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x and y are diagonal or anti-diagonal. We just need to show that it is impossible for
x to be diagonal and y anti-diagonal (or vice-versa). If this were the case, by direct
computation M4 would be a scalar, contradiction. ��
Lemma 6.9 Let G be as in Lemma 6.8 and let M be as in the conclusion of that lemma.
The matrix M has four different eigenvalues.

Proof The characteristic polynomial of M is x4 + cx2 + det(x) det(y) for some c ∈
F�. By Lemma 4.10, det(x) det(y) = λ2 with λ /∈ (F×

� )2. Letting x0 be a rational
eigenvalue of M , the eigenvalues are±x0,±λ/x0. Note that x0 �= −x0 and x0 �= λ/x0
since λ is not a square. If x0 �= −λ/x0, then M has four different eigenvalues. If
x0 = −λ/x0, then x0 = ±√−λ and the eigenvalues are ±√−λ with multiplicity 2.
Hence M2 = −λ, contradicting the fact that M2 is not a scalar. ��
Given a ring R, we will denote by Nilrad(R) the ideal of nilpotent elements.

Lemma 6.10 Let R = EndK (A) be an order in a field. If � is ramified in R ⊗ Q

or it divides the conductor of R, then Nilrad(R ⊗ F�) is non-trivial and Gal(K/K )-
invariant.

Proof The assumptions imply that R ⊗ F� is not a product of fields. The ring R ⊗ F�

is finite, hence Artinian. Every Artinian ring can be written as a product of Artinian
local rings. Hence, R ⊗ F� is isomorphic to

∏
Ai , where at least one of the Ai is not

a field, hence contains a non-trivial non-invertible element. Since Nilrad(R ⊗ F�) =∏
i Nilrad(Ai ), the claim follows from the well-known fact that a finite local Artinian

ring A with a non-zero non-invertible element has non-trivial nilradical. Therefore,
Nilrad(R ⊗ F�) is Gal(K/K )-invariant because the condition xn = 0 clearly is. ��
Lemma 6.11 Any group G as in Lemma 6.8 contains at most 4(� − 1)2 diagonal
matrices having at most 3 distinct eigenvalues.

Proof Assume � ≡ 3 (mod 4), so that G is contained in the group described in
Lemma 4.13. Then, the eigenvalues of a diagonal matrix are μδ±i , μδ± j where μ ∈
F

×
� , the number i + j is even, and δ is a generator of F

×
� . If a 4× 4 matrix has at most

three different eigenvalues, then two of them are equal.
If δi = δ j , then we have �−1 choices for i , one choice for j and (�−1)/2 choices

for μ (up to sign). So, there are (�−1)2/2 matrices such that δi = δ j . The same holds
for every other pair of eigenvalues. Since there are 6 pairs to consider, there are at
most 3(� − 1)2 diagonal matrices with at most three different eigenvalues.

If instead � ≡ 1 (mod 4), then G is in particular contained in a group as in
Lemma 4.12, case (1) . Then, the eigenvalues of a diagonal matrix are μδ±a, μδ±b.
Reasoning as above we see that there are at most (� − 1)2/2 matrices such that
δ±a = δ±b. Moreover, we have at most (� − 1)2 matrices such that δa = δ−a , and at
most (� − 1)2 matrices such that δb = δ−b. In conclusion, there are at most 4(� − 1)2

matrices with at most three different eigenvalues. ��
Lemma 6.12 Let ρ : G → GL(V ) be a 4-dimensional representation of a group G.
Assume that V splits as V = V1 ⊕ V2, where V1 and V2 are two-dimensional G-
invariant subspaces. Suppose that there is λ �= 0, 1 and an element g of G such that
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ρ(g)(v1) = v1 for all v1 ∈ V1 and ρ(g)(v2) = λv2 for all v2 ∈ V2. Then at least one
of the following holds:

(1) V1 and V2 are the only G-invariant subspaces of dimension 2;
(2) there exists a G-invariant subspace of dimension 1.

Proof The assumptions imply that g commutes with every h ∈ G: the restrictions of
g, h to V1, V2 commute since g|Vi is a scalar. Notice that V1, V2 are the eigenspaces of
g. Since g is in the center, every element of G preserves the eigenspaces of g, hence
every G-invariant subspace W splits as (W ∩ V1) ⊕ (W ∩ V2), which easily implies
the statement. ��
Lemma 6.13 Let G be a group as in Lemma 6.8. The subgroup D of diagonal matrices
in G is normal. If � ≡ 3 (mod 4), then G/D ∼= (Z/2Z)2. If � ≡ 1 (mod 4), then
G/D ∼= D4 or G/D ∼= (Z/2Z)2.

Proof First note that if M is a 2 × 2 diagonal matrix and N is a 2 × 2 diagonal or
anti-diagonal matrix, then NMN−1 is diagonal. From this it follows easily that D
is normal in G. Assume � ≡ 3 (mod 4). In this case, D has index 4, with cosets
represented by

(
A 0
0 A−T

)
,

(
0 A

A−T 0

)
,

(
B 0
0 B−T

)
,

(
0 B

B−T 0

)

with A (resp. B) diagonal (resp. anti-diagonal). Note that every one of these cosets
must appear since G acts irreducibly. Therefore, G/D has order 4 and every element
has order that divides 2, so G/D ∼= (Z/2Z)2.

Assume now � ≡ 1 (mod 4). As we showed at the end of the proof of Lemma 4.12,
there are eight possible cosets, namely

(
r1 0
0 r2

)
,

(
0 xr1
yr2 0

)
,

(
s1 0
0 s2

)
,

(
0 xs1
ys2 0

)

(
r1 0
0 s2

)
,

(
0 xr1
ys2 0

)
,

(
s1 0
0 r2

)
,

(
0 xs1
yr2 0

)

with ri diagonal, si anti-diagonal, and x and y diagonal. As we observed in Lem-
mas 4.12 and 6.8, G must contain elements from each of the first 4 cosets since it
acts irreducibly. From this it follows easily that either G/D has order 4, in which case
G/D ∼= (Z/2Z)2, or it has order 8, and is then isomorphic to D4. ��
Lemma 6.14 Let G be a group as in Lemma 6.8 and let G ′ be a subgroup of index 2
of G such that G ′ acts reducibly on A[�]. Let D < G be the subgroup of diagonal
matrices of G and D′ ≤ G ′ be the subgroup of diagonal matrices of G ′. Assume
that G ′ contains a block-anti-diagonal matrix whose square is not a scalar. Then,
[G ′ : D′] = 2.

Proof We assume that [G ′ : D′] �= 2 and aim for a contradiction. By Lemma 6.13 we
have [G : D] = 4 or 8, so [G ′ : D′] = 4 or 8. In both cases one can easily check
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that G ′ contains a matrix of the form M =
(
x 0
0 y

)
with x and y both anti-diagonal.

Let V1 = 〈e1, e2〉 and V2 = 〈e3, e4〉. Let H ′ < G ′ be the subgroup of block-diagonal
matrices and consider the action of H ′ on V1 and on V2. There are two possibilities:
H ′ acts reducibly on both V1 and V2, or it does not.

