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Abstract: We report the first measurement of the inclusive e+e− → bb̄ → D±s X and
e+e− → bb̄→ D0/D̄0X cross sections in the energy range from 10.63 to 11.02GeV. Based
on these results, we determine σ(e+e− → B0

s B̄
0
s X) and σ(e+e− → BB̄ X) in the same

energy range. We measure the fraction of B0
s events at Υ(10860) to be fs = (22.0+2.0

−2.1)%. We
determine also the ratio of the B0

s inclusive branching fractions B(B0
s → D0/D̄0X)/B(B0

s →
D±s X) = 0.416± 0.018± 0.092. The results are obtained using the data collected with the
Belle detector at the KEKB asymmetric-energy e+e− collider.
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1 Introduction

Hadronic states in the bottomonium spectrum lying above the open-bottom threshold
demonstrate properties at odds with the standard quark model scheme. In particular, the
structures Z(10610) and Z(10650), observed by Belle in 2012 [1], are charged and contain at
least four quarks. The mass splittings for the high-lying vector bottomonia do not follow the
quark model expectations either. The rates of their transitions to lower bottomonia with
the emission of light hadrons are much higher compared to the expectations for ordinary
bottomonium, in violation of the Okubo-Zweig-Iizuka rule [2, 3], and their η transitions
are not suppressed relative to the dipion transitions, which violates Heavy Quark Spin
Symmetry [4, 5]. For a review, see, e.g. ref. [6]. Studies of various cross sections above the
open-bottom threshold can help us to understand the properties of the resonances lying in
this energy region.

The total hadronic cross section in the bottomonium energy region was previously
measured by both Belle and BaBar collaborations [7, 8]. It has a nontrivial shape, with
peaks near the Υ(4S, 10860, 11020) resonances, valley near Υ(10753), and dips near the
BB̄∗, B∗B̄∗, and B∗s B̄∗s thresholds. To some extent, the total bb̄ cross section has already

– 1 –
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been decomposed into exclusive cross sections up to the energy 11.02GeV. The Belle ex-
periment measured the energy dependence of the cross sections e+e− → BB̄, BB̄∗, B∗B̄∗,
B

(∗)
s B̄

(∗)
s , Υ(nS)π+π− (n = 1, 2, 3), and hb(mP )π+π− (m = 1, 2) [1, 9–11]. The major

missing contribution is the B(∗)B̄(∗)π channels; it can be estimated using the difference
between the total cross section and the sum of the measured exclusive channels.

A combined fit of the available measurements was performed in ref. [12] using a coupled-
channel approach. For the first time, the decay branching fractions of the Υ(10753),
Υ(10860), and Υ(11020) resonances were determined rigorously. Also, pole positions
(masses and widths) of the Υ states and energy dependence of the scattering amplitudes
between all considered channels were extracted. It was noted in ref. [12] that the accuracy
of the data needs to be improved. This is especially true for the B(∗)

s B̄
(∗)
s channel, in which

one can not discriminate the models that predict different behavior of the cross section
near the threshold.

The previous measurement of the B(∗)
s B̄

(∗)
s final states was performed using full re-

construction of one B0
s . The efficiency of the full reconstruction was relatively low, which

resulted in large statistical uncertainties in the results.
Here we use an inclusive approach: first, we measure σ(e+e− → bb̄ → D±s X) and

σ(e+e− → bb̄ → D0/D̄0X), then σ(e+e− → B0
s B̄

0
s X) and σ(e+e− → BB̄ X) are deter-

mined based on the above measurements. The cross sections are measured in the energy
range from 10.63 to 11.02 GeV. Since isospin-violating channels B(∗)

s B̄
(∗)
s π0 are strongly

suppressed, the relation

σ(e+e− → B0
s B̄

0
s X) = σ(e+e− → B(∗)

s B̄(∗)
s ) (1.1)

is valid up to the B0
s B̄

0
sπ

0π0 threshold that opens at 11.004 GeV, thus, for most of the
energy range studied in this paper.

For brevity, in the following we denote Υ(10860) as Υ(5S) and Υ(11020) as Υ(6S).

2 Belle detector and data samples

The analysis is based on data collected by the Belle detector [13, 14] at the KEKB
asymmetric-energy e+e− collider [15, 16].

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a sil-
icon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintil-
lation counters (TOF), and an electromagnetic calorimeter (ECL) composed of CsI(Tl)
crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field.
An iron flux-return located outside of the coil is instrumented to detect K0

L mesons and to
identify muons (KLM). Two different inner detector configurations were used. For the first
sample of 156 fb−1, a 2.0 cm radius beam pipe and a 3-layer silicon vertex detector were
used; for the latter sample of 833 fb−1, a 1.5 cm radius beam pipe, and a 4-layer silicon
vertex detector (SVD2) and a small-cell inner drift chamber were used. This analysis is
based only on data collected with the SVD2 configuration. A detailed description of the
detector can be found, for example, in refs. [13, 14].

– 2 –
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We use energy scan data with approximately 1 fb−1 per point: six points collected in
2007 and 16 points collected in 2010. We use also the Υ(5S) on-resonance data with a total
integrated luminosity of 121 fb−1 collected at five points with energies from 10.864 GeV to
10.868 GeV. The center-of-mass (c.m.) energies of these data samples are calibrated using
the e+e− → µ+µ− and e+e− → Υ(nS)π+π− (n = 1, 2, 3) processes [17]. We combine the
data samples with similar energies so that finally we obtain 23 energy points. The energies
and integrated luminosities of these 23 data samples are presented in table 6 below. We
also use the SVD2 part of the Υ(4S) data sample with an integrated luminosity of 571 fb−1

and the data sample collected 40 MeV below the BB̄ threshold (c.m. energy 10.52 GeV)
with an integrated luminosity of 74 fb−1.

The signal e+e− → bb̄ and the continuum e+e− → qq̄ (q = u, d, s, c) events are gen-
erated using EvtGen [18]. The size of the Monte-Carlo (MC) samples corresponds to an
integrated luminosity six times that of the data. The detector response is simulated us-
ing GEANT3 [19]. The MC simulation includes run-dependent variations in the detector
performance and background conditions.

