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A B S T R A C T   

The analysis of suspended sediment transport and of its variations over time is crucial for understanding envi
ronmental evolution and it is the key to future challenges caused by current global warming. The Mediterranean 
area is a hot spot for global changes, and the variation of precipitation amount and intensity will modify the 
environment of this region. 

In this work, we analyse the time series of suspended sediment transport of two rivers located in central Italy 
by using statistical and artificial intelligence techniques. Our study aims to re-analyze time series of suspended 
sediment transport, in order to demonstrate that climate change is responsible for the substantial decrease in the 
amount of sediment over the past century, in relation to the atmospheric teleconnections of the North Atlantic. 
Anthropic pressures like reforestation, land use change, and dam building have influenced the sediment transport 
capacity of rivers, causing a reduction of sediment concentration in water. 

These results are key factors to determine the future management of the Mediterranean areas, where the future 
scenarios predict a greater drop in yearly precipitation, and therefore a possible further decrease in the sediment 
transport capacity of the rivers, with major consequences for coastal and fluvial environments.   

1. Introduction 

Suspended sediment transport plays a fundamental role in geomor
phological and hydrological processes in the fluvial environments and 
affects the coastal sediment budget. The complex interplay between 
sediment transport and other important factors, both climatic and 
anthropogenic, significantly impacts sediment balance and morphology 
of watercourses (Asselman, 1995; Gurnell et al., 2002; Hooke, 2006; 
Naik and Jay, 2011). This interdependence between sediment transport, 
climatic conditions, and human activities constitutes a crucial field of 
study to understand the underlying mechanisms of these events and to 
formulate suitable strategies for land management. The impact of these 
factors can vary considerably according to the specific characteristics of 
each watershed. While climatic fluctuations such as precipitation and 
temperature can influence sediment mobilization, anthropogenic ac
tivities like deforestation, urbanization, and water resource manage
ment can introduce significant alterations to the solid transport regime 
(Asselman, 1995; Favaro and Lamoureux, 2015; Naik and Jay, 2011; 
Rodríguez-Blanco et al., 2016; Surian and Rinaldi, 2004; Thodsen et al., 

2008). 
However, a comprehensive understanding of human-climate inter

action is often hindered by the lack of measured data and challenges in 
analysing existing historical records. This lack of accurate data restricts 
our ability to quantify the specific contribution of each factor to overall 
sediment transport and to predict how potential changes might affect 
the sediment balance of watercourses. 

The significance of suspended sediment transport extends beyond its 
impact on river basins; it also plays a pivotal role in shaping coastal 
environments. The intricate interplay between sediment transport, both 
in suspension and along the bed, and various factors including climatic 
and anthropogenic influences, deeply affect the morphology and evo
lution of the coastlines. Indeed, the sediment discharged from rivers into 
coastal waters contributes to the formation of deltaic landforms, beach 
replenishment, and overall equilibrium of coastal ecosystems (Leather
man et al., 2000; Zhang et al., 2004). 

In this context, the Mediterranean region emerges as an optimal area 
to undertake studies aimed at exploring temporal variations in sus
pended sediment transport linked to anthropogenic pressures associated 
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with high population density (El Mahrad et al., 2020; Newton et al., 
2014), and to its status as climate change hotspot (Cos et al., 2022; 
Giorgi, 2006). A thorough study of the data and regions within the 
Mediterranean holds significant importance, as it poses a pivotal chal
lenge for accurate future spatial planning of these fragile areas. 

The application of machine learning (ML) techniques in climate 
research has aroused considerable interest (Reichstein et al., 2019). 
Such methods have proven useful in various tasks including down
scaling, data mining analyses, and prediction of climate variable time 
series such as temperature, humidity, and runoff (Almikaeel et al., 2022; 
Chattopadhyay et al., 2020; Lupi et al., 2023; Luppichini et al., 2022a; 
Ng et al., 2023). Previous studies have shown that climatic time series 
contain valuable information about the temporal dynamics of complex 
systems, including essential properties like chaos (Livieris et al., 2020; 
Patil et al., 2001). Consequently, there is growing concern about the 
capability of machine learning algorithms to accurately capture and 
reconstruct these temporal dynamics (Carroll, 2018; Du et al., 2017; 
Pathak et al., 2017; Watson, 2019). Machine learning has shown great 
promise in reconstructing the chaotic attractors of systems like the 
Lorenz and Rossler models (Carroll, 2018; Pathak et al., 2017). These 
findings are crucial for a deeper understanding of the potential appli
cations of machines in climate research. Machine learning models are 
used to predict and reconstruct suspended sediment load in different 
types of rivers (e.g., Alp and Cigizoglu, 2007; Buyukyildiz and Kumcu, 
2017; Melesse et al., 2011; Salih et al., 2020; Samantaray et al., 2020). 

