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Abstract

We adapt Glimm’s approximation method to the framework of convex integration to show
density of wild data for the (complete) Euler system of gas dynamics. The desired infinite
family of entropy admissible solutions emanating from the same initial data is obtained via
convex integration of suitable Riemann problems pasted with local smooth solutions. In
addition, the wild data belong to BV class.
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1 Introduction

The celebrated Glimm method uses solutions of the Riemann problem as building blocks to con-
struct weak solutions to non–linear conservation laws. More recently, the Riemann type initial
data gave rise to several examples of ill–posedness of problems in fluid dynamics via the method
of convex integration, see [6], [8], Markfelder and Klingenberg [13], or, more recently, Al Baba et
al [1], Klingenberg et al. [12] to name only a few. The concept of wild data emerged to identify
the initial state of a system that leads to multiple solutions that are still physically admissible.
Székelyhidi and Wiedemann [15] showed that the wild data generating infinitely many energy dis-
sipating solutions of the incompressible Euler system are dense in the L2-topology. A comparable
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result for the isentropic Euler system was obtained by Chen, Vasseur, and Yu [5]. The admissibil-
ity criterion used in [5] based on the stipulation that the energy of the system never exceeds the
initial energy may be rough and still compatible with non–physical (increasing) energy profiles.
The problem of density of wild data for the isentropic Euler system was revisited in [7] in the class
of physically admissible entropy solutions satisfying the energy inequality in the differential form
on a possibly short time interval. Pursuing a similar strategy, we address the same problem in the
context of the (complete) Euler system of gas dynamics.

1.1 Euler system

The Euler system of gas dynamics describes the evolution of the density ̺ = ̺(t, x), the tempera-
ture ϑ = ϑ(t, x) and the velocity u = u(t, x) by a system of field equations

∂t̺+ divx(̺u) = 0, (1.1)

∂t(̺u) + divx(̺u⊗ u) +∇xp(̺, ϑ) = 0, (1.2)

∂t

(
1

2
̺|u|2 + ̺e(̺, ϑ)

)
+ divx

[(
1

2
̺|u|2 + ̺e(̺, ϑ) + p(̺, ϑ)

)
u

]
= 0 (1.3)

that express the physical principles of conservation of mass, linear momentum, and energy. For
definiteness, the pressure p = p(̺, ϑ) and the internal energy e = e(̺, ϑ) are chosen to obey the
standard Boyle–Mariotte law,

p(̺, ϑ) = ̺ϑ, e(̺, ϑ) = cvϑ, cv > 1. (1.4)

For technical reasons, we consider the space periodic boundary conditions identifying the physical
fluid domain with the flat torus

Ω = T
2 =

{
(x1, x2)

∣∣∣ x1 ∈ [0, 1]|{0;1}, x2 ∈ [0, 1]|{0;1}
}
.

Possible generalizations are discussed in the concluding Section 5. The problem is completed by
prescribing the initial conditions

̺(0, ·) = ̺0, ϑ(0, ·) = ϑ0, u(0, ·) = u0. (1.5)

As is well known, see e.g. the monograph by Dafermos [9], solutions of the Euler system
may develop singularities in the form of shock waves even if the initial data are smooth. Weak
(distributional) solutions have been introduced to capture the behaviour of discontinuities along
with several admissibility criteria to restore uniqueness in this larger class. In particular, the
physically admissible solutions to the Euler system are required to satisfy the entropy inequality

∂t(̺s(̺, ϑ)) + divx(̺s(̺, ϑ)u) ≥ 0, where s(̺, ϑ) = cv log ϑ− log ̺, (1.6)

in the sense of distributions.
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1.2 “Wild” solutions/data?

In the last decade, the method of convex integration revealed a number of rather unexpected facts
concerning well/ill posedness of problems in fluid mechanics in the framework of weak solutions,
see e.g. Buckmaster et al. [3], [4] and the references cited therein. In particular, the complete
Euler system (1.1)–(1.3), with the initial data (1.5) is ill–posed in the class of admissible weak so-
lutions satisfying, in addition, the entropy inequality (1.6), see [10] for the periodic or impermeable
bounded domain, and [1], [12] for the Riemann problem. In particular, the Euler system admits
wild data - the initial conditions that give rise to infinitely many physically admissible solutions.