3 Analysis strategy

The method used in this paper was developed by the CLEO collaboration [20] and then
applied by Belle [21] for one energy point near the Υ(5S). We slightly modify the method
to mitigate low accuracy in inclusive B0

s branching fractions.
We measure the inclusive e+e− → bb̄ → D±s X and e+e− → bb̄ → D0/D̄0X cross

sections at various energies above the BB̄ threshold by subtracting the continuum contri-
bution from the total e+e− → D±s X and e+e− → D0/D̄0X cross sections. To perform
the subtraction, we use distributions in the normalized momentum xp, which is defined as
xp = p/

√
(Ec.m./2)2 −m2,1 where p is the D-meson (D corresponds to D+

s or D0) momen-
tum measured in the c.m. frame, Ec.m. is the c.m. energy, and m is the D-meson mass. The
xp spectra of D+

s mesons at the Υ(5S) energy in the simulated bb̄ and continuum events
are shown in figure 1. The bb̄ events are restricted to the lower half of the xp range, while
the continuum events are enhanced in the high xp region. We determine the shape of the
continuum contribution using the data collected below the BB̄ threshold, normalize the
contribution using the high xp region, and subtract. The events remaining after the sub-
traction are corrected for the efficiency in the xp bins, and their sum is used to determine
σ(e+e− → bb̄→ D/D̄X).

In the considered energy range, the bb̄ events are of three types: with B mesons (B
corresponds to B+ or B0), with B0

s , and with bottomonium; the latter contributes at the
level of a few per cent. Neglecting D meson production in bottomonium decays, we write

σ(e+e− → bb̄→ D±s X) = 2σ(e+e− → B0
s B̄

0
s X)B(B0

s → D±s X)
+ 2σ(e+e− → BB̄ X)B(B → D±s X),

σ(e+e− → bb̄→ D0/D̄0X) = 2σ(e+e− → B0
s B̄

0
s X)B(B0

s → D0/D̄0X)
+ 2σ(e+e− → BB̄ X)B(B → D0/D̄0X).

(3.1)

1We are using c = 1 units.

– 3 –
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Figure 1. The xp spectra of D+
s mesons at the Υ(5S) energy in the simulated bb̄ (open blue

histogram) and continuum (hatched magenta histogram) events. Both distributions are normalized
to unity.

The multiplicity of D mesons is up to two in B decays and up to four in bb̄ events; the
branching fractions B(B(s) → D/D̄X) and the cross sections σ(e+e− → bb̄ → D/D̄X)
correspond to the average multiplicity of the D mesons in the considered processes. From
the system of equations (3.1), we find the ratio

C ≡ B(B0
s → D0/D̄0X)

B(B0
s → D±s X)

= σ(e+e− → bb̄→ D0/D̄0X)− 2 σ(e+e− → BB̄ X) B(B → D0/D̄0X)
σ(e+e− → bb̄→ D±s X)− 2 σ(e+e− → BB̄ X) B(B → D±s X)

. (3.2)

We determine the ratio C by measuring σ(e+e− → bb̄→ D±s X) and σ(e+e− → bb̄→
D0/D̄0X) at the Υ(5S) energy and using the value of σ(e+e− → BB̄ X) at this energy
reported in ref. [9]. Then we re-write the system of equations (3.1) as

σ(e+e− → bb̄→ D±s X) = 2σ(e+e− → B0
s B̄

0
s X)B(B0

s → D±s X)
+ 2σ(e+e− → BB̄ X)B(B → D±s X),

σ(e+e− → bb̄→ D0/D̄0X) = 2C σ(e+e− → B0
s B̄

0
s X)B(B0

s → D±s X)
+ 2σ(e+e− → BB̄ X)B(B → D0/D̄0X).

(3.3)

We define X = σ(e+e− → B0
s B̄

0
s X)B(B0

s → D±s X), Y = σ(e+e− → BB̄ X) and solve the
system of equations (3.3) with respect to X and Y :

X = B U −AW
2(B −AC) , (3.4)

Y = W − C U
2(B −AC) ,
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where we introduced notations

U = σ(e+e− → bb̄→ D±s X),
W = σ(e+e− → bb̄→ D0/D̄0X), (3.5)
A = B(B → D±s X),
B = B(B → D0/D̄0X).

To study energy dependence of the e+e− → B0
s B̄

0
s X cross section, it is convenient to

consider the product σ(e+e− → B0
s B̄

0
s X) B(B0

s → D±s X), since in this case a rather large
uncertainty in B(B0

s → D±s X) will affect only the overall normalization.
Based on the Υ(4S) data, we measure B(B → D±s X) and B(B → D0/D̄0X), and use

them in eqs. (3.2) and (3.4) to reduce systematic uncertainties.

4 Event selection

All charged tracks are required to be consistent with originating from the interaction point
(IP): we require dr < 0.5 cm and |dz| < 2 cm, where dr and |dz| are the impact pa-
rameters perpendicular to and along the beam direction, respectively, with respect to
the IP. Information from the TOF, the number of the photoelectrons from the ACC,
and the dE/dx measurement in the CDC are combined to form a likelihood Lh for a
hadron hypothesis h [22]. Charged kaon candidates are required to have a likelihood ratio
PK/π = LK/(LK + Lπ) > 0.6. Charged pion candidates are required to have PK/π < 0.9.
The efficiency for kaon (pion) identification is about 90% (97%) with a misidentification
rate of a pion as a kaon (a kaon as a pion) of about 8% (20%).

The D+
s and D0 candidates are reconstructed using only the clean D+

s → φπ+ and
D0 → K−π+ decay channels.2 Since there might be several D mesons in an event, we do
not apply best candidate selection. The φ mesons are reconstructed from K+K− pairs.
The invariant mass of the two kaons should be within ±19MeV/c2 from the nominal φ
mass (figure 2). The helicity angle θhel is defined as the angle between the D+

s and K+

momenta in the φ rest frame; a requirement | cos(θhel)| > 0.25 is applied.