• Assume that H ′ acts reducibly on V1 and V2. We have V1 = V1,1⊕V1,2, with each
of the two 1-dimensional subspaces invariant under the action of H ′. Denote by H ′

1
the projection of H ′ to GL(V1) ∼= GL2(F�). All elements in H ′

1 are simultaneously
diagonalisable by the assumption that H ′ acts reducibly on V1, hence in particular
H ′
1 is commutative. Since anti-diagonal matrices commute if and only if they differ

by a scalar, every diagonal matrix in H ′
1 is a scalar. The same holds for V2, so the

diagonal matrices in H ′ (hence also in G ′) are block-scalar.
Suppose first that � ≡ 1 (mod 4). All the diagonal matrices in G are of the form

M = μ

⎛

⎜⎜
⎝

δa 0 0 0
0 δ−a 0 0
0 0 δb 0
0 0 0 δ−b

⎞

⎟⎟
⎠

where δ is a generator of F
×
� . Since M ∈ G ′ must be block-scalar, then necessarily

a and b are equal to 0 or (� − 1)/2. Hence |PD′| ≤ 2 and |PD| ≤ 4 since
[D : D′] ≤ 2. So, |PG| ≤ 32 since [G : D] ≤ 8 (see Lemma 6.13), contradiction.
Suppose instead that � ≡ 3 (mod 4). LetM ∈ G ′ be a block-anti-diagonal matrix.
Using Eq. (9) one can easily check that, if M2 is block-scalar, then it is a scalar. So,
the square of every block-anti-diagonal matrix in G ′ is a scalar. This contradicts
the hypothesis.

• Without loss of generality, assume that H ′ acts irreducibly on V1. Let χ be the
character of the representation of G on A[�]. By Lemma 6.8, all the eigenvalues of
every element ofG areF�-rational, hence by Proposition 3.9we have 〈χ, χ〉G = 1.
Since [G : G ′] = 2 we have 〈χ, χ〉G ′ ≤ 2 and since G ′ acts reducibly we have
〈χ, χ〉G ′ = 2. Observe that χ(g′) = 0 for all g′ ∈ G ′ \ H ′ and 2|H ′| = |G ′|.
Therefore, 〈χ, χ〉H ′ = 4. Let χ1, χ2 be the characters of the action of H ′ on
V1, V2, so that χ |H ′ = χ1 + χ2. The assumption that H ′ acts irreducibly on V1
gives 〈χ1, χ1〉H ′ = 1. Combined with 〈χ1 + χ2, χ1 + χ2〉H ′ = 4, this gives
〈χ1, χ2〉H ′ > 0, which implies χ1 = χ2. In particular, H ′ acts irreducibly also on
V2.
Assume first � ≡ 3 (mod 4). Every diagonal matrix of H ′ is of the form

M(i, j) := μ

(
A(i, j) 0

0 A(i, j)−T

)
.

So, χ1(M) = δi + δ j and χ2(M) = δ−i + δ− j . We have χ1(M) = χ2(M) and
χ1(M2) = χ2(M2) and this happens only if 2(i + j) ≡ 0 (mod � − 1). Observe
that i+ j �≡ (�−1)/2 (mod �−1) since (�−1)/2 is odd and i+ j is even byEq. (9).
Hence, i + j ≡ 0 (mod � − 1). So, the matrices in H ′ are of the form M(i,−i).
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Let H be the subgroup of block-diagonal matrices of G, so that H ′ has index ≤ 2
in H . If all the diagonal matrices in H are of the form M(i,−i), then using the
character formula as above shows thatG acts reducibly on A[�], contradiction. So,
H contains a diagonal matrix of the form M(i0, j0)with i0+ j0 �≡ 0 (mod �−1).
Since H ′ has index ≤ 2 in H , we have M2(i0, j0) ∈ H ′ and then 2i0 + 2 j0 ≡ 0
(mod � − 1). This happens only if i0 + j0 ≡ (� − 1)/2 (mod � − 1), which is
absurd as already noticed.
Assume now � ≡ 1 (mod 4). Note that, since χ1 = χ2, the group H ′ contains

no matrices of the form

(
ra

s1

)
where s1 is a symmetry in Q2(�−1), unless H ′ is

a sub-direct product of Q8 × Q8. In this case, |G| = 4|H ′| ≤ 28, contradicting
Lemma 6.8. Therefore, the block-anti-diagonal matrices inG ′ are of the formM =(
0 x
y 0

)
with x and y both diagonal or both anti-diagonal. Hence, [G ′ : D′] = 4.We

will denote by diag(a, b, c, d) the diagonal matrix with diagonal entries a, b, c, d.

Let M1 =
(
0 x
y 0

)
be a matrix inG ′ with x and y diagonal, and det x = det y /∈ F

2
� .

Such a matrix exists since [G ′ : D′] = 4. If M2
1 is a scalar, say M2

1 = λ, then
λ2 = det x det y. But det x det y = (det x)2 /∈ F

×4
� , while λ2 is a fourth power

since λ is an eigenvalue of xy, which is a square by Remark 3.8. So, M2
1 cannot

be a scalar. Hence, M2
1 = diag(a, b, a, b) with a �= b. Similarly, G contains a

matrix M2 =
(
0 x2
y2 0

)
with x2 and y2 anti-diagonal and M2

2 = diag(a, b, b, a)

with a �= b. Note that M2 ∈ G ′ for all M ∈ G since G ′ is normal of index
2. Let v = (x ′, y′, z′, w′)T be a non-zero vector in a G ′-invariant subspace W
of dimension ≤ 2 (in fact, dimW = 2 by Clifford’s theorem). The subspace
spanned by v, diag(a, b, a, b)v and diag(a, b, b, a)v contains at least one of the
basis vectors ei . We assume e1 ∈ W , the other cases being identical. Multiplying
e1 by a block-diagonal but non-diagonal matrix in G ′ we have that e2 ∈ W . So,
W = 〈e1, e2〉. Multiplying e1 by an anti-block-diagonal we have that e3 ∈ W or
e4 ∈ W , contradiction.

��
Lemma 6.15 Let K be a number field and let (A, �) be a strong counterexample with
� > C1. Assume that there exists a degree-2 extension K ′ of K such thatρ(Gal(K/K ′))
acts reducibly. Assume that � is unramified in K ′. The following hold:

• There exist precisely two ρ(Gal(K/K ′))-invariant subspaces V1 and V2 of dimen-
sion 2.

• Let vK ′ be a place of K ′ and let L be a minimal extension of K ′ over which A
acquires semi-stable reduction at a place above vK ′ . Let vL be a place of L above
vK ′ and e = e(vL | vK ′) ≤ 12 be its ramification index. Choose σ in an inertia
group corresponding to vK ′ with the property that χ�(σ ) generates F

×
� and let

M = ρ(σ) ∈ Gal(K/K ′). Up to exchanging V1 and V2, we have M2e
|V1 = Id and

M2e
|V2 = χ�(σ

2e).
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Proof Up to conjugacy, the group G = ρ(Gal(K/K )) satisfies the assumptions of
Lemma 6.8. We set G ′ = ρ(Gal(K/K ′)). Assume first � ≡ 3 (mod 4). By Corol-
lary 6.7, the eigenvalues of M2e are 1, 1, χ�(σ

2e), χ�(σ
2e) (in some order). The

structure of the group described in Lemma 4.13 implies that M2e must be diagonal,
because the square of a block-anti-diagonal matrix is diagonal and 2e is even. Consider
the diagonal entries of M2e (that is, its eigenvalues, taken in a specific order). Assume

that the first two diagonal entries of M2e are equal. If M = μ

(
0 B(i, j)

B(i, j)−T 0

)
,

then 2(i − j) ≡ 0 (mod � − 1) and M2e is a scalar. If M = μ

(
0 A(i, j)

A(i, j)−T 0

)
,

then M2e is a scalar. This is a contradiction since �−1 > 24 ≥ 2e and the eigenvalues
are 1, 1, χ�(σ

2e), χ�(σ
2e). So, we can assume that M2e is diagonal with eigenvalues

1, χ�(σ
2e), χ�(σ

2e), 1 or χ�(σ
2e), 1, 1, χ�(σ

2e). Lemma 6.14 implies that the matri-
ces in G ′ are either diagonal or block-anti-diagonal with anti-symmetric matrices as
blocks (indeed, in the notation of that lemma we have [G ′ : D′] = 2. If the non-trivial
coset consisted of block-anti-diagonal matrices whose blocks are diagonal, M2 would
be a scalar). This implies that V1 = 〈e1, e4〉 and V2 = 〈e2, e3〉 are G ′-invariant. We
are in the hypotheses of Lemma 6.12, and there is no invariant subspace of dimension
1 since G acts irreducibly and G ′ has index 2 in it. Hence V1 and V2 are the only two
invariant subspaces of dimension 2. Moreover, the eigenvalues of M2e on V1 are either
1, 1 or χ�(σ

2e), χ�(σ
2e). The case � ≡ 1 (mod 4) is similar. ��

6.4 Real multiplication

Theorem 6.16 Let A be an abelian surface over a number field K . The following hold:

(1) Assume that EndK (A) = O with O an order in the real quadratic field L =
Q(

√
d). Let � > C1 be a prime. There exists an extension K ′/K, of degree at most

2, such that EndK (A) = EndK ′(A). If � is unramified in K ′, then (A, �) is not a
strong counterexample. In particular, if all the endomorphisms of A are defined
over K and � > C1, then (A, �) is not a strong counterexample.

