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A B S T R A C T   

Deep learning (DL), that is becoming quite popular for prediction and analysis of complex patterns in large 
amounts of data is used to investigate the safety behaviour of the nuclear plant items. This is achieved by using 
multiple layers of artificial neural networks to process and transform input data, allowing for the creation of 
highly accurate predictive models. Particularly to the aim the unsupervised machine learning approach and the 
digital twin concept in form of pressurized water reactor 2-loop simulator are used. This innovative methodology 
is based on neural network algorithm that makes capable to predict failures of plant structure, system, and 
components earlier than the activation of safety and emergency systems. Moreover, to match the objective of the 
study several scenarios of loss of cooling accident (LOCA) of different break size were simulated. To make the 
acquisition platform realistic, Gaussian noise was added to the input signals. The neural network has been fed by 
synthetic dataset provide by PCTRAN simulator and the efficiency in event identification was studied. Further, 
due to the very limited studies on the unsupervised anomaly detection by means of autoencoder neural networks 
applied for plant monitoring and surveillance, the methodology has been validated with experimental data from 
resonant test rig designed for fatigue testing of tubular components. The obtained results demonstrate the 
reliability and the efficiency of the methodology in detecting anomalous events prior the activation of safety 
system. Particularly, if the difference between the expected readings and the collected data goes beyond the 
predetermined threshold, then the anomalous event is identified, e.g., the model detected anomalies up to 38 min 
before the reactor scram intervention.   

1. Introduction 

Predictive maintenance (PM) is an innovative approach to mainte-
nance that aims to predict potential equipment failures and carry out 
maintenance work before upsets or accidents occur. This approach can 
significantly reduce downtime and costs, increase productivity, and, 
above all, improve the safety of nuclear power plants (NPPs). PM is often 
contrasted with reactive maintenance (RM), which responds to equip-
ment failures after they occur, and preventive maintenance, which 
performs maintenance activities at scheduled intervals of time regard-
less of equipment condition. PM relies on advanced technologies, such 
as sensors, machine learning, and Internet of Things (IoT), to monitor 
equipment performance and predict potential failures. The process be-
gins by collecting real-time data on equipment performance, including 
temperature, vibration, pressure, and other parameters that represent 
the equipment condition (International Atomic Energy Agency, 2018). 

Data are then analyzed using statistical models, artificial intelligence 
(AI) algorithms, and other techniques in order to identify patterns and 
anomalies that may predict potential equipment failures. The insights 
from this analysis are used to schedule maintenance activities, ensuring 
that equipment remains in ideal operating condition. In addition to 
reduce downtime and costs, predictive maintenance can also be 
employed to improve the safety in industrial and commercial operations 
thereby minimizing the risk of accidents and incidents that can result 
from equipment malfunctions and failures. 

Several studies highlighted that predictive maintenance can lead to a 
11% of cost reduction, 8% of reduction of safety, health, environment 
and quality risk, and 7% of lifetime extension of aging asset (PwC., 2017; 
Deloitte., 2015; Cancemi and Lo Frano, 2023). 

Among the several available machine learning (ML) training models 
(to be chosen based on the data and the problem being solved), the three 
main types are: a) supervised learning, b) unsupervised learning, and c) 
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reinforcement learning. 
Supervised learning (SL) is a type of machine learning training that 

involves providing labelled training data to a machine learning algo-
rithm. The algorithm learns to recognize patterns and makes predictions 
based on the labelled. A supervised learning model could be trained on 
historical equipment data, such as operation conditions, failure modes, 
and maintenance records. The input variables might be temperature, 
pressure, vibration levels, operating hours, etc., and the output variable 
would be the occurrence of failure. This trained model can then be used 
to predict when a machine/item is likely to fail based on the provided 
input variables, allowing maintenance to be scheduled proactively in 
order to prevent the unexpected downtime. 

Unsupervised learning (UL) is a type of machine learning training 
that involves providing unlabelled data to a machine learning algorithm. 
The algorithm learns to identify patterns and structure in the data 
without any prior knowledge of what does the data represent. UL can be 
used for anomaly detection (AD) in machine health data. A model could 
be trained on normal operational data from machinery. Once the model 
has learned this ’normal’ state, it can then monitor new data for any 
deviations from it. Such deviations (anomalies) could be early indicators 
of a potential failure, enabling the proactive maintenance. 

Reinforcement learning (RL) is a machine learning technique that 
focuses on training an agent to make decisions that maximize a reward 
within a specific environment. The agent repetitively learns through a 
process of trial and error, analysing the resulting outcomes and adjusting 
its behaviour accordingly. RL could be used to optimize maintenance 
schedules. In this scenario, the RL agent’s environment is the state of the 
machinery. Actions could be to maintain or not maintain each equip-
ment/item, and the reward could be inversely related to maintenance 
costs and the number of machine failures. Over time, the RL agent could 
learn an optimal policy for maintaining each piece of equipment/item to 
minimize both the overall costs and the machine failures. 