5 Analysis of the Υ(4S) and Υ(5S) data samples

In this section, we describe the analysis of the Υ(4S) and Υ(5S) data samples.
Here our goal is to measure the cross sections σ(e+e− → bb̄ → D/D̄X), the
branching fractions B(B → D/D̄X), the B0

s production fraction fs, and the ratio
B(B0

s → D0/D̄0X) / B(B0
s → D±s X).

5.1 Measurement of σ(e+e− → bb̄→ DX)

We fit the mass distributions of the D+
s and D0 candidates in bins of xp. The signals are

described by a sum of four Gaussians with parameters determined from the MC simulation.
We introduce a shift and a broadening factor, common to all Gaussians, that are floated

2Throughout this paper, charge conjugation is always included.

– 5 –



J
H
E
P
0
8
(
2
0
2
3
)
1
3
1

Figure 2. The K+K− mass distribution in the data without the helicity angle requirement. The
dashed vertical lines indicate the signal region.

D+
s at Υ(5S) D0 at Υ(5S) D+

s at Υ(4S) D0 at Υ(4S)
imax 11 12 10 11
xmax
p 0.55 0.60 0.50 0.55
k 1.510± 0.004 1.499± 0.001 7.410± 0.008 7.460± 0.002
kest 1.516 7.430

Table 1. The values of xmax
p , imax, k and kest for D+

s and D0 in different data samples; see the
main text for the definition of these quantities.

in each xp bin. The background is described by a second-order polynomial. We use binned
likelihood fits. Examples of the fits to the Υ(5S) data for xp bins (0.25, 0.3) and (0.65, 0.7)
are shown in figure 3. The p-values of the fits, quoted in figure 3, are calculated assuming
Gaussian errors in each bin.

The dependence of the D+
s and D0 yields on xp for the Υ(5S), Υ(4S), and continuum

data samples is shown in figure 4. There is a clear enhancement at low xp in the Υ(5S)
and Υ(4S) data due to the production of the bb̄ events. We subtract the continuum
contribution using the xp spectra for the data collected below the BB̄ threshold. The
shape of the continuum spectrum changes noticeably between Ec.m. = 10.52 GeV and the
Υ(5S) energy, primarily due to the evolution of fragmentation with energy. We determine
corrections with the help of the event generator developed for Belle II that integrates
KKMC and Pythia [23]. The KKMC generator is used to simulate initial state radiation
and the Pythia generator is used to simulate c-quark fragmentation. The correction factors
for D+

s and D0, defined as the ratio of the continuum xp spectra at the Υ(5S) energy and
at Ec.m. = 10.52 GeV, are shown in figure 5. In the Υ(4S) case, we find that no correction
is needed since the Υ(4S) energy is close to 10.52GeV.

From the MC simulation, we find that bb̄ events contribute only at lower xp values:
the highest bin with a bb̄ contribution, imax, and the corresponding upper bin edge xmax

p ,
are shown for D+

s and D0 in different data samples in table 1. Thus, we use the xp > xmax
p

region for the normalization of the continuum xp distribution and fit the Υ(5S) and Υ(4S)
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Figure 3. The mass distributions of the D+
s (left) and D0 (right) candidates in the 0.25 < xp < 0.3

(top) and 0.65 < xp < 0.7 (bottom) regions. Points with error bars are the Υ(5S) data, and
histograms are the fit results.

data in this range using the (corrected) xp spectrum of the data below the BB̄ threshold
as the fitting function. The results of these fits are shown in figure 6.

The normalization factors k for the continuum contribution obtained from the fits are
listed in table 1. These factors can be roughly estimated as

kest
i = Li

Lcont

(
Econt
Ei

)2
, (5.1)

where i runs over Υ(5S) and Υ(4S), “cont” denotes data sample collected below the BB̄
threshold, E and L are the corresponding energy and integrated luminosity. The values of
kest
i are in reasonable agreement with the fit results, as shown in table 1. The xp spectra

after the continuum subtraction are shown in figure 7. The points in the subtraction
region are consistent with zero, which indicates that the continuum spectra are determined
correctly.
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Figure 4. The yield of D+
s (left) and D0 (right) in bins of xp for the data samples collected at the

Υ(5S) (top), Υ(4S) (middle) and below the BB̄ threshold (bottom).
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Figure 5. The ratio of the continuum xp spectra at the Υ(5S) energy and Ec.m. = 10.52 GeV
obtained using MC simulation. Red and blue points correspond to D+

s and D0, respectively.

The D meson reconstruction efficiency as a function of xp is shown in figure 8. It takes
into account the known difference between data and simulation for particle identification
efficiency; the corresponding momentum and polar angle dependent correction factors are
determined using the D∗+ → D0(→ K−π+)π+ decays [22]. The presented D+

s reconstruc-
tion efficiency includes the efficiency of the φ mass and helicity angle requirements.

We introduce a correction factor rφ = εdata
φ /εMC

φ to account for the difference in
M(K+K−) distribution between the data and the MC simulation. To determine εφ, we
fit the mass distributions for the D+

s candidates that satisfy the φ mass and helicity angle
requirements and that are rejected by them. Based on the corresponding signal yields, Nφ

and Nφ, we find

εφ = Nφ

Nφ +Nφ

. (5.2)

Here we use events with 0.2 < xp < 0.95, where background is low and all bins are well-
populated. To estimate systematic uncertainty, we vary the considered xp interval. The
result is

rφ = 0.981± 0.005± 0.004. (5.3)

Here and throughout this paper if two uncertainties are shown, the first is statistical and
the second is systematic.