(2) Assume that EndK (A) contains an orderO in the (not necessarily real) quadratic
field L = Q(

√
d). If � > C1, then (A, �) is not a strong counterexample.

Proof We begin with the proof of part (1). Let c be the conductor of O inside OL .
Define O� = O ⊗ F�.

• If � divides c or is ramified inO�, then by Lemma 6.10 we have that Nilrad(O�) ⊂
O� is nontrivial and Galois-stable, hence so is the subspace Nilrad(O�) · A[�] of
A[�]. Thus (A, �) is not a strong counterexample.

• If � � c splits in L , then O�
∼= F� × F�. Let π1, π2 be the idempotents of O� cor-

responding to the idempotents (1, 0), (0, 1) of F� × F�. The non-trivial subspaces
V1 = π1A[�] and V2 = π2A[�] are Gal(K/K ′)-stable. If K ′ = K we immediately
have a contradiction.Otherwise, byLemma6.15 there is an elementM2e = ρ(σ 2e)

in ρ(Gal
(
K ′/K ′

)
) that acts on V1, V2 with eigenvalues 1, 1 and δ2e, δ2e (or vice-

versa), where δ is a generator of F
×
� and e ≤ 12. On the other hand, by [23, Lemma
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4.5.1], we have that det(ρ(σ 2e)
∣∣ V1) = det(ρ(σ 2e)

∣∣ V2) = χ�(σ
2e) = δ2e. Thus

we have δ2e = 1, which contradicts the fact that 0 < 2e ≤ 24 < � − 1.
• If � � c is inert in L we haveO�

∼= F�2 and the natural action ofO� on A[�] endows
it with the structure of an F�2 -vector space of dimension 2. Fix an isomorphism
j : A[�] → F

2
�2
. For every matrix M ∈ GL4(F�) that acts F�2 -linearly on A[�],

we also denote by j(M) the corresponding matrix in GL2(F�2).

Let G ′ = ρ(Gal
(
K ′/K ′

)
) be the subgroup (of index ≤ 2) of G that acts F�2 -

linearly on A[�]. Let M ∈ G ′ and let v ∈ A[�] be an eigenvector with eigenvalue
λ. Observe that λ ∈ F� by Lemma 6.8 and that j(M) · j(v) = λ j(v), so each
eigenvalue of M is also an eigenvalue of j(M). Thus, M has at most two different
eigenvalues.
Assume that (A, �) is a strong counterexample. Up to conjugacy we may then
assume that G is as in Lemma 6.8. Let M be the element of G whose existence
is assured by that result: by Lemma 6.9, M has four different eigenvalues, contra-
diction.

For part (2), in the first two cases we immediately get nontrivial Galois-invariant
subspaces defined over K , while the third case is handled exactly as above. ��

6.5 Squares of elliptic curves

We will need the following lemma, that is contained in [8, Proposition 4.7]:

Lemma 6.17 Let K be a number field and let A/K be an abelian surface such that
AK is isogenous to the square of an elliptic curve E without CM. There exists an
extension K ′/K of degree at most 3 such that AK ′ is either isogenous to the product
of two elliptic curves or satisfies that EndK ′(A) ⊗ Q is a quadratic field. Moreover,
this quadratic field can be taken to be either real or equal to Q(ζn) with n ∈ {3, 4, 6}.
Lemma 6.18 In the setting of the previous lemma, suppose that R = EndK ′(A) is an
order in a quadratic field. Let � > 2 be a prime that does not divide the conductor of R
and splits in R⊗ Q. The action of R⊗ F�

∼= F
2
� decomposes A[�] as the direct sum of

two 2-dimensional sub-modules W1,W2, corresponding to the non-trivial idempotents

of F2
� . The determinant of the action ofGal

(
K ′/K ′

)
on each of W1,W2 is the product

of the cyclotomic character with a character of order dividing 4 or 6.
Similarly, if � divides the conductor of R or ramifies in R⊗Q, let x be a non-trivial

nilpotent element in R ⊗ F�. Let V be the kernel of the action of x on A[�]. Then V is

a 2-dimensional subspace with the following property: for all σ ∈ Gal
(
K ′/K ′

)
, the

determinant of ρ(σ | V ) is χ�(σ )ε(σ ) for some character ε of order dividing 4 or 6.

Proof When R⊗Q = Q(
√
d) is a real quadratic field, this follows (in a stronger form)

from [23, Lemma 4.5.1], see also the comments on page 784 of [23]. For the general
case, note that W1,W2 are the reduction modulo � of Z�-sub-modules W1,W2 (each
of rank 2) of T�(A), coming from the decomposition R ⊗ Z�

∼= Z
2
� , so it suffices to

prove that the determinant of the action of σ ∈ Gal
(
K/K

)
on Wi is given by the
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product of the �-adic cyclotomic character and a character of order dividing 4 or 6.
Since T�(A) embeds into T�(A) ⊗Z�

Q� =: V�(A), it suffices to work with the latter.
Let W1, W2 be the subspaces of V�(A) corresponding toW1,W2.

Let L be the minimal (Galois) extension of K over which all the endomorphisms
of A are defined. By [8, Theorem 3.4 and Table 8], the degree [L : K ] divides 8 or
12, and [L : K ′] divides 4 or 6 (indeed, if [L : K ] = 12 or 8, then K ′/K is a non-
trivial extension). There exists an L-isogeny A → E2, which induces an isomorphism
ψ : V�(A) → V�(E2) = V�(E)2. We will use ψ to identify W1, W2 to subspaces
of V�(E2) that we still denote by the same symbol. Note that ψ is equivariant for the
action of the absolute Galois group of L .

The hypothesis that � splits in Q(
√
d) implies that d is a square in Q�, say d = β2

with β ∈ Q
×
� . Let M ∈ End(V�(E2)) ∼= Mat2×2(End(V�E)) be the endomorphism

induced by the action of
√
d ∈ End(E2) ⊗ Q. Since E does not have complex mul-

tiplication, the endomorphisms of E2 are given by Mat2×2(Z), so M is of the form(
λ11 Id λ12 Id
λ21 Id λ22 Id

)
, where the λi j are rational numbers.

The subspaces W1, W2 can be described as the kernels of M − β, M + β. The

kernel of M − β =
(

λ11 − β λ12
λ21 λ22 − β

)
is the set of (x, y) ∈ V�(E) ⊕ V�(E) that

satisfy (λ11−β)x +λ12y = 0. Now observe that β cannot be a rational number (since
d is not a square in Q), so λ11 − β is non-zero. This shows that W1 = ker(M − β) is
the graph of the (Gal

(
L/L

)
-equivariant) map

V�(E) → V�(E) ⊕ V�(E)

y 	→
(

− λ12
λ11−β

y, y
)
,

so the determinant of the action of Gal(L/L) on W1 is the same as the determinant of
the action on V�(E), namely, the cyclotomic character. A similar argument applies to
W2, and shows that for i = 1, 2 one has det(σ | Wi ) = χ�(σ ) for all σ ∈ Gal(L/L).
Finally, consider the character εi (σ ) = det(σ | Wi ) · χ�(σ )−1, defined on all of

Gal
(
K ′/K ′

)
. By the above, ε is trivial on Gal(L/L), so its image has order dividing

[Gal(K ′/K ′) : Gal(K ′/L)] = [L : K ′]. As already observed, this quantity divides 4
or 6, which proves the lemma.