In this study, we focus on the Ombrone and Arno rivers located in 
central Italy, where the catchment experienced the climatic condition 
and the anthropogenic impact typical of many Mediterranean areas –, 
including a general reduction in river discharge as a result of diminished 

atmospheric precipitation (Baronetti et al., 2022; Blöschl et al., 2020, 
2019; Deitch et al., 2017; Fratianni and Acquaotta, 2017; Gentilucci 
et al., 2019; Longobardi and Villani, 2010; Lopez-Bustins et al., 2008; 
Merz et al., 2014), and of marked anthropogenic pressure followed by 
the abandonment of reforestation in the last decades (Hooke, 2006; 
Sorriso-Valvo et al., 1995; Surian and Rinaldi, 2004). In this work, we 
have used the repository of the best historical data series of the last 
century made available by the Italian territorial authorities. We intend 
to define a possible methodology based on a statistical and mathematical 
approach for the study of the Mediterranean areas. In particular, the 
methodology is based on the statistical analysis of the trends of pre
cipitation, flow rate, and suspended sediment transport, and their rela
tionship with the North Atlantic Oscillation Index (NAOI), which is the 
main atmospheric driver of the Northern Hemisphere (Deser et al., 2017; 
Hurrell, 1995; Hurrell et al., 2019, 2003; Hurrell and Kushnir, 2003; 
Visbeck et al., 2001). We intend to re-examine the dynamics of sus
pended sediment transport by using machine learning models for a more 
detailed analysis of the past trend of the time series, in order to hy
pothesize and predict future scenarios. Finally, this work is designed to 
investigate the relation between sediment concentration and flow rate. 
Any variations in this ratio indicate changes in sediment availability 
within the watershed, while climatic variations help to understand 
whether there have been any changes in transport capacity. This study 
will enable us to contribute by pinpointing a technique capable of 
ensuring the continuity of solid transport time series, thereby addressing 
the data gap in this crucial subject. Possessing continuous and extensive 
historical series over time will empower us to refine numerous studies 
and fully comprehend the morphological dynamics of many environ
ments associated with river regimes and how they will be affected by the 

Fig. 1. Study area.  

M. Luppichini et al.                                                                                                                                                                                                                             



Journal of Hydrology 636 (2024) 131266

3

current global warming. 

2. Study area 

This study is focused on the Arno and Ombrone Rivers, located in 
central Italy (Fig. 1). Both rivers have a watershed area of about 8500 
km2 and 3550 km2, respectively. The Arno River Basin (ARB) is 
bordered by the Apennine chain from north to east, while the Ombrone 
River Basin (ORB) is flanked by Monte Amiata. Since 1930, several dams 
have been constructed in the two basins, 18 dams in the ARB, and 5 
dams in the ORB (Fig. 1). The Arno and Ombrone Rivers are charac
terized by a great variability between the dry and the overflow phases. 
The Arno River has a mean flow rate of about 85 m3/s and the 99th 
percentile is about 740 m3/s. The Ombrone River is characterized by a 
mean flow rate of 32 m3/s and a 99th percentile of about 310 m3/s. 

Starting from the beginning of the last century the coastal areas 
bordering the two river deltas have been marked by erosion processes 
(Anfuso et al., 2011; Besset et al., 2019, 2017; Bini et al., 2021, 2008; 

Cipriani et al., 2013, 2001; Pratellesi et al., 2018). Despite the absence of 
precise direct measurements, several authors have identified a decrease 
in sediment load transportation as the main cause of coastal erosion in 
this area (e.g., Bini et al., 2021; Pratellesi et al., 2018). 

The basins of the Arno and Ombrone rivers have been characterized 
by an increase of the woodlands in the last century, while the areas along 
the two rivers have been home to several dams since 1930. The changes 
in the woodland area and the cumulative volume of dams in the ARB and 
ORB are shown in Fig. 2. The forest area coverage is derived from a 
database of the territorial authorities and from the Copernicus database 
(https://land.copernicus.eu/pan-european/corine-land-cover), while 
the dam dataset has been provided by the Ministero delle Infrastrutture e 
dei Trasporti of the Italian Government (https://dgdighe.mit.gov.it/cat
egoria/articolo/_cartografie_e_dati/_cartografie/cartografia_dighe). 