The nuclear industry still employs PM and RM maintenance strate-
gies, particularly for Class I components (ASME III, 1980), due to safety 
and cost concerns. However, both often result in premature replacement 
of functional components. On the other hand, PM relies on historical 
data and degradation curves, but the lack of failure data limits the 
effectiveness of AI approaches. To address these limitations, this study 
proposes an innovative methodology that utilizes the unsupervised 
approach and digital twin (DT) concept that provide synthetic anomaly 
dataset. The digital twin is represented by pressurized water reactor 
(PWR) 2-loop simulator PCTRAN® (Cancemi and Lo Frano, 2022; 
Cancemi and Lo Frano, 2022; International Atomic Energy Agency, 
2019; U.S. NRC, 2021). Digital twin is a virtual representation of a 
physical object, system, or process. It is a computerized model that is 
designed to simulate the behavior, performance, and characteristics of a 
real-world object or system in a digital environment. DT combined with 
unsupervised machine learning can enhance predictive maintenance in 
several ways:  

• Lack of Failure Data: Unlike supervised learning that requires failure 
examples, unsupervised learning learns from normal operation data 
and flags anomalies, solving the issue of infrequent failure events.  

• Real-Time Anomaly Detection: By applying unsupervised learning to 
digital twin data, potential problems can be identified in real-time, 
enabling quicker maintenance responses.  

• Handling Complex Relationships: Unsupervised learning can better 
understand complex variable relationships in the system compared 
to rule-based systems.  

• Continuous Learning: Unlike traditional methods needing manual 
reprogramming for changes, unsupervised learning algorithms adapt 
over time, improving system understanding as more data is 
processed. 

This study deals with two distinct scenarios of anomalies, wherein 
the cooling system in the hot leg and cold leg fail, respectively. The 

percentage of pipe failure fraction varies for each of the scenarios. This 
work is not aimed to describe a loss of cooling accident (LOCA) event, 
which is ruled by 10CFR50.46 (U.S. NRC, 2023) and whose several as-
pects are analyzed extensively and in great detail in studies found in the 
open scientific literature (U.S.NRC, 2023; Lewis, 1977; International 
Atomic Energy Agency, 2016; González-González et al., 2023; Vesh-
chunov et al., 2022). The aim of this study is so to forecast potential 
anomaly patterns beforehand and assess the efficacy of the suggested 
methodology by contrasting it against safety systems such as reactor 
protection system (RPS) and engineered safety features (ESF). 

2. State of the art 

The unsupervised approach is based on autoencoder. Autoencoder is 
a neural network used for anomaly detection that can learn complex 
patterns in the data. It is trained on normal data, and if the recon-
struction error of new input data is above the threshold, it is considered 
an anomaly. Autoencoders can be trained in an unsupervised manner 
and used for equipment failure prediction. Moreover, it is able to reveal 
potential issues, even if the specific failure mode is not yet known or 
detected by a sensor monitoring system. The study (Wang and Takehisa, 
2014) is one of the first applications of autoencoders in AD. The authors 
show that autoencoders, through their capability to perform nonlinear 
reduction in dimensionality, can effectively detect anomalies in a 
spaceship health monitoring dataset. Further, they compared the per-
formance of autoencoders with Principal Component Analysis (PCA). 
Their findings indicated that autoencoders performed more effectively 
than PCA in identifying anomalies, underscoring the benefits of 
employing non-linear approaches for such tasks. Chen J. et all. (Chen 
et al., 2017) present an ensemble approach based on autoencoder. The 
authors use multiple autoencoders, each trained on a different subset of 
the feature space. This method has demonstrated enhancement in both 
robustness and accuracy of anomaly detection, especially in high- 
dimensional datasets. Zhou and Paffenroth (Zhou and Paffenroth, 
2017) introduce an autoencoder model for anomaly detection in high- 
dimensional data. The methodology is based on convolutional archi-
tecture, particularly effective for image data. The model outperforms 
traditional methods on several image datasets. The study (Zong et al., 
2018) propose an innovative model by means Deep Autoencoding 
Gaussian Mixture Model (DAGMM) for anomaly detection. This model 
combines the advantages of deep autoencoders and Gaussian Mixture 
Models, providing a powerful tool for capturing complex data distribu-
tions. The authors demonstrate that DAGMM outperforms conventional 
approach. The effectiveness of the model is proven through several 
datasets, especially in cases which the anomalies are sensitive. Meng-Die 
Wang et al. (Wang and Takehisa, 2014) proposed a different type of 
neural network algorithm to detect anomaly pattern in an accident 
scenario. The authors adopted a particular algorithm called Long Short- 
Term Memory (LSTM), which is a type of recurrent neural network 
(RNN) architecture mainly used for time-series data, such as natural 
language processing and speech recognition. This study focused on 13 
anomaly events, each of which event comprises record and states from 
26 sensors (6 physical parameter) data for feeding the LSTM. However, 
this method seems limited in the comparison of the results from 
analyzed events of the safety systems implemented in NPPs, as the RPS 
and EFS. This limitation is due to different set-up of input signals. To 
overcome this problem, the approach used in this study is based on 
different neural architecture (autoencoder) which employs the same 
input signals of RPS and EFS systems. Furthermore, LSTM architecture 
can be resource-intensive and require more time to train due to their 
complex structure that handles long-term dependencies. 

