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Abstract

The paper is concerned with efficient numerical methods for solving a linear
system ϕ(A)x = b, where ϕ(z) is a ϕ-function and A ∈ RN×N . In particu-

lar in this work we are interested in the computation of ϕ(A)
−1
b for the case

where ϕ(z) = ϕ1(z) =
ez − 1

z
and ϕ(z) = ϕ2(z) =

ez − 1− z

z2
. Under suitable

conditions on the spectrum of A we design fast algorithms for computing both
ϕℓ(A)

−1
and ϕℓ(A)

−1
b based on Newton’s iteration and Krylov-type methods,

respectively. Adaptations of these schemes for structured matrices are consid-
ered. In particular the cases of banded and more generally quasiseparable ma-
trices are investigated. Numerical results are presented to show the effectiveness
of our proposed algorithms.
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1. Introduction

Efficient numerical methods for computing the action of matrix ϕ-functions
are of growing interest for the application of exponential integrators in the
solution of stiff systems of differential equations (compare [24, 17, 18, 25, 14, 7]
and the references given therein). The computation of the inverse of matrix ϕ-
functions or, equivalently, the design of fast linear solvers for matrix ϕ-functions
is useful in the solution of related inverse problems.

A fast efficient numerical method for computing ψ1(A) and ψ1(A)b with

ψ1(z) = 1/ϕ1(z), ϕ1(z) =
ez − 1

z
, A ∈ RN×N , has been presented in [5, 6]. The

method exploits a partial fraction decomposition of the meromorphic function
ψ1(z) and it is particularly suited for the application to structured matrices for
which fast linear solvers exist. The same approach cannot be extended to other
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functions ψℓ(z) = 1/ϕℓ(z) with ℓ > 1 due to the lack of explicit closed–form
expressions of their poles.

The computation of ψ2(A) and ψ2(A)b with ψ2(z) = 1/ϕ2(z), ϕ2(z) =
ez − 1− z

z2
, A ∈ RN×N , is also of relevant interest. We describe hereafter two

applications.

1. A nonlocal inverse problem. Consider the nonlocal inverse problem
defined as follows: We seek the vector g ∈ RN and the function u =
u(t) : [0, T ] → RN such that

u′(t) = Au(t) + g, u(0) = u0,
1

T

∫ T

0

u(t)dt = u1

with A ∈ RN×N , u0,u1 ∈ RN . By imposing the integral condition we
find that the vector g solves

u1 = ϕ1(TA)u0 + Tϕ2(TA)g. (1)

2. Two-point inverse problems. The computation of the unknown pa-
rameter p in the local boundary value problem [30, 35]

u′(t) = Au(t) + tp, u(0) = q, u(1) = g, (2)

A ∈ RN×N , t ∈ [0, 1], amounts to solve a linear system with a matrix
ϕ-function as coefficient matrix. Indeed, it is shown that

u(1) = g = eAq + ϕ2(A)p. (3)

Abstract formulations of 1 and 2 can also be considered [20, 36], where A is a
differential operator which has to be discretized numerically. In this contribution
we address the computation of ψℓ+1(A) and ψℓ+1(A)b, with ψℓ(z) = 1/ϕℓ(z)
and ℓ > 0, when A is a large sparse and/or structured matrix. Our extension
relies on the Newton iteration for computing the inverse of a matrix. For review
of this method see [27, 28]. This tool has already been successfully applied in
[4, 29] for the inversion of matrices having a displacement rank structure.

More specifically, we first identify regions Ω ⊂ C of the complex plane such

that

∣∣∣∣1− ϕℓ+1(z)

ϕℓ(z)

∣∣∣∣ < 1, ℓ ≥ 1, for all z ∈ Ω. Then, we show that if the

eigenvalues of A lie in Ω, the Newton iteration applied for the inversion of
B = ϕℓ+1(A), ℓ ≥ 1, with starting point X0 = ψℓ(A) = (ϕℓ(A))

−1 is quadrat-
ically converging to the inverse matrix of B. This means that given a method
to compute X0 = ψℓ(A) we can apply the Newton iteration for approximat-
ing B−1

0 = ψℓ+1(A). Moreover, since the iterative scheme only requires matrix
multiplications it is amendable for fast implementations using structured rep-
resentations of the matrices involved. In particular, fast adaptations for both
displacement structured and quasiseparable matrices can be devised. Approxi-
mate compression techniques in the style of [4] can also be incorporated to take
under control the growth of displacement or quasiseparable ranks.