Fig. 2. Changes in soil use over time for the Arno River Basin (ARB) and for the Ombrone River Basin (ORB). a) Changes in forest area coverage: the data represented 
by the dots derive from the Tuscany Region database, while the data represented by the triangles derive from the Copernicus database (https://land.copernicus.eu/pa 
n-european/corine-land-cover); b) Cumulative volume of dams built in the Arno River Basin (ARB; red dots) and Ombrone River Basin (ORB; blue dots): the data are 
extracted from the dataset of the “Ministero delle Infrastrutture e dei Trasporti” of the Italian Government (https://dgdighe.mit.gov.it/categoria/articolo/_cartografi 
e_e_dati/_cartografie/cartografia_dighe). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3. Methods 

3.1. Precipitation and temperature data 

In this study, the suspended sediment and river flow rate time series 
are compared to the precipitation and temperature data, in an attempt to 
understand the presence of any relations between these climate vari
ables. The precipitation and temperature times series are provided by 
the Regional Hydrological Service of the Tuscany Region (http://www. 
sir.toscana.it/). The precipitation time series are located in Florence, 
Pisa, and San Miniato for the ARB and in Grosseto for the ORB (Fig. 1). 
The temperature time series are referred to the stations of Florence and 
Pisa for the ARB, and to the stations of Grosseto for the ORB. These time 
series are the longest and most complete for the two study areas since 
before the 1950′s. 

3.2. Suspended sediment and river flow rate data 

The “Italian Hydrographic and Mareographic Service” has manually 
collected suspended sediment samples from the Arno and Ombrone 
rivers. The main stations for the Arno and the Ombrone are located at S. 
Giovanni alla Vena and at Sasso d’Ombrone, respectively (Fig. 1). The 
measurements of the suspended sediment were acquired at S. Giovanni 
alla Vena in the period 1936–1985, and at Sasso d’Ombrone in the 
period 1953–1991. The Hydrologic Annals yield the maximum (CM), 
minimum (Cm), and mean monthly suspended solid concentrations 
(CA; kg/m3), the maximum (QsM), minimum (Qsm), and mean monthly 
solid discharges (QsA), where: 

Qs = CÂ⋅Qw(kg/s) (1)  

and Qw is the river flow rate. 
The Italian Hydrographic and Mareographic Service also collected the 

daily Qw data, which were digitalized by the Regional Hydrological 
Service of the Tuscany Region (http://www.sir.toscana.it/). The Qw 
time series of S. Giovanni alla Vena and of Sasso d’Ombrone are the 
longest and most complete for both the Arno and the Ombrone Rivers 
starting, respectively, in 1924 and in 1942, and they are still active. In 
this study, we chose to use the time series of S. Giovanni alla Vena and of 
Sasso d’Ombrone for their temporal length and associated suspended 
sediment transportation data, and also because these stations are the 
closest to the river mouths. This position makes it possible to study the 
total transportation of sediment before the rivers flow into the sea, thus 
allowing for an estimation of the total amount of sediment reaching the 
coast. 

3.3. North Atlantic oscillation index and statistical correlations 

The Climate Analysis Section of the US National Center for Atmospheric 
Research (NCAR) provided the NAOI dataset, which derives from the 
principal component (PC)-based index of the NAO. This dataset includes 
the time series of the leading Empirical Orthogonal Function (EOF) of 
sea-level pressure (SLP) anomalies over the Atlantic sector, spanning 
from 20◦N to 80◦N and from 90◦W to 40◦E. The NAOI dataset, based on 
the PC analysis, serves as a measure of the annual NAOI, by tracking the 
seasonal movements of the Icelandic Low and of the Azores High. The 
dataset covers the period from January 1889 to 2023, with a monthly 
frequency. The employment of PC-based indices enables more optimal 
representations of the complete spatial patterns of NAOI (Climate 
Analysis Section, 2003). 

For the study area, Luppichini et al., (2021,2022) showed that the 
rainfall amount is correlated with the negative phase of NAOI (NAOI− ). 
This suggests that even Qw can be correlated with NAOI− , also consid
ering the dependence between the winter precipitation and discharges 
with NAOI highlighted for the Po River (Zanchettin et al., 2008). 

To quantify the statistical correlations, we used Spearman’s 

correlation coefficient (SCC; Spearman, 1904), in agreement with pre
vious studies that investigated the correlation with the atmospheric 
teleconnections in the study area or in the nearby areas (Caloiero et al., 
2011; Luppichini et al., 2022b, 2021; Vergni et al., 2016). The statistical 
correlation is conducted between precipitation, flow rates, and NAOI−

time series using a 10-year mobile average. In this study, the precipi
tation and river flow rates are expressed as percentage anomalies, while 
the temperature time series are expressed as a simple anomalies, and 
both the time series of anomalies are compared to the climatology of the 
1961–1990 period In the case of precipitation and rainfall, the anoma
lies are normalized on the mean values of 1961–1990. 