Nonetheless, the fact that the energy equality (1.3) is included in the system may give some
hope that wild data may be somehow “exceptional” for the complete Euler system, see [11]. In
this paper, we show that the wild data for the Euler system with periodic boundary conditions
are dense in the Lp−topology. In addition, we show certain regularity of the emerging solutions
as well as density of the set on which non–uniqueness holds. In particular,

• the wild data we construct are piecewise smooth, in particular in BV class;

• the corresponding solutions are differentiable with the exception of a set of small measure;

• nonuniqueness occurs in an “almost” dense subset of the physical domain.

Our approach is based on a simple idea motivated by Glimm’s approximation technique. First,
we divide the physical space into a finite number of components, where we solve a Riemann type
problem and make use of the ill–posedness results established in [1], [12]. On the complementary
part of the physical space, we consider the local in time strong solution. Thanks to the principle
of finite speed of propagation, we paste the solution pieces together obtaining the desired result.

2 Solvability of the Euler system

We review some known facts concerning solvability of the Euler system in the class of both weak
and strong solutions.

2.1 Admissible (entropy) solutions

Definition 2.1 (Admissible weak solution). A triple (̺, ϑ,u) is called admissible weak solution
of the Euler system in [0, T )×T

2 emanating from the initial data (̺0, ϑ0,u0) if the following holds:

ˆ T

0

ˆ

T2

(
̺∂tϕ+ ̺u · ∇xϕ

)
dx dt = −

ˆ

T2

̺0ϕ(0, ·) dx (2.1)

for any ϕ ∈ C1
c ([0, T )× T

2);

ˆ T

0

ˆ

T2

(
̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ+ p(̺, ϑ)divxϕ

)
dx dt = −

ˆ

T2

̺0u0 · ϕ(0, ·) dx (2.2)
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for any ϕ ∈ C1
c ([0, T )× T

2;R2);

ˆ T

0

ˆ

T2

((
1

2
̺|u|2 + ̺e(̺, ϑ)

)
∂tϕ+

(
1

2
̺|u|2 + ̺e(̺, ϑ) + p(̺, ϑ)

)
u · ∇xϕ

)
dx dt

= −

ˆ

T2

(
1

2
̺0|u0|

2 + ̺0e(̺0, ϑ0)

)
ϕ(0, ·) dx (2.3)

for any ϕ ∈ C1
c ([0, T )× T

2); and

ˆ T

0

ˆ

T2

(
̺s(̺, ϑ)∂tϕ+ ̺s(̺, ϑ)u · ∇xϕ

)
dx dt ≤ −

ˆ

T2

̺0s(̺0, ϑ0)ϕ(0, ·) dx (2.4)

for any ϕ ∈ C1
c ([0, T )× T

2), ϕ ≥ 0.

Despite the large number of recent results concerning existence of (infinitely many) weak so-
lutions to the Euler system, the existence of an admissible solution for arbitrary, say bounded,
initial data is still an open problem.

2.2 Riemann problem on a strip

A special class of data that plays a crucial role in our analysis are the piece–wise constant so called
Riemann data. Consider a spatial domain

R× T
1 =

{
(x1, x2)

∣∣∣ x1 ∈ R, x2 ∈ [0, 1]|{0;1}
}

an infinite 2-D strip. The Riemann data are determined by constant vectors

(̺ℓ, ϑℓ,uℓ), (̺r, ϑr,ur) ∈ (0,∞)× (0,∞)× R
2 (2.5)

Definition 2.2 (Riemann solution). A triple (̺R, ϑR,uR) is called Riemann solution of the
Euler system in [0, T )× R× T

1 emanating from the Riemann data data (̺ℓ, ϑℓ,uℓ), (̺r, ϑr,ur) if
the following holds: There exists λ > 0 such that

(̺R, ϑR,uR)(t, x) = (̺ℓ, ϑℓ,uℓ) if x1 < −λt, (̺R, ϑR,uR)(t, x) = (̺r, ϑr,ur) if x1 > λt; (2.6)

ˆ T

0

ˆ

R×T1

(
̺R∂tϕ+ ̺RuR · ∇xϕ

)
dx dt = −

ˆ

R×T1

(1x1<0̺ℓ + 1x1>0̺r)ϕ(0, ·) dx (2.7)

for any ϕ ∈ C1
c ([0, T )× (R× T

1));