The inclusive visible e+e− → D/D̄X cross sections are calculated as

σ(e+e− → bb̄→ D±s X) =
imax∑
i=1

Ni(D+
s )− k(D+

s ) ni(D+
s )

L Ei(D+
s ) rφ B(D+

s → K+K−π)
(5.4)

and

σ(e+e− → bb̄→ D0/D̄0X) =
imax∑
i=1

Ni(D0)− k(D0) ni(D0)
L Ei(D0) B(D0 → Kπ) , (5.5)
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Figure 6. The yield of D+
s (left) and D0 (right) in bins of xp for the Υ(5S) (top) and Υ(4S)

(bottom) data. Points with error bars show the data, solid hatched histograms show the fit results,
and open dashed histograms show the extrapolation of the continuum component into the bb̄ signal
region.

where i runs over the xp bins, the values of imax are given in table 1, Ni and ni are the
numbers of the D mesons in the i-th xp bin in the on-resonance and continuum spectra,
respectively, Ei(D) is the D reconstruction efficiency in the i-th bin, L is the integrated
luminosity of the Υ(5S) or Υ(4S) data samples, B(D+

s → K+K−π) = (5.38± 0.10)% and
B(D0 → K∓π±) = (3.95 ± 0.03)% [24]; k is given in table 1, and rφ is given in eq. (5.3).
The cross section values measured at the Υ(5S) and Υ(4S) are listed in table 2. Their
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Figure 7. The distribution of the xp of D+
s (left) and D0 (right) in the Υ(5S) (top) and Υ(4S)

(bottom) data after subtracting the continuum contribution. Insets show the high xp region with
an expanded vertical scale.

σ(e+e− → bb̄→ D±s X) σ(e+e− → bb̄→ D0/D̄0X)
Υ(5S) 151.8± 1.0± 5.5 379.7± 1.6± 10.0
Υ(4S) 248.6± 0.6± 9.2 1468.5± 0.9± 36.6

Table 2. The e+e− → bb̄→ D±
s X and e+e− → bb̄→ D0/D̄0 X cross sections (in pb) measured at

the Υ(5S) and Υ(4S).
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Figure 8. The D+
s (left) and D0 (right) meson reconstruction efficiency at the Υ(5S) (blue points)

and Υ(4S) (red points) as a function of xp.

statistical uncertainties are calculated as√√√√√ imax∑
i=1

(
σi

∆Ni

Ni − k ni

)2
+
(

∆k
imax∑
i=1

σi ni
Ni − k ni

)2

, (5.6)

where σi is the inclusive cross section in the i-th momentum bin and ∆X is the statistical
uncertainty of the quantity X.

Below we list various contributions to the systematic uncertainty in the cross sections;
corresponding summary is presented in table 3.

• We vary the fit model for the mass spectra of the D candidates. In particular, we (1)
introduce one additional shift for one narrow Gaussian; (2) introduce additional shift
and broadening factor for one narrow Gaussian; (3) change the background function
from 2nd- to 3rd-order polynomial. Variations (1) and (3) result in negligibly small
changes in the cross section. The uncertainties related to variation (2) are shown in
table 3.

• Contribution of the statistical error in the continuum xp spectrum is calculated as

1
σ

√√√√ imax∑
i=1

(
σi

∆ni k
Ni − k ni

)2
. (5.7)

• The systematic uncertainty related to the continuum spectrum correction is estimated
as half of the change in the cross section obtained with and without this correction.

• The contribution of the MC statistical error is calculated as

1
σ

√√√√ imax∑
i=1

(
σi

∆Ei
Ei

)2
. (5.8)

• We account for the 0.6% uncertainty in rφ.

– 12 –



J
H
E
P
0
8
(
2
0
2
3
)
1
3
1

Source D+
s at Υ(5S) D0 at Υ(5S) D+

s at Υ(4S) D0 at Υ(4S)
Fit model 0.6 0.3 1.0 1.1
Cont. xp spectrum stat. unc. 0.6 0.4 0.4 0.1
Cont. xp spectrum correction 0.3 1.3 — —
MC statistical unc. 0.2 0.1 0.1 0.0
rφ 0.6 — 0.6 —
Tracking 1.1 0.7 1.1 0.7
K/π identification 2.3 1.4 2.3 1.4
Integrated luminosity 1.4 1.4 1.4 1.4
Branching fraction 1.9 0.8 1.9 0.8
Total 3.6 2.6 3.7 2.5

Table 3. Systematic uncertainties in the e+e− → bb̄ → D±
s X and e+e− → bb̄ → D0/D̄0 X cross

sections at Υ(5S) and Υ(4S) (in %).

• The systematic uncertainty of the track reconstruction efficiency, estimated using
partially reconstructed D∗+ → D0π+, D0 → π+π−K0

S and K0
S → π+π− events, is

0.35% per track; thus we have 1.1% for D+
s and 0.7% for D0.

• The uncertainty of the K/π identification efficiency is due to a possible difference
between MC and data. This difference is studied using D∗+ → D0(K−π+)π+ decays
— see Chapter 5.4 of ref. [25]. The uncertainty is calculated as 2.3% for D+

s →
K−K+π+ and 1.4% for D0 → K−π+.

• The uncertainty in the integrated luminosity is 1.4%.

• The uncertainty in the world average B(D+
s → K+K−π+) is 1.9% and in B(D0 →

K+π+) is 0.8% [24].

The total systematic uncertainty is calculated by adding the various contributions in
quadrature.

Cross sections σ(e+e− → bb̄ → D/D̄X) for various xp bins are presented in ap-
pendix A.

5.2 Determination of B(B → D/D̄X)

The B → D/D̄X branching fractions are found as

B(B → D/D̄X) = 1
2
σ(e+e− → bb̄→ D/D̄X)|Υ(4S)

σ(e+e− → bb̄)|Υ(4S)
, (5.9)

where we use the cross sections measured at the Υ(4S). The total cross section σ(e+e− →
bb̄) is calculated as

σ(e+e− → bb̄)|Υ(4S) =
N

Υ(4S)
BB̄

L
= (1102± 24) pb, (5.10)
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where NΥ(4S)
BB̄

= (619.6±9.4)×106 is the total number of the BB̄ pairs in the Υ(4S) SVD2
data [14] and L = 562 fb−1 is the total integrated luminosity of this data sample. The
number NΥ(4S)

BB̄
is obtained by counting the hadronic events at the Υ(4S) and subtracting

the continuum contribution determined using the data below the BB̄ threshold. The
transitions from Υ(4S) to lower bottomonia have a total branching fraction of 0.26% [24]
and are neglected.