3.4. Re-analysis of suspended sediment transportation 

Machine learning techniques can be used to reconstruct the QsA time 
series. We chose to use five different types of ML models: Decision Tree 
Regressor (DTR), k-Nearest Neighbors (kNN), Random Forest (RF), 
Stochastic Gradient Descent (SGD), and Support Vector Regressor (SVR). 
The different models used in these works allowed us to investigate the 
capacity of various algorithms in order to predict QsA starting from 
Qwvalues. 

DTR is a non-parametric algorithm that constructs a tree-like model 
for regression tasks by partitioning the feature space into segments and 
predicting values based on the majority target values in each segment 
(Torgo, 2017). kNN is an instance-based learning method that predicts 
outcomes by finding the k-training instances closest to the input data 
point and by averaging their target values (Kramer, 2011). RF is an 
ensemble technique that combines multiple decision trees to improve 
predictive performance and to reduce overfitting, by averaging their 
individual predictions (Breiman, 2001). SGD is an optimization algo
rithm commonly used to train linear models. It updates the model’s 
parameters iteratively by using subsets of the training data, which make 
the model computationally efficient for large datasets (Tsuruoka, 2009). 
SVR is a regression model aimed at finding a hyperplane that best fits the 
training data, and allowing tolerance for errors. The model focuses on 
the data points (known as support vectors) that are closest to the 
regression line, so as to determine the optimal fit (Awad and Khanna, 
2015). Each of these models has its own strengths and weaknesses, 
making them suitable for different types of data and problems. 

The models are developed using the Python language and, more 
specifically, the Scikit-learn library (Pedregosa et al., 2011). The models 
use the Qw data as input, making it possible to predict the monthly QsA. 
The daily Qw data are prepared to ensure the extraction of statistic 
monthly values. We designed two different types of input matrix: the 
former (M0) is composed of year, month, median Qw, Qwsum, minimum 
Qw, maximum Qw, mean Qw, and standard deviation of Qw; the latter 
(M1) is similar to M0, but it also contains the same statistics of the 
previous month. The input matrix is randomly divided into two parts, 
with a repartition of 70 % for the training dataset and 30 % for the test 
dataset. The training dataset is used during the learning phase, while the 
test dataset is used to evaluate the quality of the model following the 
learning processes (Aichouri et al., 2015; Dibike and Solomatine, 2001; 
Hu et al., 2020; Huang et al., 2020). The randomly created division of 
the input dataset was repeated 30 times for each type of model by 
creating 150 different models. In this way, we were able to test the 
uncertainty of the models by estimating the variability introduced by the 
input dataset (Hassangavyar et al., 2022; Michelucci and Venturini, 
2021; Saraiva et al., 2021). The models were evaluated using the Nash- 
Sutcliffe model efficiency coefficients (NSE;Nash & Sutcliffe, 1970) and 
the Root Mean Square Error, calculated as follows: 

NSE = 1 −
∑T

t=1

(
Qt

o − Qt
m

)2

∑T
t=1

(
Qt

o − Qo
)2 (2)  
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RMSE =

(
1
T
∑T

t=1

(
Qt

o − Qt
m

)2

)0.5

(3)  

where Qo is the mean of observed Qs; Qm is the modeled Qs; and Qt
o is the 

observed Qs at time t. 

3.5. Sediment concentration and flow rate over time 

The ratio between C and Qw (RCQ) is analyzed in the work for both 
rivers, for CM and CA with QwM and QwA, respectively. We also wish to 
understand whether there is a variation of the ratio between sediment 
concentration and river discharge. A change in this ratio would indicate 
a variation in the hydrographic basin, with a decrease or increase of the 
sediment available and transportable by the rivers. This important in
formation is linked with territory management and would be a proxy of 
anthropic activities. The trend of RCQ is examined for some quantiles of 
the river flow rate. The focus of the investigation is also to understand 
the variation of the RCQ for different river regimes, so as to exclude the 
lowest flow rate when the concentration of solid particle sediments is 
influenced by several factors such as vegetation, local discharge, etc. The 
percentage variation of RCQ is quantified by calculating the difference 
between mean value of the period 1950–1969 and mean value of the 
period 1971–1990, normalizing on the first period, as follows: 

RCQf , q =
1
20

∑1969

y=1950

Cy
AQw > Qwq

Qwy
Qw>Qwq

(4)  

RCQl, q =
1
20

∑1990

y=1971

Cy
AQw > Qwq

Qwy
Qw>Qwq

(5)  

ΔRCQq =
RCQl,q − RCQf ,q

RCQf ,q
× 100 (6)  

where q is the quantile between 0 and 0.95. 