ˆ T

0

ˆ

R×T1

(
̺u · ∂tϕ+ ̺u⊗ u : ∇xϕ+ p(̺, ϑ)divxϕ

)
dx dt

= −

ˆ

R×T1

(1x1<0̺ℓuℓ + 1x1>0̺rur) · ϕ(0, ·) dx (2.8)
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for any ϕ ∈ C1
c ([0, T )× (R× T

1);R2);

ˆ T

0

ˆ

R×T1

((
1

2
̺|u|2 + ̺e(̺, ϑ)

)
∂tϕ+

(
1

2
̺|u|2 + ̺e(̺, ϑ) + p(̺, ϑ)

)
u · ∇xϕ

)
dx dt

= −

ˆ

R×T1

[
1x1<0

(
1

2
̺ℓ|uℓ|

2 + ̺ℓe(̺ℓ, ϑℓ)

)
+ 1x1>0

(
1

2
̺r|ur|

2 + ̺re(̺r, ϑr)

)]
ϕ(0, ·) dx

(2.9)

for any ϕ ∈ C1
c ([0, T )× (R× T

1));

ˆ T

0

ˆ

R×T1

(
̺s(̺, ϑ)∂tϕ+ ̺s(̺, ϑ)u · ∇xϕ

)
dx dt

≤ −

ˆ

R×T1

(1x1<0̺ℓs(̺ℓ, ϑℓ) + 1x1>0̺rs(̺r, ϑr))ϕ(0, ·) dx (2.10)

for any ϕ ∈ C1
c ([0, T )× (R× T

1)), ϕ ≥ 0.

The following result was proved by Klingenberg et al [12, Theorem 1.1], see also Al Baba et al.
[1].

Proposition 2.3. (Ill posedness for the Riemann problem).
There exist Riemann data (̺ℓ, ϑℓ,uℓ), (̺r, ϑr,ur) such that the Riemann problem for the Euler
system admits infinitely many solutions (̺R, ϑR,uR) in [0, T )×(R×T

1), T > 0 arbitrary. Moreover,
all solutions satisfy (2.6) with the same constant λ, and there are constants

0 < ϑ ≤ ϑ, 0 < ̺ ≤ ̺, u > 0

such that
ϑ ≤ ϑR ≤ ϑ, ̺ ≤ ̺R ≤ ̺, |uR| ≤ u (2.11)

a.e. in (0, T )× (R× T
1).

Remark 2.4. As a matter of fact, the result in [12] is stated in the spatial domain R
2. However,

exactly the same arguments yield the desired result on the strip R× T
1. To see this, it is enough

to observe that:

• the subsolutions constructed in [12] are piecewise constant and independent of x2, in partic-
ular periodic in x2;

• the oscillatory lemma (Lemma 2.6 in [12]) holds on arbitrary domain.
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2.3 Local existence of regular solutions

Finally, we recall the well–known results concerning the existence of local–in–time strong solutions
emanating from regular initial data, see e.g. Benzoni-Gavage and Serre [2, Chapter 13, Theorem
13.1].

Proposition 2.5 (Local existence for regular data). Let the initial data

̺0 ∈ W k,2(T2), inf
T2

̺0 > 0, ϑ0 ∈ W k,2(T2), inf
T2

ϑ0 > 0, u0 ∈ W k,2(T2;R2), k > 2,

be given.
Then there exists Tmax > 0 depending only on the norm of the data in the aforementioned

spaces such that the Euler system admits a classical (continuously differentiable) solution (̺, ϑ,u)
in [0, Tmax)× T

2, unique in the class

̺, ϑ ∈ C([0, T ];W k,2(T2)), u ∈ C([0, T ];W k,2(T2;R2))

for any 0 < T < Tmax.

3 Main result

Definition 3.1 (Wild data). The initial data (̺0, ϑ0,u0) are called wild if there exists a time
T > 0 such that the Euler system admits infinitely many admissible weak solutions emanating
from (̺0, ϑ0,u0) in [0, τ ]× T

2 for any 0 < τ < T .

Theorem 3.2 (Density of wild data). Let

̺0 ∈ W k,2(T2), inf
T2

̺0 > 0, ϑ0 ∈ W k,2(T2), inf
T2

ϑ0 > 0, u0 ∈ W k,2(T2;R2), k > 2, (3.1)

and 1 ≤ q < ∞ be given.
Then for any ε > 0, there exist initial data (̺0,ε, ϑ0,ε,u0,ε) enjoying the following properties:

• The data (̺0,ε, ϑ0,ε,u0,ε) are piecewise smooth, specifically, there are finitely many points
x1
1, . . . , x

N
1 such that (̺0,ε, ϑ0,ε,u0,ε)(x1, x2) are continuously differentiable whenever x1 6∈

{x1
1, . . . , x

N
1 }, x2 ∈ T

1.