The proposed methodology involves using an autoencoder neural 
network for anomaly detection, which is linked to a synthetic dataset 
generated via digital twin of NPP (PCTRAN). This approach compen-
sates for the lack of failure data from nuclear plants (extremely rare), by 
digitizing the NPP. The integration of the autoencoder with PCTRAN 
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enables a direct comparison with the existing RPS and EFS monitoring 
systems in NPP. Digital twins can be used for simulation and testing. 
This means that different scenarios can be simulated to investigate how 
the system would respond. In this study LOCA event is simulated but 
other events can be studied. 

In this study, eight LOCA were simulated, consisting of four incidents 
in the cold leg and four in the hot leg, each of which characterized by 
different pipe break size. In section 2 a description of the PCTRAN model 
is provided. The methodology based on undercomplete autoencoder is 
extensively described in section 3. The validation of the proposed 
methodology was carried out with reference to the study section 5 of 
Santus et al. (Santus et al., 2020), who used a resonant test rig to perform 
fatigue tests on corroded drill pipe connections and pipe bodies with 
varying sizes and steel grades, and a monitoring system consisting of 
vertical and horizontal laser displacement and strain gauge sensors. 

3. Safety system in nuclear power plant 

The safety of a nuclear power plant is maintained by means of a 
variety of complex systems; among them, the most important are the 
Reactor Protection System (RPS) and the Engineered Safety Features 
(ESF). The RPS has the dual objectives to prevent hazardous reactor 
operation and to safeguard against the discharge of radioactive mate-
rials. These are accomplished by triggering a reactor trip when safe 
operational limits are exceeded and activating ESF in the event of an 
accident. Safe operational limits are established based on the Final 
Safety Analysis Report of the plant and continuously monitored by local 
sensors (International Atomic Energy Agency, 2021; U.S. NRC, 2023; U. 
S. NRC, 2012). When a process signal surpasses a specified set-point, the 
analog signal is transformed into a digital output by a bistable and 
monitored by the trip logic matrix. As a consequence of that, the logic 
matrices determine whether to initiate a reactor trip or an engineered 
safety features activation. The RPS consists of two separate and inde-
pendent analog and logic circuit trains. If an analog circuit detects an 
unsafe condition, it sends signals to the protection system logic cabinets, 
where the relevant logic contacts are opened. Then, the logic matrices 
check whether the coincidence for a reactor trip function has been met. 
If so, the protection system triggers the reactor trip breakers, halting 
power to the control rod drive mechanisms and causing the injection of 
control rods into the reactor core. If an accident occurs, the protection 
system activates the necessary safety equipment. Moreover, the logic 
trains automatically enable or disable permissive, which are interlocks 
of protection-grade (U.S. NRC, 2012). The ESF main function is to detect 
accident-related parameters and trigger equipment that can mitigate the 
consequences of accidents. It includes activating equipment that 
removes core decay heat, provides long-term core cooling, terminates 
steam line breaks, and protects the containment building (last barrier 
against fission product leakage). The ESF receives inputs from different 
sources, such as pressurizer pressure, containment pressure, contain-
ment radiation, steam generator pressure, steam generator level, 4160 
Vac ESF bus voltage, and refuelling water tank (RWT) level. The first 
four input parameters can be used to detect a loss of coolant accident or 
steam line break. The steam generator level input triggers the activation 
of the auxiliary feedwater system (AFW), while the 4160 Vac ESF bus 
voltage input is responsible for sequencing loads onto the diesel gener-
ator during accident conditions. Lastly, the RWT level input prompts the 
emergency core cooling equipment to switch to long-term core cooling 
mode of operation. The input signals received from the ESF are used to 
actuate eight distinct systems, which include the safety injection actu-
ation signal (SIAS), containment spray actuation signal (CSAS), 
containment isolation signal (CIS), recirculation actuation signal (RAS), 
containment radiation signal (CRS), steam generator isolation signal 
(SGIS), auxiliary feedwater actuation signal (AFAS), and emergency 
diesel generator (EDG) sequencing signal (U.S. NRC, 2012). 

