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Abstract: We present a search for the lepton-flavor-violating decays B0
s → `∓τ±, where

` = e, µ, using the full data sample of 121 fb−1 collected at the Υ(5S) resonance with
the Belle detector at the KEKB asymmetric-energy e+e− collider. We use B0

sB
0
s events

in which one B0
s meson is reconstructed in a semileptonic decay mode and the other in

the signal mode. We find no evidence for B0
s → `∓τ± decays and set upper limits on

their branching fractions at 90% confidence level as B(B0
s → e∓τ±) < 14 × 10−4 and

B(B0
s → µ∓τ±) < 7.3×10−4. Our result represents the first upper limit on the B0

s → e∓τ±

decay rate.
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1 Introduction

The lepton-flavor-violating (LFV) decays B0
s → `∓τ±, where ` = e, µ, are forbidden in

the standard model (SM). Such decays can occur via neutrino mixing by loop and box
diagrams [1], but the predicted decay rates are far below current experimental capabilities.
Thus, any observations at current experiments would constitute an unambiguous signature
of new physics (NP). Recent results indicating possible lepton flavor universality violation
in B meson decay have been discussed in refs. [2, 3], where many NP models are proposed
to explain it. Such models allow significantly enhanced LFV decay rates that may be
detectable with current facilities. For example, the models containing a heavy neutral
gauge boson (Z ′) could lead to an enhanced B0

s → µ−τ+ branching fraction, up to 10−8

when only left- or right-handed couplings to quarks are considered, or of order 10−6 [4], if
both are allowed. In models with either scalar or vector leptoquarks, the prediction for the
branching fraction of B0

s → `−τ+ can be as large as 10−5 [5–7], depending on the assumed
leptoquark mass. It is imperative to search for signals of physics beyond the SM in all
possible avenues, and since the expected branching fraction of B0

s → e−τ+ may differ from
B0
s → µ−τ+ depending on models, it is important to search for both decay modes to obtain

additional information regarding the NP. To date, no experimental results for B0
s → e∓τ±

have been reported while an upper limit B(B0
s → µ∓τ±) < 3.4 × 10−5 at 90% confidence

level (C.L.) [8] has been reported by LHCb.
In this paper, we report a search for B0

s → `∓τ± decays using 121 fb−1 of data col-
lected by the Belle experiment at the KEKB asymmetric-energy e+e− collider [9, 10]. The
data were collected at an e+e− center-of-mass (c.m.) energy corresponding to the Υ(5S)
resonance mass.

2 Data sample and Belle detector

The Belle detector is a large-solid-angle magnetic spectrometer comprising a silicon vertex
detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov

– 1 –
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counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF),
and a CsI(Tl) crystal electromagnetic calorimeter (ECL). All these components are located
inside a superconducting solenoid providing a magnetic field of 1.5 T. An iron flux return
located outside the solenoid coil is instrumented with resistive plate chambers to detect
K0
L mesons and muons (KLM). A more detailed description of the detector and its layout

and performance can be found in refs. [11, 12].
We study the properties of signal events, identify sources of background, and optimize

selection criteria using Monte Carlo (MC) simulated events. These samples are generated
using EvtGen [13]. The detector response is simulated using the Geant3 framework [14].
We simulate 20 million B0

s → `∓τ± MC events to study the detector response and to
calculate signal reconstruction efficiencies. To estimate backgrounds, we use MC samples
of B(∗)

s B
(∗)
s and B(∗)

u,dB
(∗)
u,dX events, with Bs ↔ Bs, Bd ↔ Bd mixing [15], and e+e− → qq

(q = u, d, s, c) events. These samples, referred to as generic MC, are equivalent to six times
the data luminosity. The Belle data are converted into the Belle II format [16], and the
particle and event reconstruction are performed within the basf2 framework [17, 18] of the
Belle II experiment.

The B0
s and B0

s mesons are produced in the process e+e− → Υ(5S)→ B
(∗)0
s B

(∗)0
s , with

B∗0s → B0
sγ, B∗0s → B0

sγ and with fast B0
s ↔ B0

s mixing, such that half of the events contain
same flavor Bs pairs. The Υ(5S) resonance production cross section is 340±16 pb [19], and
fs, its total branching fraction for decays to B(∗)0

s B
(∗)0
s , is 0.201 ± 0.031 [15]. Therefore,

the Belle data sample is estimated to contain (16.6± 2.7)× 106Bs mesons.