The convergence results for the Newton iteration can also be exploited in
a different perspective. It is easily seen that the intermediate approximations
of ψℓ+1(A) generated by Newton’s iteration can be expressed as a polynomial
of X0B = ψℓ(A)ϕℓ+1(A) thus providing the link to the development of Krylov-
type methods for computing ψℓ+1(A)b. In particular, the solution of the linear
system ϕℓ+1(A)x = b can be approximated efficiently by means of a Krylov-type
method like GMRES applied for solving the equivalent system ψℓ(A)ϕℓ+1(A)x =
ψℓ(A)b. When the eigenvalues of A lie in Ω then the convergence of GMRES
applied to this system follows from the results in [31] (see Proposition 6.32
and its generalizations). The paramount advantage of such a Krylov-based
approach is that matrix-by-vector multiplications are only required to find an
approximation Xkb of the vector x = ψℓ+1(A)b. In particular, for ℓ = 1 the
projection method only involves products of the form ψ1(A)v which can be
computed using the methods introduced in [5, 6].

In principle, the proposed schemes can be applied recursively for evaluating
ψℓ+1(A) or ψℓ+1(A)b, ℓ > 0, provided that a method for computing ψ1(A) or
ψ1(A)b is available. Despite the generality of the approach, however, based on
application and numerical issues in this work we focus on the case ℓ ∈ {0, 1}, or
at least ℓ small in value.

The paper is organized as follows. In Section 2 we analyze theoretical and
computational properties of Newton’s iteration for the inversion of matrix ϕ-
functions. In Section 3 we devise a Krylov-type method for computing the action
of these inverses on a vector. In Section 4 we present the results of numerical
experiments illustrating the properties of this method whereas conclusions and
future work are drawn in Section 5.

2. Newton Iteration for the Inversion of Matrix ϕ-Functions

In this section we design an iterative method based on Newton’s iteration
for the inversion of matrix ϕ-functions ϕℓ(A), A ∈ CN×N , ℓ > 1.

The ϕ-functions are entire functions defined for scalar arguments by the
integral representation

ϕ0(z) = ez, ϕℓ(z) =
1

(ℓ− 1)!

∫ 1

0

e(1− θ)zθℓ−1dθ, ℓ ≥ 1, z ∈ C. (4)

The ϕ-functions satisfy the recurrence relation

ϕℓ(z) = zϕℓ+1(z) +
1

ℓ!
, ℓ ≥ 0, (5)

and have the Taylor expansion

ϕℓ(z) =

∞∑
k=0

zk

(k + ℓ)!
, ℓ ≥ 0.



This latter can be extended to a matrix argument by setting for any A ∈ CN×N

ϕℓ(A) =

∞∑
k=0

Ak

(k + ℓ)!
, ℓ ≥ 0.

The function ψℓ(z), ℓ ≥ 0, is a meromorphic function defined as the reciprocal
of ϕℓ(z), that is,

ψℓ(z) = ϕℓ(z)
−1, ℓ ≥ 0.

Explicit series expansions are only known for ψ1(z). It holds [[1], formula 23.1.1]

ψ1(z) = ϕ1(z)
−1

=

+∞∑
k=0

Bk

k!
zk, |z| < 2π, (6)

where Bk denotes the kth Bernoulli number. A different rational representation
is derived in [6]. For any fixed n > 0 we have

ψ1(z) = fn(z) + 2(−1)n
∞∑
k=1

( z

2π

)2(n+1) 1

k2n
(
( z

2π

)2

+ k2)−1, (7)

where

fn(z) = 1− 1

2
z +

n−1∑
i=0

z2(i+1) B2(i+1)

(2(i+ 1))!
.

The series on the rhs of (7) converges uniformly to ψ1(z) over any compact set
K ⊂ C \ ±2πiN. The polynomial contribution fn(z) is a partial sum of the
power series expansion (6) aimed to improve the accuracy of the approximation
around the removable singularity at the origin in the complex plane. Relation
(7) provides a family of mixed polynomial/rational approximations of ψ1(A) of
the form

ψ1(A) ≃ rn,m(A) = fn(A) + 2(−1)n
(
A

2π

)2(n+1) m∑
k=1

1

k2n
(

(
A

2π

)2

+ k2)−1. (8)

Based on the computation of ψ1(A), under suitable assumption on the spec-
trum of A the Newton method for matrix inversion provides an effective tool
for approximating ψℓ(A) for ℓ > 1. Newton’s iteration [27, 28] for the inversion

of a nonsingular matrix B ∈ CN×N is defined by :

X0 ∈ CN×N , Xk+1 = 2Xk −XkBXk, k ≥ 0. (9)

From

I −Xk+1B = (I −XkB)2 = (I −X0B)2
k

,

we obtain that Newton’s iteration (9) quadratically converges to B−1 provided
that all eigenvalues of R = I −X0B have modulus less than 1.