The second half of the statement is proved in the same way. ��
Theorem 6.19 Let K be a number field and let A/K be an abelian surface such
that AK is isogenous to the square of an elliptic curve E without CM. Let K ′ be
as in Lemma 6.17. If � is unramified in K ′ and � > C1, then (A, �) is not a strong
counterexample.

Proof Assume first that AK ′ is isogenous to the product of two elliptic curves. Then,
G ′ = ρ(Gal(K/K ′)) acts reducibly. If [K ′ : K ] is equal to 1 or 3, then by Clifford’s
theorem A[�] must be reducible, contradiction. If [K ′ : K ] = 2, let ψ : E ↪→ AK ′
be an elliptic curve defined over K ′ and contained in AK ′ . The map ψ induces an
injection E[�] ↪→ A[�] that gives a 2-dimensional G ′-invariant subspace V of A[�]
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on which the determinant of the Galois action is the mod-� cyclotomic character. By
Lemma 6.15, there exists M = ρ(σ) ∈ G ′ with λ(M) = δ that generates F

×
� and

such that det
(
ρ(σ 2e)

∣∣ V
)

= 1 or δ4e. But det
(
ρ(σ 2e)

∣∣ V
)

= χ�(σ )2e = δ2e, so

δ2e = 1, which contradicts the fact that 0 < 2e < � − 1.
Assume now that R = EndK ′(A) is an order in a quadratic field. If � ramifies in R

or divides its conductor, Lemma 6.10 implies that A[�] is reducible under the action
of Gal(K/K ′). If [K ′ : K ] is equal 1 or 3, then we conclude as above by Clifford’s
theorem. If [K ′ : K ] = 2, then we are in the hypotheses of Lemma 6.15. Reasoning
as in the proof of Theorem 6.16, but replacing [23, Lemma 4.5.1] with Lemma 6.18,
we find that there are a 2-dimensional subspace V of A[�], an element M2e = ρ(σ 2e),
and an element ζ ∈ F

×
� of order dividing 12 such that

det
(
ρ(σ 2e)

∣∣ V
)

= ζ δ2e = 1 or δ4e.

Raising to the 12th power, this implies δ24e = 1, which contradicts the fact that
0 < 24e ≤ 24 · 12 < � − 1. The same argument applies if � does not divide the
conductor of R and splits in R ⊗ Q. Finally, if � is inert, the proof is identical to the
proof of Theorem 6.16 in the inert case. ��

6.6 Quaternion algebra

Theorem 6.20 Let A be an abelian surface over a number field K . Assume that
EndK (A) is an order in a quaternion algebra and that � > C1. If EndK (A) is an
order in a quaternion algebra or an order in a quadratic field, then (A, �) is not a
strong counterexample. If EndK (A) = Z, then there is a field extension K ′/K of
degree 2 such that EndK ′(A) is an order in a quadratic field. If � is unramified in K ′,
then (A, �) is not a strong counterexample.

Proof Assume by contradiction that (A, �) is a strong counterexample. Let R =
EndK (A) and R = EndK (A) be the endomorphism rings of A over K and over
K . Write R� = R ⊗ F� and R� = R ⊗ F�. If R �= Z we are done by Theorem 6.16.
Assume instead that R = Z. Table 8 in [8] then shows that the Sato-Tate group of A/K
must be of type J (En) for some n ∈ {2, 3, 4, 6}. In this case, there exists a quadratic
extension K ′/K such that the Sato-Tate group of A over K ′ is of type En , and from
[8, Table 8] we see that EndK ′(A) ⊗ Q is an (imaginary) quadratic number field. Let
R′ = EndK ′(A) and R′

� = R′ ⊗ F�.
If the Jacobson radical J := rad(R�) of R� is non-trivial, then J is a Galois-

invariant ideal in R�, hence A[�][J ] := {x ∈ A[�] : j x = 0 ∀ j ∈ J } is a non-trivial,
Galois-invariant subspace of A[�] defined over K . This cannot happen since we are
assuming that (A, �) is a strong counterexample, hence we may assume that J = (0).
The condition J = (0) implies that R� is semisimple, that is, it is a direct product of
simple algebras. However, a simple algebra of dimension at most 3 is commutative,
and the product of commutative algebras is commutative, so R� cannot be a non-
trivial product. Therefore, R� is simple. As the Brauer group of finite fields is trivial,
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this implies that R� is a matrix algebra over some finite field F�k . Combined with
dimF�

R� = 4, this yields R�
∼= Mat2(F�). There are three cases:

• If � divides the conductor of R′
� or is ramified in R′

� ⊗Q, let x ∈ R′
� be a non-trivial

nilpotent element (which exists by Lemma 6.10). Let σ ∈ Gal(K/K ) and note
that σ(x) ∈ R′

�. Indeed, for all τ ∈ Gal(K/K ′), we have τ(σ (x)) = σ(x) since
σ−1τσ ∈ Gal(K/K ′) and x is defined over K ′. So, σ(x) is a nilpotent element
in R′

�, which implies σ(x) = bσ x for some bσ ∈ F
×
� (notice that the nilpotent

elements in R� form a properF�-subspace of R′
�, that has dimension 2). This shows

that the ideal (x) is stable under Gal
(
K/K

)
, hence ker(x) ⊆ A[�] is a nonzero

proper subspace of A[�] defined over K , contradiction.
• If R′

�
∼= F�2 , we proceed as in the proof of Theorem 6.16. A[�] acquires the

structure of anF�2 -vector space of dimension 2 andGal(K/K ′) actsF�2 -linearly on
it. So, each matrix in ρ(Gal(K/K ′)) has at most two rational eigenvalues. Choose
M ∈ G ′ such that λ(M) generates F

×
� . Proceeding as in the proof of Lemma 6.9,

we show that M2 is a scalar since it has at most two rational eigenvalues. This
contradicts Corollary 6.7.

• If R′
�

∼= F� × F�, then R′
� contains a non-trivial idempotent x . Note that x ∈

R′
� ⊆ R�

∼= Mat2(F�) and, after a change of basis, we can assume x =
(
1 0
0 0

)

since x2 − x = 0. Let y = 1 − x , and put W1 = x A[�] and W2 = yA[�]. So
W1 ⊕ W2 = A[�] and W1,W2 are Gal(K/K ′)-invariant. Let L be the smallest
field such that EndK (A) = EndL(A). From [8, Table 8], we have [L : K ′] | 12.
Now, we want to show that det(ρ(σ ) | W1) = χ�(σ ) for each σ in Gal(K/L).
Let 〈·, ·〉 be the Weil pairing and assume that 〈·, ·〉|W1 is non-degenerate. So, if
P1, P2 is a basis of W1, then 〈P1, P2〉 = ζ� for ζ� a primitive �-th root of unity.
For each σ ∈ Gal(K/L) we have

ζ
χ�(σ )
� = σ(ζ�) = 〈P1, P2〉σ = 〈P1, P2〉det(ρ(σ )|W1) = ζ

det(ρ(σ )|W1)
� . (11)