3 Event selection and analysis overview

Hereafter, Bs refers to either B0
s or B0

s, and the inclusion of charge-conjugated modes
is implied. In this analysis, one Bs is reconstructed in a semileptonic decay mode B0

s →
D+
s `
−(X)ν` and used as a tag, where X stands for any particles such as π or a combination

of pions, and the signal Bs → `−τ+ is searched for in the mode τ+ → `+ντν`. We label
the primary and secondary leptons from the τ decay on the signal side Bs as `1 and `2,
and the lepton on the tag side as `3. In short, we search for Bs → `−1 τ

+ (→ `+2 ντν`2)
with B0

s tagged by the decay B0
s → D+

s `
−
3 (X)ν`3 . Figure 1 shows a schematic diagram of

the process, separated into signal and tag sides. To avoid biasing the results, all selection
criteria are determined in a “blind” manner, i.e., they are optimized using MC samples
only, before the experimental data in the signal region are revealed.

For charged particles, aside for pions from K0
S , the distance of nearest approach of

the track perpendicular to and along the beam direction, with respect to the nominal
interaction point, are required to be less than 0.5 cm and 2.0 cm, respectively. The K0

S

candidates are reconstructed by combining two oppositely charged particles (assumed to
be pions) with an invariant mass between 487 and 508 MeV/c2; this range corresponds to
approximately three standard deviations (±3σ) in the invariant mass resolution around the
nominal K0

S mass [15]. Such candidates are further subjected to a neural network-based
identification [20]. The π0 candidates are reconstructed from pairs of photons detected
as ECL clusters without any associated charged tracks in the CDC. The energy of each

– 2 –
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Figure 1. A schematic diagram of the process under study, separated into signal and tag sides.

photon is required to be greater than 50 MeV if the photon is detected in the barrel region
(32.2◦ < θ < 128.7◦, where θ is its polar angle), greater than 100 MeV if the photon is in
the forward endcap region (12.4◦ < θ < 31.4◦), and greater than 150 MeV if the photon
is in the backward endcap region (130.7◦ < θ < 155.1◦) [11, 12]. The invariant mass of
each photon pair is required to be between 120 and 150 MeV/c2; this range corresponds
to a window of approximately ±3σ in the invariant mass resolution around the nominal
π0 mass, and the reconstructed π0 momentum in the c.m. frame (p∗π0) must be greater
than 0.2 GeV/c. A mass constrained fit to the nominal π0 mass is performed to improve
momentum resolution.

To identify charged hardons, we use information on the light yield from the ACC,
crossing time from the TOF, and specific ionization from the CDC. This information is
combined into likelihoods LK and Lπ for a given track to be a K+ or π+, respectively. To
identify K+ or π+ tracks, we require LK/(LK + Lπ) > 0.6 or Lπ/(LK + Lπ) > 0.6. This
requirement is more than 93% efficient in identifying pions, with a K+ mis-identification
rate below 5%. Muon candidates are selected based on information from the KLM [21].
We calculate a normalized muon likelihood ratio Rµ = Lµ/(Lµ+Lπ+LK), where Lµ is the
likelihood for muons, and require Rµ > 0.9. This requirement has an efficiency of 85–92%
and a probability of misidentifying a hadron as a muon below 7%. Electron candidates are

– 3 –
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identified using the ratio of calorimetric cluster energy to particle momentum, the shower
shape in the ECL, the matching of the track with the ECL cluster, the specific ionization
in the CDC, and the number of photoelectrons in the ACC [22]. This information is used
to calculate a normalized electron likelihood ratio Re = Le/(Le + Lhad), where Le is the
likelihood for electrons and Lhad is a product of hadron likelihoods. We require Re > 0.9.
This requirement has an efficiency of 84−92% and a probability of misidentifying a hadron
as an electron below 1%.

For the signal side Bs → `−1 τ
+ (→ `+2 ντν`2), we require that the two leptons `1 and

`2 have opposite charges and that p∗1 > p∗2, p∗1 > p∗3, and p∗1 > 1.9 GeV/c, where p∗1, p∗2 and
p∗3 are the momenta of `1, `2 and `3 in the c.m. frame. To suppress background coming
from J/ψ → `+`−, the candidate is rejected if the invariant mass of the two leptons
M`1`2 satisfies M`1`2 ∈ [3.01, 3.12] GeV/c2 for the Bs → e−τ+(→ e+ντνe) mode, and
M`1`2 ∈ [3.05, 3.12] GeV/c2 for the Bs → µ−τ+(→ µ+ντνµ) mode. The wider asymmetric
veto interval for the electron mode is due to bremsstrahlung energy loss.