• There exists T > 0 such that the Euler system admits infinitely many admissible weak solu-
tions (̺n, ϑn,un)n∈N in L∞([0, T ) × T

2;R4) emanating from the initial data (̺0,ε, ϑ0,ε,u0,ε)
such that

(̺n, ϑn,un)|[0,τ)×Bε
6≡ (̺m, ϑm,um)|[0,τ)×Bε

, ∀ m 6= n (3.2)

whenever 0 < τ < T and Bε ⊂ T
2 is a ball of radius ε.

• ∥∥∥
(
̺0,ε − ̺0;ϑ0,ε − ϑ0;u0,ε − u0

)∥∥∥
Lq(T2;R4)

≤ ε; (3.3)
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•

inf
[0,T )×T2

̺n > 0, inf
[0,T )×T2

ϑn > 0, (3.4)

and there exists a compact set S ⊂ T
2, |S| < ε such that (̺n, ϑn,un) are continuously

differentiable in (0, T )× (T2 \ S) for any n ∈ N .

Corollary 3.3. Wild data are dense in Lq(T2; [0,∞)2 × R
2) for any finite q ≥ 1.

4 Proof of the main result

4.1 Glimm’s partition

Fix N = N(ε) distinct points x1
1 < · · · < xN

1 , x
i
1 ∈ T

1, i = 1, . . . , N such that

|xi+1
1 − xi

1| < ε for all i = 1, . . . , N, (4.1)

where we have identified xN+1
1 = x1

1. Accordingly, for any (open) ball Bε of radius ε, there exists
m such that

Bε ∩
{
(xm

1 , x2)
∣∣∣ x2 ∈ T

1
}
6= ∅. (4.2)

4.2 Initial data, approximation

Let (̺0, ϑ0,u0) be given as in (3.1). For δ > 0 small enough, we find (̺0,δ, ϑ0,δ,u0,δ) such that

̺0,δ(x1, x2) = ̺0(x1, x2), ϑ0,δ(x1, x2) = ϑ0(x1, x2), u0,δ(x1, x2) = u0(x1, x2) (4.3)

for any x = (x1, x2) in the set

x1, |x1 − xi
1| > 3δ. for all i = 1, . . . , N, x2 ∈ T

1, (4.4)

where the points xi
1 have been introduced in (4.1).

Let (̺ℓ, ϑℓ,uℓ), (̺r, ϑr,ur), be the Riemann data from Proposition 2.3 giving rise to infinitely
many admissible weak solutions to the Euler system. We set

̺0,δ(x1, x2) = ̺ℓ if x
i
1 − 2δ ≤ x1 ≤ xi

1 − δ, ̺0,δ(x1, x2) = ̺r if xi
1 + δ ≤ x1 ≤ xi

1 + 2δ, x2 ∈ T
1,

ϑ0,δ(x1, x2) = ϑℓ if x
i
1 − 2δ ≤ x1 ≤ xi

1 − δ, ϑ0,δ(x1, x2) = ϑr if x
i
1 + δ ≤ x1 ≤ xi

1 + 2δ, x2 ∈ T
1,

u0,δ(x1, x2) = uℓ if x
i
1 − 2δ ≤ x1 ≤ xi

1 − δ, u0,δ(x1, x2) = ur if xi
1 + δ ≤ x1 ≤ xi

1 + 2δ, x2 ∈ T
1

(4.5)

for i = 1, . . . , N .
Next, we consider δ > 0 small so that (̺0,δ, ϑ0,δ,u0,δ) defined in (4.3), (4.5) may be extended

to T
2 as (˜̺0,δ, ϑ̃0,δ, ũ0,δ),

˜̺0,δ ∈ W k,2(T2), inf
T2

ϑ̃0,δ > 0, ϑ̃0,δ ∈ W k,2(T2), inf
T2

ϑ̃0,δ > 0, ũ0,δ ∈ W k,2(T2;R2), k > 2. (4.6)
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Finally, we introduce the initial data (̺0,ε, ϑ0,ε,u0,ε) supplementing (4.3)–(4.5) by