Assume now that 〈·, ·〉|W1 is degenerate. Let s =
(
0 1
1 0

)
∈ Mat2(F�) ∼= R�. Define

a bilinear form ψ on W1 by the formula ψ(·, ·) = 〈·, s·〉. Observe that the multi-
plication by s gives an isomorphism from W1 to W2, so ψ|W1 is non-degenerate,
since otherwise the Weil paring on A[�] would be degenerate. Proceeding as
in the proof of Lemma 3.3 of [5] (see in particular Step 3), one can show that
〈v, sw〉 = 〈sv,w〉 for all v,w ∈ A[�]. Hence, given v1, w1 ∈ W1, we have
ψ(v1, w1) = 〈v1, sw1〉 = 〈sw1, v1〉−1 = 〈w1, sv1〉−1 = ψ(w1, v1)

−1, since the
Weil pairing is anti-symmetric. Let P1, P2 be a basis ofW1, so thatψ(P1, P1) = 1
and ψ(P1, P2) is a primitive �-th root of unity since ψ is non-degenerate on W1.
Note thatψ(P1, P2)σ = ψ(Pσ

1 , Pσ
2 ) for each σ in Gal(K/L) because s is defined

over L . Proceeding as in Eq. (11), we conclude that det(ρ(σ ) | W1) = χ�(σ ) for
each σ in Gal(K/L).
In conclusion, det(ρ(σ ) | W1) = χ�(σ ) for each σ in Gal(K/L), independently
of whether 〈·, ·〉|W1 is degenerate or not. Given σ ∈ Gal(K/K ′), we have σ 12 ∈
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Gal(K/L) since [L : K ′] | 12 and then det(ρ(σ 12) | W1) = χ�(σ
12). Therefore,

for each σ ∈ Gal(K/K ′), there is a root of unity ζ of order dividing 12 such that
det(ρ(σ ) | W1) = ζχ�(σ ).
We now conclude as in the proof of Theorem 6.19. Let M = ρ(σ) ∈
ρ(Gal(K/K ′))withλ(M) = δ that generatesF

×
� , which exists because � is unram-

ified in K ′. So, det(ρ(σ ) | W1) = ζ δ with ζ a root of unity of order dividing 12. By
Lemma 6.15, W1 and W2 are the only Gal(K/K ′)-invariant subspaces of dimen-
sion 2 of A[�], and det(ρ(σ 2e) | W1) = 1 or δ4e, where e ≤ 12. Hence, δ12e = 1,
which contradicts the hypothesis � > C1.

��

6.7 Complexmultiplication by a quartic CM field

Lemma 6.21 Let k be a field and let G ′ be an abelian subgroup of GLn(k). If G ′
contains a diagonal matrix whose eigenvalues are all distinct, then G ′ consists entirely
of diagonal matrices.

Proof Basic linear algebra. ��
Lemma 6.22 Let A be an abelian surface defined over a number field K . Assume that
EndK (A) = R is an order in a quartic CM field. Assume that � is not ramified in
R ⊗ Q and does not divide the conductor of R. If � > C1, then (A, �) is not a strong
counterexample.

Proof Let K ′ be a cyclic extension of K such that EndK ′(A) = R with [K ′ : K ] | 4
(see [8, §4.3]) and let ρ(Gal(K/K ′)) = G ′. Let MT(A)(F�) = {x ∈ (R ⊗ F�)

× :
σ(x)x ∈ F

×
� } be the group of F�-rational points of the Mumford Tate group of A,

where σ denotes the automorphism of (R⊗F�)
× induced by complex conjugation on

R. Theorem 1.3 (2) in [17] gives

[MT(A)(F�) : MT(A)(F�) ∩ G ′] ≤ CK ,

where CK is a constant that depends only on K . In the notation of [17], we have
[K : E∗] ≤ [K : Q] and |F | = 1, as noticed in [17, §6.4]. We also have μ∗ ≤ 12,
because a field of degree 4 cannot contain more than 12 roots of unity. Thus we may
take CK = 12[K : Q]. By our assumptions on �, the ring R⊗F� is a product of fields.

• If R ⊗ F� = F
4
� , then up to reordering the factors F� we have σ(a, b, c, d) =

(b, a, d, c). In particular, σ(x)x ∈ F
×
� if and only if ab = cd �= 0, so

|MT(A)(F�)| = (� − 1)3.
Suppose by contradiction that (A, �) is a strong counterexample, so that—up
to conjugacy—we may assume that G = ρ(Gal

(
K/K

)
) is as in Lemma 6.8.

In particular, the subgroup of diagonal matrices in G has index at most 8. Let
D′ be the subgroup of diagonal matrices in G ′. We have |D′ ∩ MT(A)(F�)| ≥
1
8 |G ′ ∩ MT(A)(F�)| ≥ |MT(A)(F�)|/(8CK ) = (� − 1)3/(8CK ). By Lemma
6.11, the group D′ contains at most 4(�−1)2 matrices having at most three distinct



On the local-global principle for isogenies of abelian… Page 59 of 68    18 

eigenvalues. Since � > C1, we have (�−1)3/(8CK ) > 4(�−1)2. Therefore, there
is a matrix M ∈ D′ ∩MT(A)(F�) having four different eigenvalues. Moreover, G ′
is abelian by the theory of complex multiplication (see for example [28, Corollary
2 on p. 502]), soG ′ = D′ by Lemma 6.21. Let D be the group of diagonal matrices
in G. We have shown G ′ ≤ D. Moreover, since [G : G ′] ≤ 4 and [G : D] ≥ 4
by Lemma 6.21, we have G ′ = D. Hence, G/D = G/G ′ ∼= Gal(K ′/K ), which
is a contradiction, because the extension K ′/K is cyclic but the group G/D is not
(see Lemma 6.21).

• If R ⊗ F� = F�4 , then MT(A)(F�) = {x ∈ F
×
�4

: NF
�4/F

�2
(x) ∈ F

×
� }. Sup-

pose by contradiction that (A, �) is a strong counterexample. Letting H = {x ∈
MT(A)(F�) : x ∈ F

×
� }, we have [MT(A)(F�) : H ] ≥ � − 1. Note that

G ′ ∩ MT(A)(F�) ≤ H since every matrix in G ′ has a rational eigenvalue, and
the eigenvalues of x ∈ F

×
�4

acting on A[�] are given by the F�4/F�-conjugates of
x . It follows that [MT(A)(F�) : G ′ ∩ MT(A)(F�)] ≥ � − 1, which contradicts
� > C1 > CK .

• If R ⊗ F� = F�2 × F�2 , then

MT(A)(F�) = {(x, y) ∈ F
×
�2

× F
×
�2

: NF
�2/F�

(x) = NF
�2/F�

(y)}

if σ fixes the two primes of R ⊗ Q above � and

MT(A)(F�) = {(x, y) ∈ F
×
�2

× F
×
�2

: xy ∈ F
×
� }

if σ swaps them. Let H = {(x, y) ∈ MT(A)(F�) : x ∈ F
×
� , y ∈ F

×
� } and notice

that we have [MT(A)(F�) : H ] ≥ � − 1. As above we have G ′ ≤ H , and we
conclude as in the previous case.

��
Theorem 6.23 Let A be an abelian surface over a number field K . Assume that
EndK (A) = R is an order in a CM field. If � > C1, then (A, �) is not a strong
counterexample.

Proof If � is unramified in EndK (A) and does not divide the conductor of this order,
we conclude using Lemma 6.22. Otherwise, we use Lemma 6.10. ��

6.8 Proof of themain results

We can now easily conclude the proof of our main results.