Using the cross section values presented in table 2, we find

B(B → D0/D̄0X) = (66.63± 0.04± 1.77)%, (5.11)
B(B → D±s X) = (11.28± 0.03± 0.43)%. (5.12)

The systematic uncertainty due to the integrated luminosity is the same in the numerator
and denominator of eq. (5.9) and, therefore, cancels.

The world-average results obtained by a similar method are (61.6± 2.9)% for D0 and
(8.3 ± 0.8)% for D+

s [24]. Our uncertainties are lower than those of the world-average
values; there is a 3.2σ tension in the D+

s channel. One can also use for comparison the
measurements performed with a full reconstruction of one B meson in the event [26]. In
this case, one has to add branching fractions for B+ and B0. The results are (71.6± 4.6)%
and (10.4+1.3

−1.8)%; the agreement with our measurements is better.

5.3 Production fractions at the Υ(5S)

We determine the average number of the D mesons produced at the Υ(5S) as

B(Υ(5S)→ D/D̄X) =
σ(e+e− → bb̄→ DX)|Υ(5S)

σ(e+e− → bb̄)|Υ(5S)
. (5.13)

Using the values from table 2 and σ(e+e− → bb̄)|Υ(5S) = (340± 16) pb−1 [27], we find

B(Υ(5S)→ D0/D̄0X) = (111.7± 0.5± 6.0)%, (5.14)
B(Υ(5S)→ D±s X) = (44.7± 0.3± 2.7)%. (5.15)

These results agree with the previous measurements (108± 8)% for D0 and (46± 6)% for
D+
s [21], and supersede them.

The fraction of B0
s B̄

0
s X events produced at the Υ(5S) is defined as

fs =
σ(e+e− → B0

s B̄
0
s X)|Υ(5S)

σ(e+e− → bb̄)|Υ(5S)
, (5.16)

where σ(e+e− → B0
s B̄

0
s X) can be found from the first equation of (3.1)

σ(e+e− → B0
s B̄

0
s X) = σ(e+e− → bb̄→ D±s X)/2− σ(e+e− → BB̄ X) B(B → D±s X)

B(B0
s → D±s X)

.

(5.17)
Then, using eq. (5.9) for B(B → D±s X), we find

fs =
σ(e+e− → bb̄→ D±s X)|Υ(5S) − σ(e+e− → BB̄ X)|Υ(5S)

σ(e+e−→bb̄→D±
s X)|Υ(4S)

σ(e+e−→bb̄)|Υ(4S)

2 B(B0
s → D±s X) σ(e+e− → bb̄)|Υ(5S)

.

(5.18)
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Source Systematic uncertainty (%)
σ(e+e− → bb̄→ D±s X)|Υ(5S) 1.4
σ(e+e− → bb̄→ D±s X)|Υ(4S) 0.7
σ(e+e− → BB̄ X)|Υ(5S) 1.4
B(B0

s → D±s X) 10.5
σ(e+e− → bb̄)|Υ(5S) 4.5
Correlated contributions
— tracking 1.1
— K/π identification 2.3
— rφ 0.6
— B(D+

s → K+K−π+) 1.9
Total 12.0

Table 4. Systematic uncertainty in fs.

Using σ(e+e− → bb̄ → D±s X) from table 2, B(B0
s → D±s X) = (60.2 ± 5.8 ± 2.3)% [28],

and σ(e+e− → BB̄ X) = (255.5± 7.9) pb [9], we obtain:

fs = (23.0± 0.2± 2.8)%. (5.19)

While estimating the systematic uncertainty in fs, we take into account that the systematic
uncertainties of the quantities entering eq. (5.18) are correlated and to a large extent cancel.

• The uncertainty due to the integrated luminosity is the same in all σ’s in eq. (5.18)
and, therefore, cancels in fs.

• Both quantities σ(e+e− → BB̄ X)|Υ(5S) and σ(e+e− → bb̄)|Υ(4S) contain the same
uncertainty due to NΥ(4S)

BB̄
[9] — it cancels in their ratio.

• The uncertainties due to the reconstruction efficiency and the D+
s -meson branching

fraction are fully correlated between the inclusive D+
s cross sections in the numerator.

They are treated as common correlated errors for the resulting value of fs, and, thus,
the total uncertainty in the difference is considerably reduced.

The individual contribution from each quantity and the correlated contributions are listed
in table 4. We sum all presented errors in quadrature to obtain the total systematic
uncertainty.

To improve the accuracy in fs, we use the relation

fs + fBB̄X + f /B = 1, (5.20)

where fBB̄X = σ(e+e− → BB̄ X)/σ(e+e− → bb̄) = (75.1± 4.0)% [9] is the fraction of the
BB̄ X events at Υ(5S) and f /B is the fraction of bb̄ events without open-bottom mesons
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in the final state. The f /B fraction is due to the transitions to lower bottomonia with
the emission of light hadrons. In ref. [9], it was estimated that the known bottomonium
channels sum up to

fknown
/B = (4.9± 0.6)%. (5.21)

We perform a fit to three measurements: fs, fBB̄X and f /B, applying one constraint —
eq. (5.20). The free parameters of this fit are the fitted values of the production fractions.
Since potentially not all bottomonium channels are known, we use eq. (5.21) as a constraint
from below. The production fractions contain a factor 1/σ(e+e− → bb̄)|Υ(5S) which results
in a correlated uncertainty of 4.5% (table 4). The presence of σ(e+e− → BB̄ X) on the
right-hand side of eq. (5.18) results in an anti-correlated uncertainty in fs and fBB̄X of 1.4%
and 2.4%, respectively. The above value for fs is taken from table 4; the value for fBB̄X
is obtained taking into account that the uncertainty in σ(e+e− → BB̄ X) in eq. (5.18)
partially cancels. The correlated uncertainties are taken into account using the method
described in ref. [29]. From the fit, we find

fs = (22.0+2.0
−2.1)%. (5.22)

This result for fs supersedes the previous Belle measurement fs = (17.2 ± 3.0)% [27]
obtained with a model-dependent estimate B(B0

s → D±s X) = (92±11)%; it also supersedes
the result fs = (28.5± 3.2± 3.7)% reported in ref. [28].