For the tag side B0
s → D+

s `
−
3 (X)ν`3 , the charge of `3 can be opposite to or the

same as `1, as Bs mixing produces equal numbers of opposite and same charge combi-
nations. However, we accept only combinations where the charges of `1 and `3 are the
same; this significantly reduces combinatorial background. We reconstruct Ds meson can-
didates with opposite charge to `3 from the following five decay modes: D+

s → φπ+,
K∗0K+, φρ0π+, K0

SK
+ and φρ+. Here, ρ0, ρ+, K∗0 and φ are reconstructed through

ρ0 → π+π−, ρ+ → π+π0, K∗0 → K−π+ and φ → K+K−, and candidates are required to
have a reconstructed invariant mass 625 MeV/c2 < Mπ+π−(π+π0) < 925 MeV/c2 for ρ0(ρ+),
845 MeV/c2 < MK+π− < 945 MeV/c2 for K∗0, and 1.01 GeV/c2 < MK+K− < 1.03 GeV/c2

for φ. The Ds candidate is then combined with an e or µ to form a Bs meson candidate.
Figure 2 shows the mass distribution of D+

s meson candidates. The mass of the D+
s candi-

date is required to be between 1.96 and 1.98 GeV/c2. These mass windows correspond to
±3σ in the invariant mass resolution around the nominal masses [15]. Figure 3 shows the
p∗1 distribution for Bs → e−τ+ and Bs → µ−τ+ after initial selections.

The background comes from the continuum e+e−→ qq process and e+e−→ B
(∗)0
s B

(∗)0
s ,

B(∗)B(∗)X. The continuum events have final-state particles momenta spatially correlated
in two directions forming jet-like structures, while particles from B

(∗)0
s B

(∗)0
s events are

distributed almost uniformly over the full solid angle in the c.m. frame. We use this
difference in the topology to suppress the continuum background. The background from
B

(∗)0
s B

(∗)0
s or B(∗)B(∗)X are suppressed using other variables characterizing the signal

decay chains. We form a single FastBDT [23] classifier trained using simulated samples
with the following discriminating variables as input: p∗2; p∗3; the extra energy from the
tracks and clusters not used for signal and tag reconstruction in the calorimeter; the sum
of the energy of the clusters and charged tracks in the c.m. frame; the missing energy
which is the absolute value of the sum of the four-momenta of all charged candidates;
the invariant mass squared of the sum of the four-momenta of all charged candidates;
(2E∗beamE

∗
Ds`3
−m2

Bs
c4−M2

Ds`3
c4)/(2|~p ∗Bs

||~p ∗Ds`3
|c2); the cosine of the angle between p∗1 and

p∗2; the mass of theD+
s candidate; and 16 modified Fox-Wolfram moments [24, 25] calculated

from the signal Bs daughters and the particles from the rest of the event. Here, E∗beam is the
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samples are normalized with respect to the data luminosity. The signal component corresponds
to B = 1× 10−2.
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Figure 3. The p∗1 distribution of signal MC, generic MC and data in Bs → e−τ+ (a) and Bs →
µ−τ+ (b) modes. The different background components in generic MC are indicated by different
colours as shown in the legend. The MC samples are normalized with respect to the data luminosity.
The signal components correspond to B = 1× 10−3.

beam energy in the c.m. frame, mBs is the nominal Bs mass, |~p ∗Bs
| =

(√
E∗2beam −m2

Bs
c2
)
/c,

and E∗Ds`3
, ~p ∗Ds`3

and MDs`3 are calculated from the reconstructed Ds`3 system.
These variables do not have a significant correlation with the signal extraction variable

p∗1. The FastBDT classifier output OFastBDT ranges from zero, where background events
peak, to one, where signal events peak. For each signal mode, we choose selection criteria on
OFastBDT that optimize a figure-of-merit (FOM) [26]. The FOM is defined as εsig/[(a/2) +√
NB], where a = 3, εsig is the reconstruction efficiency of signal events as determined from