3.6. Climate component on the quantification of sediment concentration 

The C values are the result of a complex function based on several 
factors such as flow rate, geological and geomorphological character
istics of watershed, land use, and human activities (Crawford, 1991; 
Syvitski et al., 2000). We can assume that the factors influencing sedi
ment concentration can be divided into two main categories: climate 
factors and territorial factors. We can represent C as follows: 

C = CQw +CR, (7)  

where CQw is the sediment concentration component that depends on 
river flow rate , while CR is the component that depends on territorial 
factors, CR is an estimation of the other contributions (land use, an
thropic activities, etc.) to sediment concentration. Modelling is very 
difficult and complex due to the natural system and to the lack of high- 
resolution data that would otherwise provide a more accurate estima
tion of each component. We can quantify CQw with a fitting of loga
rithmic regression (using the scikit-learn library), and then we can 
derive the residual values (CR). In this way, from an analysis of the time 
series of the river flow rates and of sediment concentration, we can 
quantify the role of the river discharge on the quantification of sediment 
concentration. 

4. Results 

Sediment concentrations and solid transport present strong correla
tions with the river flow rate of the studied rivers (Figs. 3 and 4). In more 
detail, CA is correlated with QwA, with SCC values of 0.69 for the Arno 
river, and 0.65 for the Ombrone river (with p-values < 0.001), while the 
relation between QsA and QwA is quantified by SCC values of 0.91 and 
0.88 respectively (with p-values of 8.80E-128 and 3.95E-75). Qs is 

Fig. 3. Relation between monthly flow rate (Qw), average (A), and maximum (M), with monthly sediment suspended concentration (C) and sediment suspended flow 
rate (Qs) for the S. Giovanni alla Vena station. 
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statistically correlated with Qw and is stronger than C, showing that 
sediment concentration is more influenced by the availability of sedi
ment in the watershed than Q, which is influenced almost exclusively by 
the capacity of the rivers to transport sediment (quantifiable by Qw). 

4.1. Statistical correlation between climatic variables 

The temperature time series for ARB show a clear trend to increase 
until reaching a temperature anomaly of more than 1.5 ◦C (referred to 
the mean of 1961–1990) in the last years. The temperature time series 
for ORB also indicates an increase in temperature anomalies starting 
from 1980. 

In the period 1950–2023 the river flow rates of the Arno and 
Ombrone rivers are characterized by three peaks around 1970, 1990 and 
2010, corresponding to as many negative peaks of NAOI− (Fig. 5). 
However, the three river flow rate peaks show a progressive decrease of 
intensity, where the first peak is the highest and the last one is the lowest 
(Fig. 5e,f). For the Arno River, these trends are valid also considering the 
peak of the period around 1945, where the river flow rate was about 45 
% higher than the mean of the period 1961–1990 (Fig. 5e). After 1960, a 
progressive decrease in the river flow rate (Fig. 5e,f) characterizes the 
oscillation of both rivers, but the Ombrone River actually has a lower 

river flow rate (about − 20 %) compared to the mean of 1961–1990 
(Fig. 5f). 

This described trend for the river flow rates is also observed for the 
precipitations characterized in the last 70 years by an oscillation be
tween wetter and drier periods, but with a general reduction of the 
precipitations (Fig. 5c,d). 

In ARB, the statistical correlation between precipitation and flow 
rate is 0.69 (p-value < 0.001); the statistical correlation between pre
cipitation and NAOI− is − 0.15 (p-value 0.15); the statistical correlation 
between flow rate and NAOI− is − 0.28 (p-value < 0.007; Fig. 5). 
However, considering only the data after World War II, the statistical 
correlations between NAOI− on the one hand and flow rate and pre
cipitation on the other are, respectively, − 0.74 (p-value < 0.001) and 
− 0.49 (p-value < 0.001), indicating an increase in the statistical cor
relation between this climate index and the climate variables in ARB 
after 1950. 

The river flow rate and precipitation time series in ORB are statis
tically correlated with a Spearman coefficient of 0.65 (p-value < 0.001). 
Precipitation and river flow rate are statistically correlated to NAOI−

with, respectively, a coefficient of − 0.50 (p-value < 0.001) and of − 0.83 
(p-value < 0.001), showing a very strong correlation between the two 
variables (Fig. 5). 