5.4 Determination of B(B0
s → D0/D̄0X) / B(B0

s → D±s X)

The measurements presented in eqs. (5.11) and (5.12), and in table 2 are substituted in
eq. (3.2); we find

B(B0
s → D0/D̄0X)

B(B0
s → D±s X)

= 0.416± 0.018± 0.092. (5.23)

As in the case of fs, here we consider the correlations between the systematic uncertainties
of the quantities in eq. (3.2).

• The uncertainty due to integrated luminosity cancels in the ratio of the cross sections.

• The uncertainty due to N
Υ(4S)
BB̄

cancels in the product of B(B → D/D̄X) and
σ(e+e− → BB̄ X) (we note that B(B → D/D̄X) is inversely proportional to NΥ(4S)

BB̄
).

• The uncertainties due to the reconstruction efficiency and the D-meson branch-
ing fractions are completely correlated between the two terms in the numerator of
eq. (3.2). This correlation considerably reduces the uncertainty in the difference of
the two terms. The same is true about the denominator.

• The uncertainty due to tracking efficiency partly cancels between the numerator and
the denominator (two tracks in the numerator and three tracks in the denominator).

• We conservatively assume that the uncertainties due to the particle identification are
not correlated between the numerator and the denominator because the correspond-
ing momentum spectra of kaons and pions are different.
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Source Systematic uncertainty (%)
σ(e+e− → bb̄→ D0/D̄0X) 13.3
σ(e+e− → bb̄→ D±s X) 1.4
B(B → D0/D̄0X) 11.2
B(B → D±s X) 0.8
σ(e+e− → BB̄ X) 13.7
Correlated contributions
— tracking 0.4
— K/π identification 2.7
— rφ 0.6
— B(D+

s → K+K−π+) 1.9
— B(D0 → K−π+) 0.8

Total 22.2

Table 5. Systematic uncertainty in B(B0
s → D0/D̄0 X)/B(B0

s → D±
s X).

In table 5 we list first the uncorrelated contributions from the quantities in eq. (3.2), and
then the correlated contributions; the total uncertainty is the sum in quadrature of all
listed errors.

The fractions of B+B− and B0B̄0 events at the Υ(4S) and Υ(5S) are different: at
Υ(4S) the ratio of production fractions f+−/f00 = 1.065 ± 0.012 ± 0.019 ± 0.047 [30],
while at Υ(5S) this ratio is expected to be close to one since Υ(5S) is far from the BB̄
production thresholds and no isospin violation is expected. Given that the branching
fractions B(B+ → D0/D̄0X) = (87.6± 4.1)% and B(B0 → D0/D̄0X) = (55.5± 3.2)% are
considerably different [24], we expect B(B → D0/D̄0X) at the Υ(5S) to be (0.71± 0.54)%
lower than at the Υ(4S), here B denotes the relevant mixture of B+ and B0. The effect is
small and is neglected.

6 Energy scan data

The analysis strategy described previously in section 5 for the Υ(5S) and Υ(4S) data is now
applied at each energy point. We fit the mass distributions of the D+

s and D0 candidates
in each xp bin. As in the Υ(5S) and Υ(4S) analysis, the signal function is a sum of the
four Gaussians with parameters obtained from fitting the MC sample. The shift and the
broadening factor, introduced to describe the signal in the data, are common for all the
Gaussians. They are fixed to the values obtained from fitting the Υ(5S) data sample for
all energy points, except the three with the largest luminosity. At these three points,
near the Υ(5S) resonance, the shift and broadening factor are allowed to vary freely. The
background is fitted by a second-order polynomial.
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Figure 9. The energy dependence of the inclusive e+e− → bb̄ → D±
s X (left) and e+e− → bb̄ →

D0/D̄0 X (right) cross sections.

We use the xp spectra for the data collected below the BB̄ threshold, shown in figure 4
(bottom), to subtract the continuum contribution at each energy point. First, the contin-
uum xp spectrum for the D+

s and D0 mesons is corrected for the energy difference between
Ec.m. = 10.52GeV and the energy of the relevant point. As before, these corrections are
obtained using the Belle II event generator. Then, the shape of the corrected continuum
xp spectrum is used in the fit to the high-momentum region of the xp distribution to ob-
tain the normalization factor k for the continuum contribution at the current energy. The
results of these fits are provided in appendix B.

The inclusive e+e− → bb̄ → D±s X and e+e− → bb̄ → D0/D̄0X cross sections are cal-
culated according to formulas (5.4) and (5.5) with imax = 11 and imax = 12, respectively
(table 1). The obtained values of the cross sections are listed in table 6 and shown in fig-
ure 9. The errors in this figure are statistical only; they are calculated according to eq. (5.6).

We consider the same sources of systematic uncertainty as listed in table 3. We assume
that the systematic uncertainties are fully correlated at the various energy points and find
three types of the energy dependence of the systematic uncertainties:

• The contribution of the statistical uncertainty of the continuum xp spectrum is ad-
ditive and is almost energy-independent (figure 10, blue points).

• The contribution of the xp spectrum correction is additive and shows a linear rise
with energy (figure 10, green points).

• Other sources are multiplicative; their relative uncertainties are energy-independent.
Their shapes repeat those of the cross sections themselves (figure 10, red points).

In table 6 the contributions of these three types of systematic uncertainties are summed in
quadrature.
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Figure 10. The energy dependence of the absolute systematic uncertainties in the e+e− → bb̄ →
D+

s X (left) and e+e− → bb̄ → D0X (right) cross sections. Shown are contributions from the
statistical uncertainty of the continuum xp spectrum (blue triangles), the continuum xp spectrum
correction (green squares), and the sum of the other sources (red circles). The vertical scale is
chosen to coincide with the maximal statistical uncertainty in the corresponding cross section.