MC simulation, and NB is the number of background events expected within the signal
region of p∗1 ∈ [2.1, 2.7] GeV/c. Figure 4 shows the FastBDT output distributions. Based
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Bs → µ−τ+ (b) modes. The different background components in generic MC are indicated by
different colours as shown in the legend. The MC samples are normalized with respect to the data
luminosity. The signal components correspond to B = 1× 10−2. The distributions are shown on a
logarithmic scale.

on FOM studies, we require OFastBDT > 0.90 for Bs → e−τ+ and OFastBDT > 0.94 for
Bs → µ−τ+ modes. These criteria reject 98% of the background events with 40% signal
loss. After applying all selection criteria, 8–9% of events have multiple signal candidates.
For these events, the candidate with the highest FastBDT output is retained. This criterion
is found to select the correct signal candidate 91% of the time for both decay modes. The
reconstruction efficiencies from the signal simulations are 0.032% and 0.031% for Bs →
e−τ+ and Bs → µ−τ+, respectively. Figure 5 shows the p∗1 distribution after applying
the selection on OFastBDT. We observe three events for Bs → e−τ+ and one event for
Bs → µ−τ+ in the signal region.

4 Systematic uncertainties

A summary of systematic uncertainties is shown in table 1. In order to estimate the
systematic uncertainty of the OFastBDT selection, we use 711 fb−1 data sample taken at the
Υ(4S) and reconstruct B− → D0π− decays, tagging the other side B+ by B+ → D0`+ν.
Here, the signal side D0 is reconstructed in the mode K−π+, while the tag side D0 is
reconstructed in the three decay modes D0 → K+π−, K0

Sπ
+π−, and K+π−π+π−. In this

study, π− from B− is treated as `1 in the signal mode, K− from D0 as `2, and π+ from
D0 is neglected. With these changes, the topology of these events becomes similar to our
signal mode, and we use the same MVA as for the signal without retraining. For this
control sample study, we apply MD0 ∈ [1.85, 1.88] GeV/c2 for both the D0 in the signal
side and D0 in the tag side, |∆E| < 0.05 GeV and Mbc > 5.2 GeV/c2. Here, Mbc and
∆E are defined by Mbc =

(√
E∗2beam − |~p ∗B|2c2

)
/c2 and ∆E = E∗B − E∗beam, where E∗B

and ~p ∗B are the energy and momentum of the reconstructed B meson in the c.m. frame.
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Figure 5. The p∗1 distribution of signal MC, generic MC and data in (a) Bs → e−τ+ and (b) Bs →
µ−τ+ modes. The different background components in generic MC are indicated by different colours
as shown in the legend. The MC samples are normalized with respect to the data luminosity. The
signal component correspond to B = 1× 10−3.

Source Bs → e−τ+ Bs → µ−τ+

B0
s → D+

s `
−ν` tag 15.0 15.0

FastBDT selection 3.3 3.7
Lepton ID 4.3 3.5
Tracking 0.7 0.7

τ → `ντν` branching fraction 0.2 0.2
Number of Bs 16.1 16.1

Total 22.7 22.6

Table 1. Estimated fractional systematic errors (%).

We extract the signals from a fit to Mbc with and without the OFastBDT selection. The
efficiencies for OFastBDT > 0.90 [0.94] that are used in Bs → e−τ+ [Bs → µ−τ+] are
calculated to be (69.3 ± 1.7)% [(64.7 ± 1.7)%] for MC and (69.9 ± 1.6)% [(65.6 ± 1.7)%]
for data. The uncertainty in the ratio of the data and MC efficiencies is assigned as the
systematic uncertainty; these values are 3.3% for Bs → e−τ+ and 3.7% for Bs → µ−τ+.

The semileptonic branching fraction of Bs is poorly known, so we estimate the system-
atic uncertainty of tagging from the data, using a control sample of B0

s → D+
s (X)`−ν`, i.e.