4. Nuclear power plant simulator 

PCTRAN® is a software for simulating nuclear power plants. It was 
developed by MST Inc. PCTRAN (International Atomic Energy Agency, 
2019) simulator version 6.0.4, can be obtained from the IAEA website. It 
is built on a standard 2-loop PWR 1800MWth design with inverted U- 
bend steam generators (SGs) and a dry containment system (looking like 
Westinghouse, AREVA or Korean Advanced PWR’s). Fig. 1 shows the 
PCTRAN® graphical interface of the plant which includes in a single 
display all the main synoptic systems. 

The components enclosed in red box are numbered in order to 
uniquely identify them and help the user in understanding how they 
behave when the plant operating conditions change. This is allowed 
because the mimic system mimic is interactive. The list of the plant 
components is provided in Table 1. Moreover, as indicated in (Interna-
tional Atomic Energy Agency, 2019), A and B are used to distinguish the 
components belonging to the system circuits, facilitating this way the 
elements loops’ detection (Cancemi and Lo Frano, 2023; International 
Atomic Energy Agency, 2019; Cliff Po, 2009). 

The simulator allows to perform, on the personal computer, simu-
lations of transient and accident analysis. The components and features 
of the plant are represented as graphical elements, organized in a sys-
tematic manner on the interfaces. This allows the user to interact with 
the simulation software by directly changing the setting of the graphical 
elements. 

The MS Access database stores essential plant data, such as geome-
try, physical parameters, and trip set-points, etc., as well as the initial 
conditions, such as reactor thermal power, core pressure, core temper-
ature, and fuel-life cycle (International Atomic Energy Agency, 2019). 
The database also contains various malfunctions, such as LOCA, steam 
line break, fuel failure during power operation, and anticipated transient 
without scram. The RPS and EFS are represented at the bottom of the 
graphical interface (Cheng et al., 2012; Qi et al., 2022). In Table 2 the 
RPS and Emergency Core Cooling System (ECCS) setpoints implemented 
in PCTRAN are shown. The PCTRAN model has undergone rigorous 
benchmarking and verification processes. The study (International 
Atomic Energy Agency, 2019) presents the validation of the PCTRAN 
that was carried out referring to the Three Mile Island (TMI) nuclear 
accident, while the recent study (Qi et al., 2022) considered for vali-
dation the Fukushima accident scenario and two other representative 
accident conditions. Qi et al. (2022) successfully demonstrated the 
control logic and the transient response of the accidents. 

5. Methodology 

The methodology proposed in this study is based on undercomplete 
autoencoder (AE) (Sakurada and Yairi, 2014). An undercomplete 
autoencoder (AE) is a neural network architecture employed for unsu-
pervised learning tasks, including identifying anomalies. The funda-
mental concept behind this type of AE is to create a condensed 
representation of the input data by first mapping it to a lower dimen-
sional space and then mapping it back to its original, higher dimensional 
space. The encoder segment is characterized by several completely 
interconnected layers that downsize the dimensionality of the input 
information. Each of these layers contains specific weights and biases, 
which are tweaked to decrease the reconstruction error. The output of 
the encoder is a latent space representation, which is generally signifi-
cantly smaller compared to the original input data. On the other hand, 
the decoder comprises a sequence of fully interconnected layers, 
designed to map the latent space back into the format of the original 
input data. During the training phase, tuning is made to the weights and 
biases of decoder with the aim of achieving optimal accuracy in repli-
cating the original input data (Torabi et al., 2023). The encoder function 
can be mathematically represented by the following equation: 

h = f (We • X + be) (1) 
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Fig. 1. PCTRAN® plant mimic with the main system (from (International Atomic Energy Agency, 2019).  

Table 1 
List of Components.  