Proof of Theorem 6.1 If EndK (A) is an order in a real quadratic field, the claim follows
from Theorem 6.16. If AK is isogenous to the square of an elliptic curve without CM,
we conclude using Theorem 6.19. If EndK (A) is an order in a quaternion algebra,
we apply Theorem 6.20. Finally, if EndK (A) is an order in a quartic CM field, the
conclusion follows from Theorem 6.23. ��
Lemma 6.24 Let A be an abelian surface over a number field K . If EndK (A) ⊗ Q ⊇
Q

2, then (A, �) is not a strong counterexample.
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Proof The assumption EndK (A) ⊗ Q ⊇ Q
2 implies that A is isogenous (over K )

to the product of two elliptic curves E1 and E2. By Corollary 2.4, this implies that
(E1 × E2, �) is a strong counterexample, but this is obviously a contradiction since
(E1 × E2)[�] ∼= E1[�] ⊕ E2[�] is not irreducible. ��
Proof of Corollary 6.2 If EndK (A) is larger than Z, then it contains an order in a
quadratic field or in Q

2 (see Sect. 2.1, and notice that a quartic CM field contains
a real quadratic field). The claim follows from Theorem 6.16 and Lemma 6.24. ��

6.9 Squares of CM elliptic curves

The goal of this section is to construct infinitely many strong counterexamples
(A/Q, �) with A geometrically isogenous to the square of a CM elliptic curve and �

unbounded. Such examples will be obtained as twists of E2, where E/Q is the elliptic
curve with Weierstrass equation y2 = x3 + x . The construction is reminiscent of
Katz’s examples in [12] that show that the local-global principle for the existence of
torsion points fails in dimension ≥ 3.

We begin by finding suitable Galois extensions of Q with Galois group D8 (the
dihedral group with 16 elements), which we will then use to construct our twists. The
following is a special case of [13, Theorems 5 and 6].

Theorem 6.25 Let F be a field of characteristic different from 2. Let a and b in F be
such that the following hold:

• a, b, and ab are not squares in F;
• b = a − 1;
• the equation X2 − aY 2 − 2Z2 − 2abV 2 = 0 has a solution in F with (X ,Y ) �=

(0, 0).

There exists q ∈ F∗ such that the Galois extension F(
√
a,

√
b,

√
2q(a + √

a))/F
has Galois group D4 and can be embedded in a D8-extension, cyclic over F(

√
b).

Lemma 6.26 Let � ≡ 1 (mod 4) be a prime. There exists a Galois extension L/Q

such that:

• Gal(L/Q) ∼= D8 = 〈r , s ∣∣ r8 = s2 = 1, srs = r−1〉;
• √

� and i are in L;
• r(i) = −i , s(i) = i , r(

√
�) = −√

�, and s(
√

�) = −√
�.

Proof By Fermat’s theorem on sums of two squares there exist integers X1 and X2
such that X2

1 + X2
2 = �. Let a = −X2

2/X
2
1 and b = −�/X2

1 = a − 1. The equation

X2 − aY 2 − 2Z2 − 2abV 2 = 0

has the solution (X ,Y , Z , V ) = (X2/X1, 1, X2/X1, 0). Hence, by Theorem 6.25,
there exists a Galois extension L/Q such that Gal(L/Q) ∼= D8, the three quadratic
sub-extensions of L/Q are Q(

√±�) and Q(i), and Gal(L/Q(
√−�)) is cyclic.

There is only one cyclic subgroup of order 8 of D8, hence only one quadratic field
E ⊂ L such that L/E is cyclic. We know E = Q(

√−�). Let r be an element of order



On the local-global principle for isogenies of abelian… Page 61 of 68    18 

8 in Gal(L/Q). If r fixes
√

�, then Q(
√

�) ⊆ L〈r〉 = E , contradiction. The same holds
for i . Hence, r(

√
�) = −√

� and r(i) = −i . Let s′ be an element of Gal(L/Q) that is
not a power of r . If s′ fixes

√−�, then the whole of Gal(L/Q) fixes this element, which
is impossible since

√−� /∈ Q. So we have s′(
√−�) = −√−�, hence s′(i) = −i and

s′(
√

�) = √
�, or s′(i) = i and s′(

√
�) = −√

�. In the two cases, we take respectively
s = s′r and s = s′. ��
Example 6.27 Take � = 13, X1 = 3 and X2 = 2, so that b = −13/9 and a = −4/9.
Theorem 6.25 applies with q = 9/2: the field

L ′ = Q(
√−4/9,

√−13/9,
√
2 · (9/2) · (−4/9 + 2i/3)) = Q(i,

√
13,

√
4 − 6i)

is a D4-extension of Q, and embeds in the D8-extension L given by the splitting field
of x8 − 96x6 − 1280x4 + 227328x2 + 8998912. One can check that L/Q(

√−b) is
cyclic.

Proposition 6.28 Let � > 5 be a prime with � ≡ 5 (mod 8). There exists an abelian
surface A, defined over Q and geometrically isogenous to the square of a CM elliptic
curve, such that (A, �) is a strong counterexample.

Proof Let E be the elliptic curve y2 = x3 + x . The prime � (which is in particular
congruent to 1 modulo 4) splits in Z[i], so, up to a choice of basis for E[�], the
action of the automorphism [i] : (x, y) 	→ (−x, iy) of E

Q
on E[�] is represented by

N =
(
i 0
0 −i

)
, where i is one of the two primitive fourth roots of unity in F

×
� . By [17,

Theorem 1.3], the image G� of the mod-� Galois representation attached to E/Q is
the normaliser of a split Cartan subgroup of GL2(F�). In particular, in the basis above
G� is given by the set {A(a, b), B(a, b) : a, b ∈ F

×
� }, where

A(a, b) =
(
a 0
0 b

)
, B(a, b) =

(
0 a
b 0

)
.

The subgroup ρE,�

(
Gal

(
Q(i)/Q(i)

) )
is given by those Galois automorphisms that

commute with the action of [i], that is, {A(a, b) : a, b ∈ F
×
� }. In other words, ρE (σ )

is of the form A(a, b) for suitable a, b if σ(i) = i , and it is of the form B(a, b)
otherwise. Moreover, in the two cases one has

χ�(σ ) = det ρE,�(σ ) = ±ab;

since −1 is a square modulo �, the quantity ab ∈ F
×
� is a square if and only if χ�(σ )

is a square, if and only if σ fixes
√

�.
We now construct the desired abelian surface A as a twist of E2. Let L be as in

Lemma 6.26 and identify End(E2
Q
) with Mat2×2(End(EQ

)). We define a cocycle c :
Gal(Q/Q) → Aut(E2

Q
) ⊂ End(E2

Q
) as the composition of the canonical projection

Gal
(
Q/Q

)
→ Gal(L/Q) ∼= 〈r , s ∣∣ r8 = s2 = 1, srs = r−1〉
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with the unique cocycle of Gal(L/Q) mapping r to

(
0 Id
[i] 0

)
and s to

(
0 Id
Id 0

)
. One

checks easily that these conditions do in fact define a cocycle. Let now A denote the

twist of E2 by the class of c in H1(Gal
(
Q/Q

)
,Aut(E2

Q
)), so that for σ ∈ Gal(Q/Q)

we have

ρA,�(σ ) = c(σ )ρE2,�(σ ).

We now show that (A, �) is a strong counterexample. We start by checking that

ρA,�(σ ) admits at least one F�-rational eigenvalue for every σ ∈ Gal
(
Q/Q

)
, distin-

guishing cases according to the image σ|L of σ in Gal(L/Q). Recall that we denote by

N =
(
i 0
0 −i

)
the matrix giving the action of [i] on E[�]. If σ|L = r , then σ(i) = −i ,

so for suitable a, b ∈ F
×
� we have

ρA,�(σ ) =
(
0 Id
N 0

)(
B(a, b) 0

0 B(a, b)

)
=

(
0 B(a, b)

N B(a, b) 0

)
.