Let us first suppose that A ∈ CN×N has real eigenvalues only, that is,
λ ∈ spec(A) ⇒ λ ∈ Ω = R. Observe that for real arguments (z ∈ R) from



the integral representation (4) it follows that ϕℓ(z) > 0 and, moreover, ϕℓ(z) >
ϕℓ+1(z) ∀z ∈ R, ℓ ≥ 1. This means that

0 < 1− ϕℓ+1(λi)

ϕℓ(λi)
= 1− ϕℓ+1(λi)ψℓ(λi) < 1, ∀λi ∈ spec(A).

The next result immediately follows.

Proposition 1. Let A ∈ CN×N be a matrix with all real eigenvalues. Then for
any ℓ ≥ 0, ϕℓ(A) is invertible. Moreover, the Newton iteration (9) applied for the
inversion of B = ϕℓ+1(A), ℓ ≥ 1, with starting point X0 = ψℓ(A) = (ϕℓ(A))

−1

is quadratically converging to the inverse matrix of B.

The extension of this result for matrices with possibly complex eigenvalues
requires some additional constraints. If z = a + ib, a, b ∈ R, i2 = −1, is a
complex number then from the integral representation (4) it is found that for
ℓ ≥ 1

ϕℓ(z) =

∫ 1

0

eτa cos(τb)(1− τ)ℓ−1dτ + i

∫ 1

0

eτa sin(τb)(1− τ)ℓ−1dτ

(ℓ− 1)!
.

Under the auxiliary assumption b ∈ [−π/2, π/2] this implies that ℜ(ϕℓ(z)) > 0
and, hence, ϕℓ(z) ̸= 0. In addition, the residual r(z) = ϕℓ(z) − ϕℓ+1(z) also
satisfies

r(z) =

∫ 1

0

eτa cos(τb)
ℓ− 1 + τ

ℓ
(1− τ)ℓ−1dτ + i

∫ 1

0

eτa sin(τb)
ℓ− 1 + τ

ℓ
(1− τ)ℓ−1dτ

(ℓ− 1)!
.

It follows that

|ℜ(r(z))| < |ℜ(ϕℓ(z))|, |ℑ(r(z))| < |ℑ(ϕℓ(z))|

and therefore ∣∣∣∣ r(z)ϕℓ(z)

∣∣∣∣ = ∣∣∣∣1− ϕℓ+1(z)

ϕℓ(z)

∣∣∣∣ < 1.

To sum up we arrive at the following extension of Proposition 1.

Proposition 2. Let A ∈ CN×N be a matrix with all eigenvalues lying in the
strip Ω = R× i[−π/2, π/2] in the complex plane. Then for any ℓ ≥ 0, ϕℓ(A) is
invertible. Moreover, the Newton iteration (9) applied for the inversion of B =
ϕℓ+1(A), ℓ ≥ 1, with starting point X0 = ψℓ(A) = (ϕℓ(A))

−1 is quadratically
converging to the inverse matrix of B.

Differently from the case of real spectrum some restrictions on the local-
ization of the eigenvalues are needed for general matrices. Let us consider the
tridiagonal Toeplitz matrix T of order N having subdiagonal, diagonal and
superdiagonal entries given by 0.5, 0 and −0.5, respectively. The matrix has



h 1 N N2 N4

ρ(R) 1.6852e+03 57.5590 0.5071 0.5000

Table 1: Values of the spectral radius ρ(R) of R = I − (ϕ1(A))
−1
ϕ2(A) with A = h

−1
N

2
T ,

N = 128, and T = gallery(
′
tridiag

′
, N, 0.5, 0,−0.5) for different values of h = 1, N,N

2
, N

4
.

eigenvalues located on the imaginary axis in the interval i[−1, 1]. In Table 1,
we report the computed spectral radius of R = I − (ϕ1(A))

−1ϕ2(A), where
A = h−1N2T and N = 128, for different values of h.

Computational interest in Newton’s method is especially due to the devel-
opment of high-performance computing environments. The iterative scheme (9)
basically require BLAS Level 3 routines which are easily implemented in par-
allel on a parallel computing system [26, 37]. Moreover, it is especially suited
to take advantage of the sparsity and the structural properties of the matri-
ces involved. The case of matrices having a displacement structure has been
considered in [4, 28, 29]. In the next subsection, we focus on the application
of Newton’s method for inverting banded and more generally quasiseparable-
type matrices arising from the discretization of partial differential equations.
Recall that an N ×N matrix A is quasiseparable of quasiseparability rank s if
rank(A(k+1 : N, 1 : k)) ≤ s and rank(A(1 : k, k+1 : N)) ≤ s for 1 ≤ k ≤ N−1.
The class of quasiseparable matrices encompasses both banded matrices and
their inverses.