Number Component Number Component 

1A, 1B Reactor Coolant Pumps 
(RCPs) 

13 Feedwater pumps 

2 Pilot-Operated Relief Valves 
(PORV) 

14 Motor-driven auxiliary 
feedwater pumps 

3 Pressurizer spray nozzle 15 Turbine of the auxiliary 
feedwater pump 

4 Pressurizer auxiliary spray 
valve (from CVCS) 

16 Turbine-driven auxiliary 
feedwater pump 

5 Pressurizer spray valve (from 
a cold leg) 

17 Valve for steam to the 
turbine of the auxiliary 
feedwater pump 

6 Pressurizer relief tank 18 High pressure injection 
(HPI) pumps/Charging 
pump 

7A, 7B Atmospheric Dump Valves 
(ADVs) or Main Steam Safety 
Valves (MSSVs) 

19 Letdown valve 

8A, 8B Main Steam Isolation Valves 
(MSIVs) 

20 Accumulators 

9A, 9B Feed Water Isolation Valves 
(FWIVs) 

21 Low pressure injection 
(LPI) pumps 

10 Turbine governor valve 22 Reactor building spray 
pumps 

11 Turbine bypass valve 23 Containment cooling fans 
12 Condensate pumps 24 Containment vent valve  

Table 2 
Trip set-point of RPS and ECCS system.  

System No 
ID 

Description Value Unit 
system 

RPS 1 High pressure reactor scram setpoint (bar) 165.7 bar 
RPS 2 Low pressure reactor scram setpoint (bar) 132.2 bar 
RPS 3 Low SG narrow range scram setpoint (%) 17 bar 
RPS 4 High neutron flux reactor scram setpoint 

(fraction of full power) 
1.18 [–] 

RPS 5 Low core flow reactor scram setpoint 
(fraction of full flow) 

0.87 [–] 

RPS 6 High-high SG level turbine trip setpoint 
(%) 

82 % 

ECCS 7 HPI automatic start setpoint (bar) 129.69 bar 
ECCS 8 Accumulator initiation pressure setpoint 

(bar) 
43 bar 

ECCS 9 LPI system initiation pressure (bar) 11.36 bar 
ECCS 10 High RB press for SI initiation (bar) 1.3 bar 
ECCS 11 Simultaneous low PZR level with RCS 

pressure for Safety Injection initiation 
(fraction of full) 

0.15 [–] 

ECCS 12 Simultaneous low RCS pressure with 
Pressurizer level for Safety Injection 
initiation (bar) 128 Low SG press for SI 
initiation (bar) 

128 bar 

ECCS 13 Low SG press for Safety Injection 
initiation (bar) 

38 bar  
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where X is the input vector data, We is the weight matrix for the 
encoder, be is the bias vector for the encoder, f is the activation function 
used by the encoder, and h is the compressed representation of the input 
data.Similarly, the decoder function can be mathematically represented 
as (2): 

X′ = g(Wd • h + bd) (2)  

where X’ is the reconstructed output, Wd is the weight matrix for the 
decoder, bd is the bias vector for the decoder, g is the activation function 
used by the decoder, and h is the compressed representation of the input 
data. 

Anomalies can be detected by evaluating the magnitude of the mean 
square error (MSE), by training an AE to minimize the reconstruction 
error. This error is the criterion used to measure how well the AE has 
learned the relationships between the features of the input set. If the AE 
can reproduce the input with good accuracy in the output, the MSE will 
be small. If not, the AE will produce a larger error. It is possible to 
identify anomalies by comparing the reconstructed MSE to a pre-
determined threshold. The MSE is given by: 

MSE =
1
N
×
∑

(X − X′)2 (3)  

Where N is the number of samples in the input data, X is vector of 
observed values and X’ is a vector of predicted values. In order to in-
crease the soundness of model even mean absolute error (MAE) is used. 

The lack of failure data presents a significant challenge for devel-
oping an accurate anomaly detection methodology, especially in in-
dustries such as nuclear power where safety and reliability are critical. 
To tackle this challenge a synthetic dataset by PCTRAN software is 
provided. 

The dataset contains 8 test cases of LOCA, with four incidents taking 
place in the cold leg and the other four in the hot leg. Each scenario is 
distinguished by a different pipe break size. The set-up of all test cases is 
collected in the Table 3. The delay time refers to the duration it takes for 
a malfunction to be activated after it has been implemented. In all test 
cases, the coolant leak is triggered exactly 1000 s after the simulator has 
been started. The ramp time is the time required to achieve the 
maximum break size is 2200 s. For sudden changes recorded by the 

sensors, the traditional monitoring platforms continue to be effective. 
Based on the test-case analysed, the transient lasts between ~2058 and 
~3389 s. In this study, the undercomplete autoencoder consists of three 
layers, characterized by 10 nodes in the input layer, 4 nodes in the 
hidden layer, and 10 nodes in the output layer. The model is trained for 
100 epochs with a batch size of 10, and 5% of the data is set aside for 
validation after each epoch. The choice of a proper activation function 
needs often trials and error approach. The experimental-based activa-
tion function is the one that may offers the optimal performance for a 
particular task. In this study, several trials have been carried out by 
considering different activation functions for the autoencoder algo-
rithm. Evaluating based on anomaly detection instances, it was found 
that the ReLU activation function proved to be the most effective for the 
model proposed (Dubey et al., 2022; LeCun et al., 2012). 