Here ab is not a square in F
×
� , because by construction r (hence also σ ) does not fix√

�. Thus ρA,�(σ ) has the rational eigenvalue
√
iab: note that iab is a square since i

and ab are not (here we use � ≡ 5 (mod 8) to deduce that i is not a square modulo
�). We may reason similarly for all other cases. If σ|L = s, then σ(i) = i , so

ρA,�(σ ) =
(
0 Id
Id 0

) (
A(a, b) 0

0 A(a, b)

)
=

(
0 A(a, b)

A(a, b) 0

)

has the F�-rational eigenvalues ±a,±b. If σ|L = sr , then σ(
√

�) = √
� and σ(i) =

−i , so

ρA,�(σ ) =
(
N 0
0 Id

) (
B(a, b) 0

0 B(a, b)

)
=

(
N B(a, b) 0

0 B(a, b)

)

with ab ∈ F
×2
� , so that ρA,�(σ ) has the rational eigenvalues ±√

ab. If σ|L = 1, then
ρA,�(σ ) is represented by a diagonal matrix, hence admits F�-rational eigenvalues.

For the other cases, note that every element of D8 can be written as a power of r2

times an element of the set {1, r , s, sr}. From this and the fact that c(r2) is a diagonal
matrix with diagonal entries equal to ±i , it is easy to conclude that ρA,�(σ ) has an

F�-rational eigenvalue for every σ ∈ Gal
(
Q/Q

)
.

Let G = ρA,�

(
Gal

(
Q/Q

))
and let H < G be the subgroup of block-diagonal

matrices. Let χ1 (resp. χ2) be the character of the representation of H on V1 = 〈e1, e2〉
(resp. V2 = 〈e3, e4〉). Then, 〈χ1, χ1〉H = 〈χ2, χ2〉H = 1 since H acts absolutely
irreducibly on V1 and V2. Let σ be such that σ|L = r2 and such that ρE,�(σ ) = A(a, b)
with a �= b. To see that such an element exists, consider the set S := {ρE,�(σ0σ

′) :
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σ ′ ∈ Gal(Q/L)}, where σ0 is any element of Gal
(
Q/Q

)
restricting to r2 on L . This

is in bijection with ρE,�(Gal(Q/L)), which has order at least

1

[L : Q] |ρE,�(Gal
(
Q/Q

)
)| = 1

8
(� − 1)2 > � − 1,

so S must contain some matrix A(a, b) with a �= b (notice that r2 fixes i , so every
matrix in S is diagonal). On the other hand, any σ0σ

′ as in the definition of S restricts

to r2 on L . So,M = ρA,�(σ ) =
(
N A(a, b) 0

0 N A(a, b)

)
is in H and χ1(M) �= χ2(M).

Therefore, 〈χ1, χ2〉H = 0 and 〈χ1 + χ2, χ1 + χ2〉H = 2. Let χ be the character of
the representation of G. Then,

〈χ, χ〉G = 1

2
〈χ, χ〉H = 1

2
〈χ1 + χ2, χ1 + χ2〉H = 1

and so, thanks to Proposition 3.9, G acts irreducibly. By Lemma 1.2, (A, �) is a strong
counterexample. ��
Remark 6.29 With more work, the construction given in the proof can be adapted to
y2 = x3 + 1, and probably to all elliptic curves over Q with potential CM (in each
case, one would get a different congruence condition on the prime �).

Remark 6.30 A variant of the same construction can be used to obtain weak coun-
terexamples over many number fields K . Let E/Q be a CM elliptic curve, with CM
by an order in the quadratic imaginary field F , and let EK denote the base-change
of E to K . Suppose that K does not contain F . For � sufficiently large and split in
F , the image of ρEK ,� is the full normaliser of a split Cartan subgroup of GL2(F�).
Let L = Q(

√
�∗) be the quadratic subfield of Q(ζ�) and let A = ResK L/K (EL),

where Res denotes the Weil restriction of scalars. Using the fact that the mod-� Galois
representations attached to the abelian surface A/K are given by IndGK

GKL
(ρE,�), one

checks easily that (A, �) is a weak counterexample to the local-global principle for
isogenies.

6.10 The semistable case for K = Q

To finish our discussion of strong counterexamples, we will show the following non-
existence result for semistable counterexamples over the rational numbers (and other
fields of small discriminant):

Theorem 6.31 Let K be a number field such that every non-trivial extension L/K ram-
ifies at least at one finite place (for example K = Q). Let A/K be a semistable abelian
surface and let � �= 5 be a prime. The pair (A/K , �) is not a strong counterexample
to the local-global principle for isogenies.

The idea is that such a counterexample would lead to the existence of an everywhere
unramified extension of K . The proof relies on the following theorem:
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Theorem 6.32 (Grothendieck [10, Exposé IX, Proposition 3.5]) Let A be an abelian
variety over the number field K with semistable reduction at v, a place of characteristic
p. Let Iv ⊂ Gal(Q/Q) denote a choice of inertia group at v. The action of Iv on the
�n-division points of A for � �= p is rank two unipotent, that is, for σ ∈ Iv we have
(σ − 1)2A[�n] = 0. In particular, Iv acts through its maximal pro-� quotient, which
is procyclic.

Proof of Theorem 6.31 By Remark 3.4 and the assumption � �= 5 we may assume
that � ≥ 7. Since A is a strong counterexample, the group G� is a Hasse subgroup of
GSp4(F�) (here we also use Corollary 2.5 to deduce thatG� is contained in GSp4(F�)).
By Theorem 5.5 we have |G�| �≡ 0 (mod �). Theorem 6.32 then implies that for every
prime p �= � the inertia group at p acts trivially on A[�]. Moreover, the assumption
of semistability implies that the action of I�, the inertia group at �, factors through
the pro-cyclic quotient I t� (see Theorem 6.4), so ρ�(I�) is cyclic. Let L = K (A[�]).
The extension L/K is Galois with group G�. The fact that K has no everywhere
unramified extensions implies that G� is generated by its inertia subgroups (indeed,
let H be the subgroup generated by all the inertia subgroups. The subfield of L fixed
by H is an unramified extension of K , hence it is K itself, and by Galois theory this
implies H = G�). The only non-trivial inertia subgroup corresponds to the prime �

and is cyclic, so G� is cyclic, say generated by g. The condition that (A, �) is a strong
counterexample gives that g stabilises a non-trivial subspace of A[�], but then so does
all of G�, contradiction. ��

Remark 6.33 It is well known that the field of rational numbers satisfies the hypothesis
of the previous theorem. Other examples include quadratic imaginary fields of class
number one, real quadratic fields with conductor less than 67, and cyclotomic fields
with class number one: in all cases, this follows from the Odlyzko bounds on root
discriminants [21].
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Appendix

The goal of this appendix is to prove following stronger version of Theorem 5.5.

Theorem A.1 Let G < GSp4(F�) be a Hasse group with λ(G) = F
×
� . The subgroup

G1 = G ∩ Sp4(F�) acts reducibly.

Recall that exceptional Hasse groups are defined in Definition 5.1. From Lemma 5.4,
we know that if G1 is not exceptional, then it acts reducibly. Thus, we just need to
prove that G1 cannot be an exceptional Hasse group.

The set of exceptional groups is finite and fully classified in Table 1. In particular,
exceptional groups have cardinality bounded independently of �. Given a group G,
we denote by Aut(G) its automorphism group, by Inn(G) the subgroup of inner
automorphisms, and by Out(G) the quotient Aut(G)/ Inn(G).

Definition A.2 Let G1 < Sp4(F�). We say that G1 has property (P1) if the following
holds. For all [ϕ] ∈ Out(G1) of order 2 there exists a representative ϕ ∈ Aut(G1) of
[ϕ] such that one of the following holds:

• ϕ2 = Id;
• for all g1 ∈ G1 such that ϕ2 is conjugation by g1, there exists g′

1 ∈ G1 such that
all the eigenvalues λ of ϕ(g′

1)ϕ
2(g′

1)g1 satisfy λ(�−1)/2 �= −1.

Definition A.3 Let G1 < Sp4(F�) and let G̃1 be the natural immersion of G1 in
Sp4(F�2). We say that G1 has property (P2) if for all groups G̃ ⊆ Sp4(F�2) such

that [G̃ : G̃1] = 2, there exists g in G̃ \ G̃1 such that each eigenvalue μ of g has
multiplicative order k with v2(k) �= v2(� − 1) + 1.