̺0,δ(x1, x2) = ̺ℓ if x
i
1 − δ ≤ x1 < xi

1, ̺0,δ(x1, x2) = ̺r if xi
1 ≤ x1 ≤ xi

1 + δ, x2 ∈ T
1,

ϑ0,δ(x1, x2) = ϑℓ if x
i
1 − δ ≤ x1 < xi

1, ϑ0,δ(x1, x2) = ϑr if xi
1 ≤ x1 ≤ xi

1 + δ, x2 ∈ T
1,

u0,δ(x1, x2) = uℓ if x
i
1 − δ ≤ x1 < xi

1, u0,δ(x1, x2) = ur if xi
1 ≤ x1 ≤ xi

1 + δ, x2 ∈ T
1 (4.7)

for i = 1, . . . , N , and fixing δ = δ(ε) so that

∥∥∥
(
̺0,δ(ε) − ̺0;ϑ0,δ(ε) − ϑ0;u0,δ(ε) − u0

)∥∥∥
Lq(T2;R4)

≤ ε. (4.8)

From this moment on, the parameter δ = δ(ε) is fixed. Obviously, the data (̺0,ε, ϑ0,ε,u0,ε) =
(̺0,δ(ε), ϑ0,δ(ε),u0,δ(ε)) are piecewise smooth and satisfy (3.3) in accordance with the conclusion of
Theorem 3.2.

4.3 Pasting solutions

Given the smooth data (˜̺0,δ, ϑ̃0,δ, ũ0,δ) as in (4.6), the Euler system admits a (unique) local in time
smooth solution (˜̺, ϑ̃, ũ) defined on a maximal time interval Tmax > 0. As regular solutions of the
Euler system exhibit finite speed of propagation and the initial data satisfy (4.5), we deduce

˜̺(t, x1, x2) = ̺ℓ if x
i
1 −

7

4
δ ≤ x1 ≤ xi

1 −
5

4
δ, ˜̺(t, x1, x2) = ̺r if xi

1 +
5

4
δ ≤ x1 ≤ xi

1 +
7

4
δ, x2 ∈ T

1,

ϑ̃(t, x1, x2) = ϑℓ if x
i
1 −

7

4
δ ≤ x1 ≤ xi

1 −
5

4
δ, ϑ̃(t, x1, x2) = ϑr if xi

1 +
5

4
δ ≤ x1 ≤ xi

1 +
7

4
δ, x2 ∈ T

1,

ũ(t, x1, x2) = uℓ if x
i
1 −

7

4
δ ≤ x1 ≤ xi

1 −
5

4
δ, ũ(t, x1, x2) = ur if xi

1 +
5

4
δ ≤ x1 ≤ xi

1 +
7

4
δ, x2 ∈ T

1

(4.9)

for i = 1, . . . , N for all 0 < t ≤ TS whenever TS = TS(δ) > 0 is small enough.
Next, consider the family of solutions (̺ni,R, ϑ

n
i,R,u

n
i,R)

∞
n=1 defined as

(̺ni,R, ϑ
n
i,R,u

n
i,R)(t, x1, x2) = (̺nR, ϑ

n
R,u

n
R)(t, x1 − xi

1, x2), i = 1, . . . , N,

where (̺nR, ϑ
n
R,u

n
R)

∞
n=1 is the infinite family of distinct admissible solutions emanating from the

Riemann data (̺ℓ, ϑℓ,uℓ), (̺r, ϑr,ur), the existence of which is guaranteed by Proposition 2.3. As
they satisfy (2.6) with the same constant λ, there exists a positive time TR = TR(δ) such that

(̺nR, ϑ
n
R,u

n
R)(t, x1, x2) = (̺ℓ, ϑℓ,uℓ) for x1 < −δ, x2 ∈ T

1

(̺nR, ϑ
n
R,u

n
R)(t, x1, x2) = (̺r, ϑr,ur) for x1 > δ, x2 ∈ T

1 (4.10)

for all 0 < t ≤ TR.
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Finally, we set T = min{TS, TR} and define a family of solutions emanating from the initial
data (̺0,ε, ϑ0,ε,u0,ε) as follows