The architecture of the autoencoder is determined by monitoring the 
model performance based on metrics such as reconstruction error. The 
weights and biases of the encoder and decoder are adjusted to minimize 
this reconstruction error using Adam’s algorithm (Kingma and Ba, 
2017). During the training phase, only the data related to healthy con-
ditions are provided to the model, and no abnormal occurrences are 
included. The model is trained using the first 975 s of the dataset. As a 
result, the model can identify anomalies after being trained. However, 
since the model has only learned event records corresponding to a 
healthy condition of the component, when the entire dataset, including 
anomalous events, is supplied to the model, it produces a large recon-
struction error. This reconstruction error can be considered as a measure 
of the “anomaly” of the input signal (Cancemi and Lo Frano, 2022; 
Cancemi and Lo Frano, 2022). 

The threshold is calculated based on the distribution of MSE and 
MAE. The MSE and MAE distribution of test case 1 are shown in Fig. 2a 
and Fig. 2b. The learning curve of test case 2 is represented in Fig. 2c. 
The suggested threshold automatically calculated for test case 1 is k =
0.23 and k = 0.19 for MSE and MAE respectively. The threshold eval-
uation workflow is applied uniformly across all the test cases. Their 
initial conditions are as follows: the power of NPP is 100%, the pressure 
of the Reactor Cooling System (RCS) is 155 bar, the average temperature 
of the RCS is 306.9◦ C, and the pressure of the Steam Generator is 70 bar. 
The PCTRAN simulator can graph 93 variables, which may not always 
correspond to actual signals from a monitoring system but provides a 
general overview of the transient. Since the aim of this study is to pre-
sent a genuine data acquisition system, the input signals utilized by the 
RPS and EFS systems, which were described in section 3, have been 
chosen. In addition, Gaussian noise is applied to signal to simulate real 
platform acquisition. The selected input signals are pressure of RCS (P), 
level narrow range of both steam generators (NSGA; NSGB), power 
nuclear flux (PWNT), flow reactor coolant loop A and B (WRCA; WRCB), 
pressure of reactor building (PRB) and radiation monitoring reactor 

Table 3 
Set-up of PCTRAN implemented malfunction.  

Test 
Case 
No. 

Event 
Description 

Delay 
Time [s] 

Ramp 
Time 
[s] 

Pipe 
Break 
Size 
[%] 

Nominal Pipe 
Dimension 
[cm2] 

1 Loss of Coolant 
Accident (Cold 
Leg) 

1000 2200 2 100 

2 Loss of Coolant 
Accident (Cold 
Leg) 

1000 2200 5 100 

3 Loss of Coolant 
Accident (Cold 
Leg) 

1000 2200 7 100 

4 Loss of Coolant 
Accident (Cold 
Leg) 

1000 2200 10 100 

5 Loss of Coolant 
Accident (Hot 
Leg) 

1000 2200 2 100 

6 Loss of Coolant 
Accident (Hot 
Leg) 

1000 2200 5 100 

7 Loss of Coolant 
Accident (Hot 
Leg) 

1000 2200 7 100 

8 Loss of Coolant 
Accident (Hot 
Leg) 

1000 2200 10 100  

Fig. 2a. Distribution of MSE loss of training set for Test-Case 1.  
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building (RM1). The safety system integrated into the simulator was 
activated based on the trip set-point specified in Table 2. The proposed 
methodology is summarized in Fig. 4. The superscript in the output 
vector represents the reconstructed signals after compression into hid-
den layer (See Fig. 3). 

6. Results and discussion 

Predictive maintenance is safety-enhancing strategy and a cost- 
effective approach as well which can be implemented in nuclear in-
dustry. Neural networks algorithms can be used for the detection of 
potential equipment failures before they occur, allowing maintenance 
teams to take preventative action and avoid costly downtime and safety 
concerns. The possibility to anticipate anomalous behaviour can be 
beneficial, particularly in the frame of long-term operation, for pre-
venting it from escalating into a severe accident. The results of all test 
case are shown in Figs. 4-11 and collected in Table 4. By analysing them, 
the predictive capacity (or effectiveness) in detecting abnormal events of 
the developed model is evident. The neural model is able to detect 
anomaly before the intervention of RPS and ECCS for all the eight test 
cases. The cold/hot leg pipe break malfunction is set up at the 1000-sec-
ond. For the purpose of comparison, the analysis includes the reactor 
scram time and ECCS activation, provided in relation to the time of each 
event’s initiation. 