Fig. 4. Relation between monthly flow rate (Qw), average (A), and maximum (M), with monthly sediment suspended concentration (C) and sediment suspended flow 
rate (Qs) for the Sasso d’Ombrone station. 
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Fig. 5. Trends and correlation of the climate variables in the study area: a,b) indicate the 10-year mobile window of the temperature anomalies in the Arno and 
Ombrone basins; c), d) indicate the 10-year mobile window of the precipitation anomalies in the Arno and Ombrone basins; e), f) indicate the river flow rate 
anomalies using a 10-year mobile window of the Arno and Ombrone rivers; g), h) indicate the Negative Phase of the North Atlantic Oscillation (NAO-) using a 10-year 
mobile window; i), k) indicate the Spearman correlations between the 10-year mobile window of the climate variables. The anomalies are calculated using the 
reference period 1961–1990. 
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The flow rates of the Arno and the Ombrone rivers are strongly 
correlated with the precipitation amount linked to the main atmospheric 
teleconnection of the northern hemisphere, showing a close bond be
tween these climatic variables. 

4.2. Re-analysis of the suspended sediment transportation time series 

The accuracy evaluation of the ML models used to predict QsA is 
reported in Fig. 6. The two types of input matrix (M0 and M1) provided 
similar results, so that it is very difficult to understand which one is 
better than the other. Moreover, it is not easy to highlight the best model 
kind. The models present similar errors, with some exceptions (such as 
M1-DTR at Sasso d’Ombrone, see Fig. 6d). The predictions of the models 
deviate substantially one from the other, as shown in Fig. 7, which re
ports the projections grouped in a 10-year mobile window. Despite this 
great variability, the models enable the creation of continuous time 
series with a similar trend, and could therefore be applied to the two 
rivers, which have a similar behaviour. The period around 1940 was 
characterized by the greatest QsA (Fig. 7a and b); QsA then decreased 
with a minimum around 1960. Another peak was present around 1970, 
while a decrease with a minimum peak was observed around 1980. 
Instead, in the last ten years the Arno and the Ombrone have shown a 
different trend. In these years, in the Arno river the models showed an 
increase of QsA, which is not observed in the Ombrone river, where there 
has also been a decrease of QsA in the last years. 

4.3. Sediment concentration and flow rate over time 

The ΔRCQ values calculated for different groups of Qw based on 
quantile distribution, as explained by equation n. 6, show a general 
decrease for the two time series over the period investigated (Figs. 8 and 
9). The RCQ values are characterized by a 50–70 % drop, with Sasso 
d’Ombrone recording the highest reduction. In other words, the results 
demonstrate that a hypothetic flow rate event is characterized by a 
significantly different sediment concentration in the 1950–1969 period 
and in the 1971–1990 period. 

4.4. Climate component on the quantification of sediment concentration 

Sediment concentration is the result of a complex function influ
enced by several factors. We tried to estimate the ratio between the C 
component derived from the w (CQw) and the C component derived from 
other factors (CR). For the maximum and average concentration and 
flow rate and for the two stations, this ratio indicates that CQw is about 
1.5 times higher than CR. In more detail, for S. Giovanni alla Vena, the 
average ratios are 1.58 and 1.80 calculated using maximum and average 
concentrations and flow rates, respectively. For Sasso d’Ombrone the 
average ratios are 1.46 and 1.39. This indicates that the flow rate plays 
the main role, and that the other factors have an incidence which is 
approximately the half on the quantification of sediment concentration. 

5. Discussion 

The climate analysis conducted in this study underlines the effects of 

Fig. 6. Nash-Sutcliffe model efficiency coefficients (NSE; black dots and black bands) and Root Mean square Errors (RMSE; red dots and red bands). The dots 
represent the mean value and the bar represents 50% of the confidential interval. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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rising temperatures and declining precipitations in the study area over 
the past 70 years. Recent temperature anomalies (based on the 
1961–1990 reference period: see Fig. 5) suggest that increases in pro
jected temperatures under the RCP 2.6 scenario (Calvin et al., 2023) −
estimated at around 1.6 ◦C (with a range of 0.9 ◦C to 2.3 ◦C) by 
2081–2100 compared to the pre-industrial era (averaged between 
1850–1900) − have already been surpassed in this region. This study 
area notably highlights the Mediterranean as a hot-spot of climate 
change (Giorgi, 2006). 