Substituting the obtained values of B(B → D0/D̄0X), B(B → D±s X), and B(B0
s →

D0/D̄0X) / B(B0
s → D±s X) (eqs. (5.11), (5.12) and (5.23)) in eqs. (3.4), we find

X = 0.54 · U − 0.09 ·W,
(6.1)

Y = −0.34 · U + 0.81 ·W.

The results for X = σ(e+e− → B0
s B̄

0
s X) · B(B0

s → D±s X) and Y = σ(e+e− → BB̄ X) are
presented in table 6 and in figure 11. The e+e− → B0

s B̄
0
s X cross section shows a clear

peak near the Υ(5S) energy and a hint of a peak near the Υ(6S), while the non-resonant
contribution is small.

We separate the systematic uncertainties of the quantities entering eqs. (3.4) into corre-
lated and uncorrelated parts, similarly as for the fs (table 4). We add all the contributions
in quadrature to obtain the total systematic uncertainty shown in table 6.

7 Conclusions

We have measured the inclusive cross sections σ(e+e− → bb̄ → D±s X), σ(e+e− → bb̄ →
D0/D̄0X), σ(e+e− → BB̄ X) and the product σ(e+e− → B0

s B̄
0
s X) · B(B0

s → D±s X) in
the energy range from 10.63 to 11.02 GeV. Results are presented in table 6. The energy
dependence of the e+e− → B0

s B̄
0
s X cross section shows a clear peak near the Υ(5S)

energy and a hint of a peak near the Υ(6S). The obtained results can be used in a
combined analysis of the data in various final states within coupled-channel approaches
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Ec.m. L σ(D+
s X) σ(D0X) σ(B0

s B̄
0
s X) · B σ(BB̄ X)

10.6322 0.989 65.4± 7.4± 2.5 298.5± 12.9± 7.2 8.0± 4.2± 0.7 219.0± 10.7± 3.2
10.6810 0.949 51.3± 7.4± 2.1 292.2± 13.2± 7.3 1.0± 4.2± 0.8 218.7± 10.9± 3.6
10.7313 0.946 53.4± 7.4± 2.1 315.7± 13.2± 8.0 − 0.0± 4.2± 0.8 236.9± 10.9± 4.1
10.7712 0.955 33.9± 7.0± 1.5 201.2± 12.8± 6.1 − 0.1± 3.9± 0.7 151.0± 10.6± 3.8
10.8295 1.697 70.8± 5.8± 2.7 306.2± 9.8± 8.5 10.2± 3.2± 0.9 223.4± 8.1± 4.8
10.8489 0.989 116.0± 8.2± 4.3 364.4± 13.0± 9.7 29.2± 4.6± 1.5 255.2± 10.9± 6.3
10.8574 0.988 133.3± 8.4± 4.9 366.9± 13.0± 9.8 38.3± 4.7± 1.8 251.4± 10.9± 7.4
10.8642 47.648 146.9± 1.7± 5.4 385.3± 2.6± 10.1 43.9± 0.9± 2.0 261.7± 2.2± 8.0
10.8658 29.107 155.6± 2.1± 5.7 376.8± 3.3± 10.1 49.4± 1.2± 2.2 251.9± 2.8± 8.9
10.8676 45.284 155.2± 1.7± 5.6 376.3± 2.7± 10.0 49.2± 0.9± 2.1 251.6± 2.3± 8.8
10.8778 0.978 151.2± 8.6± 5.5 374.5± 13.2± 10.1 47.2± 4.8± 2.1 251.5± 11.0± 8.6
10.8828 1.848 140.3± 6.2± 5.1 367.0± 9.6± 10.0 42.1± 3.4± 1.9 249.1± 8.0± 8.0
10.8889 0.990 125.8± 8.2± 4.6 317.0± 12.9± 9.1 38.8± 4.6± 1.8 213.6± 10.8± 7.6
10.8983 2.408 78.4± 4.9± 3.0 276.0± 8.2± 8.4 17.0± 2.7± 1.1 196.5± 6.8± 5.4
10.9073 0.980 59.0± 7.3± 2.3 269.8± 12.7± 8.5 7.2± 4.1± 0.8 198.0± 10.5± 5.3
10.9287 1.149 53.0± 6.7± 2.1 230.3± 11.6± 8.0 7.5± 3.8± 0.9 168.1± 9.6± 5.3
10.9575 0.969 45.3± 7.2± 1.9 220.2± 12.7± 8.3 4.3± 4.0± 0.9 162.5± 10.5± 5.7
10.9753 0.999 53.2± 7.1± 2.2 246.2± 12.5± 8.7 6.2± 4.0± 1.0 180.9± 10.4± 5.8
10.9904 0.985 52.9± 7.2± 2.1 278.3± 12.7± 9.2 3.1± 4.0± 0.9 206.9± 10.5± 5.9
11.0039 0.976 89.0± 7.8± 3.3 356.2± 13.0± 10.5 15.4± 4.4± 1.1 257.6± 10.8± 6.4
11.0148 0.771 92.9± 9.9± 3.5 384.5± 14.7± 11.2 15.0± 5.5± 1.2 279.2± 12.3± 6.7
11.0185 0.859 82.1± 8.4± 3.1 354.3± 13.9± 10.8 11.9± 4.7± 1.2 258.4± 11.6± 6.6
11.0208 0.982 75.5± 7.6± 2.9 390.0± 13.0± 11.4 5.1± 4.3± 1.1 289.5± 10.8± 6.7

Table 6. Energies (in GeV), luminosities (in fb−1) for various data samples and the results for the
σ(e+e− → bb̄ → D±

s X), σ(e+e− → bb̄ → D0/D̄0 X), σ(e+e− → B0
s B̄

0
s X) · B(B0

s → D±
s X), and

σ(e+e− → BB̄ X) (in pb). The first error in the cross section is statistical, the second is systematic.

to investigate the nature and properties of the bottomonium and bottomonium-like states
lying above the BB̄ threshold.