Let G be a Hasse subgroup of GSp4(F�) with λ(G) = F
×
� . We will show that G ∩

Sp4(F�) satisfies neither (P1) nor (P2). Then, wewill show that each exceptional group
has property (P1) or (P2), and so G ∩ Sp4(F�) cannot be an exceptional group.

Lemma A.3 Let G1 be a Hasse subgroup of Sp4(F�). The center Z(G1) is contained
in {± Id}.
Proof Let g1 ∈ Z(G1) and let μ be one of its rational eigenvalues. As g1 commutes
with G1, the kernel of g1 − μ Id is a non-trivial G1-invariant subspace of F

4
� . Since

G1 is Hasse, we have ker(g1 − μ Id) = F
4
� and g1 = μ Id. From 1 = λ(g1) = μ2 we

obtain μ = ±1. ��
Lemma A.4 Let G ≤ GSp4(F�) be a group with λ(G) = F

×
� and G = Gsat. Assume

that G1 = G ∩ Sp4(F�) satisfies (P1) and is a Hasse subgroup of Sp4(F�). Then, G
is not Hasse.

Proof Let x ∈ G be an element whose multiplier δ generates F
×
� . Then, x normalises

G1 and conjugation by x , that we denote by ϕx , is an automorphism of G1.
Assume first that ϕx is an inner automorphism, so that there exists g1 ∈ G1 such

that ϕx = ϕg1 and hence ϕg−1
1 x = Id. Put x ′ = g−1

1 x and notice that (x ′)2/δ is in

the center of G1, since conjugation by x ′ is the identity. By Lemma A.3 we have
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(x ′)2 = ±δ, so (x ′)�−1 = −1 (recall that Sp4(F�) admits Hasse subgroups only for
� ≡ 1 (mod 4), see Theorem 3.2, so (� − 1)/2 is even). Therefore, x ′ ∈ G does not
have a rational eigenvalue and G is not Hasse.

Assume that ϕx is not an inner automorphism. We have x2/δ = g ∈ G1 and
ϕ2
x = ϕx2 = ϕg is an inner automorphism of G1. Thus, ϕx has order 2 in Out(G1). Let

ϕ ∈ Aut(G1) be the representative of the class of ϕx in Out(G1) given in Definition
A.2. We have ϕ = ϕxϕh for some h ∈ G1. Let y = xh ∈ G, so that ϕy = ϕ and
y2 = δg1 for some g1 ∈ G1. If ϕ2 = Id, then g1 = ± Id and y2 = ±δ. Then
y�−1 = − Id, so y does not have a rational eigenvalue and G is not Hasse. It remains
to study the case ϕ2 �= Id. Let g′

1 ∈ G1 be as in Definition A.2. Letting x ′ = yg′
1 ∈ G

we have

(x ′)2 = yg′
1yg

′
1 = yg′

1(y)
−1(y)2g′

1(y)
−2y2 = δϕy(g

′
1)ϕy2(g

′
1)g1.

Using the fact that δ(�−1)/2 = −1 and the property of g′
1 given in Definition A.2, we

see that (x ′)�−1 does not have 1 as an eigenvalue. It follows that x ′ does not have a
rational eigenvalue, hence G is not Hasse. ��
Lemma A.5 Let G ≤ GSp4(F�) be a group with λ(G) = F

×
� and G = Gsat. Assume

that the group G1 = G ∩ Sp4(F�) has property (P2) and is a Hasse subgroup of
Sp4(F�). Then, G is not Hasse.

Proof Let x ∈ G be an element whose multiplier δ generates F
×
� . Clearly x ′ :=

x/
√

δ has coefficients in F�2 and satisfies λ(x ′) = 1
δ
λ(x) = 1, so x ′ is in Sp4(F�2).

Furthermore, (x ′)2 is in G1 and normalises G1, so G̃ = G1 · 〈x ′〉 is a subgroup of
Sp4(F�2) and has order |G1| · |〈x ′〉|/|G1 ∩ 〈x ′〉| = 2|G1|. Let g ∈ G̃ \ G1 be as in
Definition A.3. So, g1 = √

δg ∈ G and g�−1
1 = −g�−1. By definition of g we know

that g�−1 does not have −1 as eigenvalue, so g�−1
1 does not have 1 as eigenvalue.

Hence, g1 does not have a rational eigenvalue and G is not Hasse. ��
Lemma A.6 Every exceptional Hasse subgroup G1 of Sp4(F�) satisfies at least one
among (P1) and (P2).

Proof By Theorem 3.2 and Table 1, there is only a finite number of groups to check,
which we do case by case by a computer calculation. Note that it is not enough
to consider the groups appearing in Table 1, but we also need to check all of their
subgroups. We briefly explain how our MAGMA script works.

We first check which exceptional groups have property (P1). This happens for the
vast majority of the exceptional groups. Then, for the remaining groups, we check
that they satisfy (P2). Note that checking if a group has (P2) is computationally more
expensive than checking if a group has (P1). To check if G1 has (P1) we use the
following algorithm.

• Let G1 be one of the exceptional groups that arise from the classification in The-
orem 3.2 with the condition � ≡ m (mod M). The group G1 is equipped with a
character χ on a 4-dimensional vector space V .
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• Let g1 ∈ G1 and let k be the order of one of its eigenvalues λ. The condition
λ(�−1)/2 = −1 implies v2(� − 1) = v2(k), so we check a sufficient condition that
ensures v2(k) �= v2(�−1). If v2(m−1) < v2(M), then v2(�−1) = v2(m−1) and
we check directly if v2(m − 1) �= v2(k). If v2(m − 1) ≥ v2(M), then v2(� − 1) ≥
v2(m − 1) = v2(M) and we check if v2(M) > v2(k).

• For all exceptional groups G1 and every class of order 2 in Out(G1), we select a
representative ϕ of the class and f ∈ G1 such that ϕ2 is conjugation by f . Note
that the choice of f is unique up to multiplication by ±1 thanks to Lemma A.3.
If ϕ2 �= Id, we then check that there exists an element g′ ∈ G1 such that the
2-adic valuation of the order of all eigenvalues of ϕ(g′)ϕ2(g′) f is different from
v2(�−1). Wemake use of the fact that λ = ±1 is a square mod � since exceptional
subgroups only exist for � ≡ 1 (mod 4).

To check if G1 has (P2) we use the following algorithm.

• Let G1 be one of the exceptional groups that arise from the classification in The-
orem 3.2 with the condition � ≡ m (mod M). The group G1 is equipped with a
character χ on a 4-dimensional vector space V .

• We list all pairs (G̃, χ̃) such that G̃ is an (abstract) group containing a subgroup
of index 2 isomorphic to G1, and χ̃ is a character such that χ̃|G1 = χ .

• Given a pair (G̃, χ̃), we check if there exists an element g ∈ G̃ \ G such that for
each eigenvalueμ, themultiplicative order k ofμ is such that v2(k) ≤ min{v2(m−
1), v2(M)}. Note that v2(� − 1) ≥ min{v2(m − 1), v2(M)}.

��
Proposition A.8 Let G be a maximal Hasse subgroup of GSp4(F�) with λ(G) = F

×
� .

Then, G1 = G ∩ Sp4(F�) is not an exceptional group.

Proof Assume by contradiction that G1 is exceptional. Note that Gsat is Hasse and
(Gsat)1 is exceptional. So, we just need to prove the proposition for G = Gsat. By
Lemma A.6, the group G1 satisfies (P1) or (P2). If G has (P1), we conclude using
Lemma A.4. If it has (P2), we conclude using Lemma A.5. ��
Proof of TheoremA.1 Follows from Proposition A.8 and Lemma 5.4. ��
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