The last century has been characterized by a drastic reduction in 
precipitation and river discharge in the Mediterranean, linked to current 
global warming (An et al., 2023; Bertola et al., 2019; Blöschl et al., 2019, 
2020; Deitch et al., 2017; Hall et al., 2014). This tendency characterizes 
also the Arno and Ombrone Rivers, where there is a strong correlation 
between rainfalls and flow rates: owing to a general decrease in the 
rainfall occurrence, the flow rates of the investigated rivers have 
diminished. The decrease of the rainfall amount in the Mediterranean 
area is due to the increase in air and sea temperatures, which induces a 
shift of the cyclonic areas of the North Atlantic and of the Mediterranean 
(Börgel et al., 2020), leading to the establishment of high-pressure sys
tems at the studied latitudes and consequently to a reduction in flow 
rates (Billi and Fazzini, 2017; Blöschl et al., 2019) and in solid discharge. 
The strong correlations identified between rainfall and flow rate time 
series with NAO− agree with several studies (Ferrari et al., 2013; Lup
pichini et al., 2022b, 2021; Vergni et al., 2016; Vergni and Chiaudani, 
2015), thus confirming an influence of the North Atlantic atmospheric 

circulation on the climatology of the study area. 
In agreement with the evolution of the climatology of the study area, 

the amount of sediment transported by rivers has decreased over the 
past 70 years, as confirmed by the indirect observations obtained 
through various methodologies (Anfuso et al., 2011; Bini et al., 2021; 
Cipriani et al., 2013; Pratellesi et al., 2018; Surian and Rinaldi, 2004). 
The reduction in suspended sediment transport was reconstructed using 
artificial intelligence models (Fig. 8), which appear to have been the best 
representations achievable with available data over the last century. 
Machine learning models for predicting suspended sediment transport 
have been employed in several studies, and the results obtained in this 
work are comparable to those of others (Abda et al., 2021; Dibike et al., 
2001; Francke et al., 2008; Lafdani et al., 2013; Lin et al., 2006; Nhu 
et al., 2020). In particular, the findings of this study can be juxtaposed 
with those of Nhu et al. (2020), whose models achieved NSE scores 
ranging from 0.68 to 0.83. This range closely aligns with the results 
presented in Fig. 6. In this work, although the differences are not thor
oughly addressed, we can assume that the best results are obtained by 
using RF (for S. Giovanni alla Vena) and SVM (for Sasso d’Ombrone). 
These models have performed successfully in suspended sediment 
transport prediction in previous studies (Francke et al., 2008; Lafdani 
et al., 2013). 

The results obtained from studying the role of different contributes to 
the quantification of sediment concentration have shown that river flow 
rate is the most important (see paragraph 4.4). The outcomes clearly 
indicate a predominant role of the flow rate, which is about 1.5 times 

Fig. 7. Predictions of the machine learning models with a mobile average of 10 years at S. Giovanni alla Vena (a and b) and Sasso d’Ombrone (c and d). The solid line 
represents the median, while the bands represent the 50 % confidence intervals. 
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higher than the other factors, demonstrating that climatic factors are 
predominant in the regulation of the solid transport of these rivers. The 
other factors (represented by parameter CR in Eq. (7) influencing sedi
ment concentration are to be connected to human activities. Human 

activities such as reforestation, river regime regulation, and dam con
struction can induce a change in the amount of sediments available. The 
study area has been characterized by a change of land use and cover, 
with an increase of the forests over the last century (Hooke, 2006; 

Fig. 8. Variation of ratio between sediment concentration and river flow rate at S. Giovanni alla Vena: a) maximum sediment concentration (CM) on the maximum 
monthly river flow rate (QwM); b) average sediment concentration (CA) on the average monthly river flow rate (QwA). The red dots are the negative values and the 
green dots are the positive values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Variation of ratio between sediment concentration and river flow rate at Sasso d’Ombrone: a) maximum sediment concentration (CM) on the maximum 
monthly river flow rate (QwM); b) average sediment concentration (CA) on the average monthly river flow rate (QwA). The red dots are the negative values. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Sorriso-Valvo et al., 1995; Surian and Rinaldi, 2004) and the construc
tion of dams along the main rivers (Fig. 2). As a matter of fact, analysis of 
the variation of RCQ values indicates a decrease in sediment concen
tration with the same river flow (Figs. 8 and 9). In other words, statis
tically speaking, an event occurred in the period 1950–1969 transported 
more sediment than the same event occurred in the period 1971–1990 
(Figs. 8 and 9). The lack of data (characteristic of the study area, but not 
only) concerning the quantity of solid transport and reliable values 
associated with human activities (high-resolution reforestation rates, 
sediment quarrying from riverbeds, etc.) has led to difficulties in 
quantifying the relations between environmental changes, solid trans
port, and anthropogenic pressures. However, this decrease of the ratio 
between sediment concentration and river flow rate may depend on 
forest cover area change and on the presence of the dams that clearly 
characterized the study area (Billi and Rinaldi, 1997; Rinaldi, 2003; 
Surian et al., 2009; Surian and Rinaldi, 2004). 