We have measured the following inclusive branching fractions and production fractions:

B(B → D±s X) = (11.28± 0.03± 0.43)%, (7.1)
B(B → D0/D̄0X) = (66.63± 0.04± 1.77)%, (7.2)
B(Υ(5S)→ D±s X) = (44.7± 0.3± 2.7)%, (7.3)

B(Υ(5S)→ D0/D̄0X) = (111.7± 0.5± 6.0)%. (7.4)

There might be several D mesons in B decays and bb̄ events; the measurements correspond
to the average multiplicities. The results shown in eqs. (7.3) and (7.4) supersede previous
Belle measurements reported in ref. [21].
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Figure 11. The energy dependence of the product σ(e+e− → B0
s B̄

0
s X) ·B(B0

s → D±
s X) (left) and

the σ(e+e− → BB̄ X) (right). Shown are statistical uncertainties calculated using eq. (6.1) based on
the statistical uncertainties of U = σ(e+e− → bb̄ → D±

s X) and W = σ(e+e− → bb̄ → D0/D̄0 X).
The dashed lines indicate the B0

s B̄
0
s , B0

s B̄
∗
s and B∗

s B̄
∗
s thresholds.

The fraction of the events containing the B0
s mesons at the Υ(5S) is found to be

(22.0+2.0
−2.1)%. (7.5)

This value supersedes the previous Belle results reported in refs. [27] and [28].
We also determined the ratio of the B0

s branching fractions

B(B0
s → D0/D̄0X)

B(B0
s → D±s X)

= 0.416± 0.018± 0.092. (7.6)

The inclusive method allows to measure energy dependence of the e+e− → B0
s B̄

0
s X

cross section with relatively high precision even if relatively low integrated luminosity is
available. It can be used by the Belle II experiment for exploratory studies of various
energy regions of interest, for example, near the B

(∗)
s B̄

(∗)
s production thresholds or to

search for P -wave B0
s0 and B0

s1 states via σ(e+e− → B0
s B̄

0
s X) enhancements at the BsJ B̄(∗)

s

thresholds [6]. Additional advantage of the method is that the inclusive e+e− → BB̄ X

cross section is also determined.
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A xp spectra of D+
s and D0 at the Υ(4S) and Υ(5S) resonances

To determine σ(e+e− → bb̄ → D/D̄X) for various xp intervals, we use eqs. (5.4), (5.5),
and (5.6) without summing over index i. The results are presented in table 7. We consider
the same sources of the systematic uncertainty as shown in table 3.

B Fits to the xp distributions at the scan energies

The fits to the xp distributions at various energies are shown in figure 12 for D+
s and

figure 13 for D0.
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xp interval D+
s at the Υ(5S) D0 at the Υ(5S) D+

s at the Υ(4S) D0 at the Υ(4S)
(0.00,0.05) 0.73± 0.08± 0.00± 0.06 4.10± 0.17± 0.00± 0.17 1.88± 0.06± 0.06± 0.11 15.69± 0.09± 0.00± 0.42
(0.05,0.10) 5.09± 0.27± 0.00± 0.24 24.29± 0.39± 0.00± 0.70 9.70± 0.15± 0.15± 0.40 86.67± 0.21± 0.00± 2.19
(0.10,0.15) 9.49± 0.34± 0.00± 0.41 45.94± 0.53± 0.01± 1.27 17.02± 0.20± 0.20± 0.68 162.73± 0.29± 0.00± 4.09
(0.15,0.20) 16.28± 0.40± 0.00± 0.64 60.70± 0.59± 0.01± 1.65 23.77± 0.22± 0.22± 0.92 214.84± 0.32± 0.01± 5.40
(0.20,0.25) 23.13± 0.40± 0.01± 0.89 61.56± 0.57± 0.02± 1.74 32.08± 0.22± 0.22± 1.23 239.29± 0.33± 0.01± 6.03
(0.25,0.30) 29.04± 0.39± 0.01± 1.11 60.81± 0.55± 0.03± 1.70 48.40± 0.21± 0.21± 1.82 233.92± 0.31± 0.01± 5.89
(0.30,0.35) 30.85± 0.36± 0.01± 1.16 49.63± 0.51± 0.04± 1.41 72.22± 0.21± 0.21± 2.67 223.39± 0.30± 0.02± 5.62
(0.35,0.40) 22.53± 0.32± 0.02± 0.87 35.31± 0.48± 0.06± 1.07 41.72± 0.18± 0.18± 1.57 167.71± 0.27± 0.03± 4.24
(0.40,0.45) 11.65± 0.27± 0.02± 0.51 21.41± 0.44± 0.08± 0.76 1.85± 0.12± 0.12± 0.30 96.56± 0.24± 0.03± 2.48
(0.45,0.50) 3.27± 0.23± 0.03± 0.29 10.61± 0.41± 0.10± 0.56 −0.07± 0.16± 0.16± 0.41 26.65± 0.21± 0.04± 0.85
(0.50,0.55) −0.22± 0.21± 0.04± 0.25 3.84± 0.39± 0.11± 0.48 — 1.08± 0.17± 0.04± 0.45
(0.55,0.60) — 1.53± 0.36± 0.11± 0.44 — —

Table 7. Cross sections σ(e+e− → bb̄ → DX) for various xp intervals at the Υ(5S) and Υ(4S)
resonances. The first and second uncertainties are statistical for on-resonance and continuum data,
respectively; the third uncertainty is multiplicative systematic.
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Figure 12. The yield ofD+
s in bins of xp for the scan energies. Points with error bars show the data,

solid hatched histograms show the fit results, and open dashed histograms show the extrapolation
of the continuum component into the bb̄ signal region. The energy increases from left to right and
from top to bottom.
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Figure 13. The yield of D0 in bins of xp for the scan energies. Points with error bars show the data,
solid hatched histograms show the fit results, and open dashed histograms show the extrapolation
of the continuum component into the bb̄ signal region. The energy increases from left to right and
from top to bottom.
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