The results obtained taken into account the MSE metric are shown 
from Figs. 4–11 and describes in the following. In test case 1, the pipe 
break size is 2 cm2 as indicated in Table 3. The model successfully de-
tects the initial anomaly at 1095 s, the time instant that precedes the 
reactor scrams by 2205 s and the intervention of the high-pressure safety 
injection (HPSI) by 2211 s. In the test case 2, where the break size is 5 
cm2, the reactor scram take place at 2248 s, followed by HPSI inter-
vention at 2254 s. However, the model is able to detect the initial 
anomaly only after a delay of 65 s from the predetermined malfunction 
setup, at 1065 s. Despite this delay, the model detects the anomaly much 
earlier, (1183 s) than the reactor scram and 1189 s prior HPSI activation. 
Analysing the results of test cases 3–4, it is possible to say that the neural 
model is able to detect the anomalies 944.5 s and 731 s respectively 
before the reactor scram, and at 950 s and 954.5 s respectively, earlier 

Fig. 2b. Distribution of MAE loss of training set for Test-Case 1.  

Fig. 2c. Learning curve for Test-Case 2.  

Fig. 3. Methodology Workflow.  
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Fig. 4. Test case 1.  

Fig. 5. Test case 2.  

Fig. 6. Test case 3.  Fig. 7. Test case 4.  
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than HPSI activation. 
With regards to test cases 1–4, the reactor scram occurs as the reactor 

protection system (RPS) reaches its low-pressure setpoint of 132.2 bar. 
Additionally, the HPSI is triggered by the automatic start setpoint of the 
high-pressure injection (HPI) system at 129.69 bar (see Table 2). Test 
cases 5–8 show a cooling loss in the hot leg of the reactor due to a pipe 
break failure. The break area for each of these test cases are as follows: 2 
cm2, 5 cm2, 7 cm2, and 10 cm2 respectively. Also in these cases, the 
model proves to be performing and efficient in detecting anomalies 
before the RPS and ECCS systems intervention. In test case 5, the model 
detects the first anomaly at 1090 s, which is significantly earlier than 
when HPSI and the reactor scram switch activates (at 3210 and 3432 s 
respectively). The model predicts the anomaly 2120 s before the HPSI 
intervention and 2342 s the reactor scram. The HPSI is triggered due to 
high reactor building pressure setpoint reaching 1.30 bar. In test cases 6, 
7, and 8, the neural model flags anomalies at 1075, 1065, and 1050 s, 
respectively. The maximum delay in prediction is observed in the test 
case 1, where the model detects the anomaly 95 s after the malfunction 
occurred. However, in all three cases, the model predicts the anomaly 
well before the safety system intervention, with respective lead times of 
1172, 928, and 735 s. The best model performance is observed in test 
case 1, where the model flags the anomaly 36 min and 45 s before the 
reactor scram. The anomaly threshold detection differs at least 10 s 
between the MSE and MAE metrics respectively (test case-1-2-3-5). 

7. Model validation 

Model validation is an essential step in any machine learning project. 
The goal of model validation is to estimate the generalization error of 
the model, which is the error rate that the model is likely to achieve 
when applied to new, unseen data. To this end, the neural model pre-
sented in this manuscript is validated based on the study (Santus et al., 
2020), which deals with a resonant test rig designed for fatigue testing of 
tubular components and describes the rig’s operational principle and 
control strategy. Santus et al. tested corroded drill pipe connections and 
drill pipe bodies of varying sizes and steel grades, subjecting all speci-
mens to a relatively high stress amplitude under fatigue loading. Results 
showed that fatigue initiation occurred in the central region of the pipe 
specimens where stress amplitude was highest and away from the tool 
joints of connection specimens, mainly due to differences in outer di-
ameters, despite the stress concentration due to the threaded connection 
itself. Fatigue cracks initiated at pitting corrosion sites, which reduced 
the potential fatigue strength of drill pipes. The control of bending vi-
bration in that test rig is achieved through the use of strain gauges and 
laser sensors. In order to verify the methodology, the neural model is 
utilized to investigate data from the experimental study (Santus et al., 
2020). The input signals consist of readings from laser sensors posi-
tioned horizontally and vertically along the pipe. Strain gauge sensors 
are not taken into account due to their accidental failure in several test 
cases. The model was validated based on 19 test cases. The results of all 

Fig. 8. Test case 5.  

Fig. 9. Test case 6.  

Fig. 10. Test case 7.  
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tests are summarized in the Table 5. To this regard, in Fig. 12 and Fig. 13 
the record of displacement signals and results of test case 1A are pre-
sented. The algorithm exhibited good performance and generalization, 
accurately predicting failures in 100% of the analysed cases. Further-
more, in 74% of these cases, the model predicted a pipe break at least 

500 s in advance. The highest level of performance was observed in test 
cases 1A, 13A, 14A, 15A, 16A, 17A, and 19A, with failure predictions 
ranging between 68 and 22 min (or 102,284 and 33,892 cycle) before 
the event. 