In the rivers of central and northern Italy, geomorphological changes 
in watercourses (e.g, Billi & Rinaldi, 1997; Dufour et al., 2015; Rinaldi, 
2003; Rinaldi et al., 2015; Surian et al., 2009; Surian & Rinaldi, 2004) 
and river deltas (e.g., Besset et al., 2019; Pratellesi et al., 2018) have 
been observed since the beginning of the last century. This phenomenon 
has been attributed to an intensification of human activities especially in 
the period from 1950 to 1990, which corresponds to the period of 
maximum industrial activity for several Italian plains (Felice et al., 
2013). However, the studies in this field have not taken into account the 
issue of climate change, assumed to be a constant over time; instead, this 
specific period was also marked by a significant reduction in pre
cipitations and river flow rates on account of increased temperatures 
and changes in North Atlantic atmospheric circulation, These factors 
should be considered the primary drivers of decreased solid transport 
capacity and, therefore, of environmental changes. 

The machine learning models developed in this study present the 
solid flow rate as a function of the liquid flow rate. This premise helps us 
to say that, if we want to provide future projections of the solid flow rate, 
we will also need to know the liquid flow rate in the future. There are 
several methods that allow to obtain a future projection of the river flow 
rate, from those based on the analysis of time series to those based on 
climate models (Bürger et al., 2011; Shepherd et al., 2010). We believe 
that to provide future projections of climate variables, the best current 
approach is that of the climate models which, at least in principle, can 
integrate the observed data with the future trend of human activities 
(Centre et al., 2013). We would like to emphasize that this kind of 
studies the Mediterranean area and the central Italy are poorly sup
ported by observed data. Such characteristic regards many European 
climate studies, where the work of groups involved in research projects 
of this kind is based on large amounts of data for central and northern 
Europe, whereas the Mediterranean area is investigated with smaller 
amounts of data. For more accurate results for the Mediterranean, the 
reanalysis and bias correction of these great databases should be based 
on the use of the observed data also for this area where several datasets 
are available. For this reason, currently, these datasets present great 
uncertainties and an improvement of the future projections is required 
to have acceptable results. This important improvement of the future 
projections of the flow rate of the rivers of the Mediterranean will allow 
us to apply methodologies as described in this work to project the sus
pended sediment load time series considering the different future 
scenarios. 

6. Conclusions 

This work has demonstrated the crucial role of climate change in the 
decrease of suspended sediment transport in an area of the Mediterra
nean over the last century. Despite the active human role in reducing 
solid transport, it is however important to study this aspect without 
considering climate as a constant. Climate change seems to be a key and 
preponderant factor in reducing solid load, and its combination with 

anthropic effects can lead to alarming future scenarios for the conse
quent alteration of coastal and river environments. 

This work has used one of the few time series of suspended sediment 
transport for the Mediterranean to re-analyze the time series, making it 
possible to reconstruct the past trend over the last century. In the future, 
it will be possible to exploit this new dataset (available in “Supple
mentary Material”) in different applications for a more detailed study of 
the evolution of environments like coastal erosion; in support of other 
data and proxies; and for territorial management. 
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Friedl, B., Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., 
Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., Hawkins, E., Hermans, T., Kopp, 
R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, 
S., Szopa, S., Trewin, B., van der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M., 
2023. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working 
Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, 
Switzerland. https://doi.org/10.59327/IPCC/AR6-9789291691647. 

Carroll, T.L., 2018. Using reservoir computers to distinguish chaotic signals. Phys Rev E 
98, 52209. https://doi.org/10.1103/PhysRevE.98.052209. 

Centre, J.R., Sustainability, I. for E. and, Thielen, J., Gomes, G., Sint, H., Lorini, V., 
Zambrano-Bigiarini, M., Ntegeka, V., Salamon, P., 2013. EFAS-Meteo – A European 
daily high-resolution gridded meteorological data set for 1990-2011. Publications 
Office. https://doi.org/doi/10.2788/51262. 

Chattopadhyay, A., Nabizadeh, E., Hassanzadeh, P., 2020. Analog forecasting of extreme- 
causing weather patterns using deep learning. e2019MS001958-e2019MS001958 
J Adv Model Earth Syst 12. https://doi.org/10.1029/2019MS001958. 

Cipriani, L.E., Ferri, S., Iannotta, P., Paolieri, F., Pranzini, E., 2001. Morfologia e 
dinamica dei sedimenti del litorale della Toscana settentrionale. Studi Costieri 
119–156. 

Cipriani, L.E., Pranzini, E., Vitale, G., Wetzel, L., 2013. Adaptation to beach erosion at 
Maremma regional park (Tuscany, Italy). Geoecomarina 19, 65–76. 

Climate Analysis Section, 2003. NAO Index Data provided [WWW Document]. https:// 
climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao- 
index-pc-based. 

Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P.-A., Samsó, M., 2022. The 
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