the Bs → `−τ+ mode is replaced by B0
s → D−s `

+ν`. In this control sample study, the signal
side B0

s → D−s `
+ν` is reconstructed using three Ds decay modes D−s → φ(→ K+K−)π−,

K0
SK
−, and K∗0(→ K+π−)K−. The tag-side B0

s → D+
s (X)`−ν` is reconstructed in the

same way as for the Bs → `−τ+ analysis. We require the mass of the tag-side Ds meson
candidate to be 1.96 < MDs < 1.98 GeV/c2. We also require the momentum of the tag-side
lepton to be greater than 1.0GeV/c and OFastBDT to be greater than 0.2. If there are mul-
tiple combinations in one event, the one with the highest FastBDT output is retained. We
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extract the signal by performing a one-dimensional unbinned fit to MDs on the signal side.
We find the signal yields 34.3 ± 6.7 and 37.0 ± 6.8 for MC and data events, respectively,
which are consistent within the uncertainty. These yields are approximately proportional
to the square of the tagging efficiency including the branching fraction of semi-leptonic Bs
decay to Ds, so we take half the uncertainty on the yields to be the systematic uncertainty
from the tag side reconstruction. Taking into account additional contributions due to dif-
ferent Ds reconstruction and FastBDT selection in this control sample study, we assign
15.0% as the systematic uncertainty from the tag side reconstruction. This uncertainty
includes the contribution of the uncertainty on the branching fraction of the semi-leptonic
Bs decay to Ds as well as the effect of the reconstruction and selection on Ds and `.

Other systematic uncertainties arise from the signal-side leptons `1 and `2. The sys-
tematic uncertainty due to charged track reconstruction is estimated to be 0.35% per track
by using the partially reconstructed D∗− → D0π−, D0 → π−π+K0

S and K0
S → π+π−

events [27]. The systematic uncertainties due to lepton identification are 4.3% and 3.5%
for Bs → e−τ+ and Bs → µ−τ+ decay modes, respectively. The systematic uncertainties
due to the τ decay branching fractions are 0.2% [15]. In addition, the systematic uncer-
tainty due to Bs meson counting is estimated as 16.1%. The total systematic uncertainty
is taken as the sum in quadrature of all individual contributions.

5 Results and summary

In the signal region, we find three events for Bs → e−τ+ and one event for Bs → µ−τ+,
as shown in figure 5. The expected number of background events in the signal region,
N exp

bkg , is estimated from the number of events in the sideband, scaled by the ratio of
events in the signal region and sideband without the OFastBDT selection as determined
from MC simulation. Here, the sidebands are defined as p∗1 ∈ [1.9, 2.1] GeV/c and p∗1 ∈
[2.7, 3.0] GeV/c. We find N exp

bkg = 0.68 ± 0.69 for Bs → e−τ+ and N exp
bkg = 0.77 ± 0.78

for Bs → µ−τ+. The number of observed events in the electron mode is larger but not
inconsistent with the expected number, and the probability of obtaining three or more
events with N exp

bkg = 0.68 ± 0.69 is 7.3%. The p∗1 distribution of the three events in the
electron mode is different from the expectation for the signal. Thus we calculate upper
limits on the branching fractions.

To calculate this limit, we use the POLE program [28, 29] with the relation B =
(Nobs − N exp

bkg)/(NBs × εsig), where Nobs is the number of the observed events, NBs is the
number of Bs mesons in the data (16.6±2.7)×106, and εsig is the signal efficiency including
the branching fraction of τ . The uncertainties on εsig and NBs listed in section 4, together
with the uncertainty of N exp

bkg , are taken into account in the upper limit estimation [28].
Since the uncertainty in fs is significant, we report the upper limit not only on the branching
fraction but also on fs × B(Bs → `−τ+). Table 2 summarizes the results, including the
upper limit.

To summarize, we have searched for the decays B0
s → `∓τ± using the Belle data

sample of 121 fb−1 collected at the Υ(5S) resonance. From the observed signal yields, we
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ε (%) N exp
bkg Nobs B fs × B

(×10−4) (×10−4)
Bs → e−τ+ 0.031± 0.007 0.68± 0.69 3 < 14 < 5.5
Bs → µ−τ+ 0.030± 0.007 0.77± 0.78 1 < 7.3 < 2.9

Table 2. Efficiency (ε), expected background events (N exp
bkg ), observed events (Nobs) and the

90% C.L. upper limits on B and fs × B.

set upper limits

B(B0
s → e∓τ±) < 14× 10−4

B(B0
s → µ∓τ±) < 7.3× 10−4

at 90% confidence level. Our limit on the B0
s → e∓τ± decay rate is the first such limit

reported. The sensitivity to these modes can be improved in the future with the Belle II
experiment, which could collect a much larger data sample at the Υ(5S) resonance, and
apply enhanced analysis techniques such as full reconstruction of the tag B0

s [30].
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