8. Conclusion 

This study has proposed an innovative methodology based on un-
supervised neural network to predict potential anomalies in the cooling 
system of a PWR: a breaching in the hot leg and cold leg was considered 
purposely. The size of pipe break was varied so to consider multiple 
scenarios. 

The neural network has been fed by synthetic dataset provide by 
PCTRAN simulator and the efficiency in event identification was stud-
ied. Particularly the abnormal event was detected if the differences 
between the acquired and predicted readings exceed the pre-set 
threshold. The main conclusions are as follow:  

• The neural model successfully detects anomalies in 100% of test 
cases before reactor scram and ECCS activation.  

• The first anomaly is detected by the model within just ~1 min of its 
implementation in the reactor simulator.  

• Anomalies are detected up to 38 min before the safety system 
activation.  

• Training the unsupervised model requires a large amount of data.  
• Lack of data can be overcome by using a digital twin of the reactor. 

Fig. 11. Test case 8.  

Table 4 
Results of test case: anomaly detection and reactor scram and ECCs times [s].  

No. 
Test 
Case 

Anomaly 
detected 
(MSE) 
[s] 

Anomaly 
detected 
(MAE) 
[s] 

Reactor 
Scram 
[s] 

Trip 
Setpoint 
No. ID 

ECCS 
[s] 

Trip 
Setpoint 
No. ID 

1 1095 1105 3300 2 3306 7 
2 1065 1055 2248 2 2254 7 
3 1050 1040 1994.5 2 2000 7 
4 1055 1055 1786 2 1792 7 
5 1090 1100 3432 2 3210 10 
6 1075 1075 2247 2 2253 7 
7 1065 1065 1993 2 1999 7 
8 1050 1055 1785 2 1791 7  

Table 5 
Summary of the validation results.  

No. Test 
Case 

Material Failure 
Time [s] 

1st Anomaly 
detected [s] 

Residual Life [s] 
(Failure Time – 1st 
Anomaly detected) 

1A S140 9772 5709 4063 
2A S140 2801 2534 267 
3A S140 3758 3597 161 
4A S140 4684 4340 344 
5A S150 4532 4020 512 
6A S150 3014 254 471 
7A S150 3792 3045 747 
8A S150 5970 5025 945 
9A S150 3909 3029 880 
10A S150 3737 3469 268 
11A S150 4618 4062 556 
12A S150 4382 3783 599 
13A S140 9674 8137 1537 
14A Z140 4699 3135 1564 
15A Z140 4471 2984 1487 
16A Z140 4699 3135 1564 
17A S140 9937 8444 1493 
18A UD165 4317 3567 750 
19A UD165 5333 4002 1331  

Fig. 12. Vertical and Horizontal Laser Displacements recorded during a test.  
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• The neural model is validated based on experimental campaign of 
(Santus et al., 2020).  

• The model performs well for slow deviations from the nominal 
pattern, but its performance decreases when deviations are impul-
sive in nature (such as large pipe breaks). 

DT technology provides a powerful tool for predictive maintenance, 
especially when combined with machine learning methods like 
autoencoders, there are some potential differences and challenges when 
transitioning from synthetic to real-world data:  

• Data Quality and Completeness: DT data is typically clean and 
complete because it’s generated under controlled conditions. Real- 
world data, on the other hand, can be noisy, have missing values, 
or be affected by outliers. This may require additional preprocessing 
steps or robust methods to handle such inconsistencies in the real- 
world data.  

• Variability and Uncertainty: DT data is generated based on models 
and simulations, which might not fully capture the inherent vari-
ability and uncertainty of real-world operations. Unexpected events, 
human errors, and other factors not included in the model can create 
discrepancies between the digital twin and the actual system.  

• Computational Considerations: While digital twin data allows for 
robust testing and validation without affecting real-world opera-
tions, the computational cost of creating and maintaining a digital 
twin might be high. In addition, the model trained on digital twin 
data would need to be efficient enough to run in a real-time or near- 
real-time setting for practical use in predictive maintenance.  

• Model Generalization: A model trained on synthetic data might not 
generalize well to real-world data due to differences in distributions 
or dynamics of the data. It’s essential to validate and fine-tune the 
model with real-world data to ensure its performance. 

It is beneficial to incorporate real-world data into the training pro-
cess as much as possible and validate the model’s performance on real- 
world data to ensure its applicability and effectiveness in a real-world 
setting. 
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