(̺n, ϑn,un)(t, x1, x2) = (˜̺, ϑ̃, ũ)(t, x1, x2) if |x1 − xi
1| ≥

7

4
δ for all i = 1, . . . , N

(̺n, ϑn,un)(t, x1, x2) = (̺ni,R, ϑ
n
i,R,u

n
i,R)(t, x1, x2) if |x1 − xi

1| ≤
7

4
δ for some i = 1, . . . , N, (4.11)

x2 ∈ T
1, 0 < t ≤ T . In view of (4.9), (4.10), the solutions (˜̺, ϑ̃, ũ) and (̺nR, ϑ

n
R,u

n
R) coincide

whenever
5

4
δ ≤ |x1 − xi

1| ≤
7

4
δ for some i = 1, . . . , N

so (4.11) yields a collection of admissible solutions satisfying (3.2), (3.4).

5 Concluding remarks

We have stated the main result in the spatial dimension d = 2. As noticed by the authors of
[12], the ill posedness of the Riemann problems can be easily extended to d = 3; whence the same
applies to Theorem 3.2.

5.1 Entropy producing solutions

The method of proof of Theorem 3.2 presented in Section 4 can be slightly modified so to construct,
starting from the initial data (̺0,ε, ϑ0,ε,u0,ε), infinitely many admissible solutions (̺n, ϑn,un)n∈N
which are moreover producing entropy. Indeed, we can proceed as follows:

• we first fix arbitrarily an i∗ with 1 ≤ i∗ ≤ N and correspondingly select the point xi∗

1 among
the N distinct points in (4.1);

• we proceed with the approximation of the initial data exactly as in Section 4.2;

• we paste the solutions as performed in Section 4.3 for all 1 ≤ i ≤ N , i 6= i∗;

• for i = i∗, we define

(̺i∗,R, ϑi∗,R,ui∗,R)(t, x1, x2) = (̺RS, ϑRS ,uRS)(t, x1 − xi∗

1 , x2),

where (̺RS , ϑRS,uRS) is the standard self-similar Riemann solution emanating from the
Riemann data (̺ℓ, ϑℓ,uℓ), (̺r, ϑr,ur) and we observe that such a self-similar solution will
contain a shock due to the choice of the Riemann initial data in Proposition 2.3 (see [12,
Theorem 1.1]); we also notice that (̺i∗,R, ϑi∗,R,ui∗,R)(t, x1, x2) satisfy (4.10);

9



• finally, we define the family of solutions

(̺n, ϑn,un)(t, x1, x2) = (˜̺, ϑ̃, ũ)(t, x1, x2) if |x1 − xi
1| ≥

7

4
δ for all i = 1, . . . , N

(̺n, ϑn,un)(t, x1, x2) = (̺ni,R, ϑ
n
i,R,u

n
i,R)(t, x1, x2) if |x1 − xi

1| ≤
7

4
δ

for some i = 1, . . . , N, i 6= i∗,

(̺n, ϑn,un)(t, x1, x2) = (̺i∗,R, ϑi∗,R,ui∗,R)(t, x1, x2) if |x1 − xi∗

1 | ≤
7

4
δ

x2 ∈ T
1, 0 < t ≤ T , with T choosen as in Section 4, thus obtaining an infinite family of

entropy producing admissible solutions emanating from the initial data (̺0,ε, ϑ0,ε,u0,ε).

5.2 Problems on general domains

Our method can be used to show the density of wild data on a general domain Ω ⊂ R
2, where the

Euler system is supplemented with the impermeability boundary condition

u · n|∂Ω = 0. (5.1)

Indeed the construction is easy to adapt as soon as the domain contains a strip (a, b) × (c, d),
specifically

(a, b)× (c, d) ⊂ Ω, [a, b]× {c}, [a, b]× {d} ⊂ ∂Ω. (5.2)

• The necessary local existence result was proved by Schochet [14].

• To ensure the satisfaction of the compatibility conditions, we may consider the initial data
(3.1), with ̺0, ϑ0 constant and u0 = 0 in a small neighbourhood of ∂Ω.

• The construction of the modified data on a single strip (a, b) × (c, d) can be carried out
exactly as in Section 4.2 yielding the data with vanishing second component u0,2 in the strip
(a, b)×(c, d), specifically satisfying the impermeability condition (5.1) as well as the necessary
compatibility conditions.

The above delineated construction yields the same conclusion as Theorem 3.2 except the prop-
erty (3.2). In particular, Corollary 3.3 remains valid. The entropy producing solutions claimed in
Section 5.1 can be obtained in the same way.
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