2.1. Fast Adaptations for Structured Matrices

We begin by observing that for a given banded matrix A the matrix B =
ϕℓ(A) or B = ψℓ(A), ℓ ≥ 1, generally inherits the banded structure of A in
some approximate way. For instance, in Figure 1 we illustrate the ”spy” plots
of ψ2(A) and its leading principal submatrix of order 95 when A is the 1D
Laplacian matrix of order N = 1024. The threshold value is set to 1.0e − 14.
The exact tridiagonal structure of A results in an approximate banded structure
of B. Precise mathematical statements depend on quantities that are hard to
compute and typically yield very pessimistic estimates (compare with [19] for
the matrix exponential, the review [2] for more general analytic functions and
[22] for some extensions to functions with singularities). In practice, suitable
approximation/compression techniques are to be employed. Our preferred op-
tion is to look at the matrix B as a rank-structured matrix with the possibility
to encode the structure by using numerical ranks.

Condensed representations for rank-structured matrices have been proposed
in a variety of papers. Quasiseparable matrices are introduced in [10]. A com-
plete review of their properties is presented in [11]. A quasiseparable represen-
tation of a matrix A is defined by two families of lower and upper generators
that are computed by exploiting the low-rank properties of the submatrices of
A located in its lower and upper triangular part, respectively. Given in input
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Figure 1: ”Spy” plots of ψ2(A) and its leading principal submatrix of order 95 for A being
the 1D Laplacian matrix of order N = 1024.

a quasiseparable representation of X0 and B then the structured adaptation of
(9) amounts to compute at each iteration one sum and two products of qua-
siseparable matrices possibly complemented with a compression/approximation
technique used to take under control the growth of the quasiseparable genera-
tors. Generator-based algorithms to perform these operations are described in
Chapter 4, 5 and 17 of [11].

A more flexible format for rank-structured matrices which is amenable for
divide-and-conquer oriented techniques is called hierarchically semiseparable
(HSS) representation [38]. This representation is found by combining recur-
sive partitioning, compression of off-diagonal blocks and nestedeness for the
generators of these blocks. In order to operate with HSS matrices efficiently,
one exploits their representation with generators, demonstrated by the following
4× 4 example:

A =


D1 G1H2 G1R1R3Q3 G1R1R4H4

P2Q1 D2 P2R2R3Q3 P2R2R4H4

G3L1L3Q1 G3L1L4H2 D3 G3H4

P4L2L3Q1 P4L2L4H2 P4Q3 D4

 ,
where Di are square matrices of equal size. The representation is condensed if
all the matrices Li and Ri have sizes less than a small constant k ≪ N . The
generators Gi, Pi, Hi and Qi are tall or skinny matrices. The value of k is
related with the maximum rank of all off-diagonal blocks at all levels of the
HSS recursive splitting of A [38]. Arithmetic operations between two matrices
of order N expressed in a condensed HSS format can be performed in linear
time w.r.t. N [38].

In view of the relation with the ranks of the off-diagonal blocks it is clear
that any arithmetic operation (except inversion) performed on HSS matrices can
increase their ranks. In particular, if C and B are s−quasiseparable matrices
then A = C ⋆B, ⋆ ∈ {·,±}, is a quasiseparable matrix of quasiseparability rank
at most 2s. This makes possible to bound the ranks of the matrices generated



by the Newton iteration (9) in terms of the ranks of the input matrices X0

and B. If these ranks are quite small the quadratic convergence right from
the start of the Newton process is generally sufficient to control the growth of
the generators. Otherwise, to use HSS structure efficiently under the iterative
process we need some compression algorithm. A MatLab toolbox to carry out
arithmetic operations among HSS matrices in exact or approximate compressed
form is described in [23]. Using this package, for the sake of illustration we
show in Figure 2 the rank properties of the matrices generated by Newton’s
iteration applied for the computation of (ϕ2(A))

−1 starting from (ϕ1(A))
−1 for

a given rank-structured matrix A. Specifically, in our test we consider the matrix
A ∈ R4096×4096 defined as follows:

A =
1

3


M N

N
. . .

. . .

. . .
. . . N
N M

 (10)

with

M =


−8 1

1
. . .

. . .

. . .
. . . 1
1 −8

 , N =


1 1

1
. . .

. . .

. . .
. . . 1
1 1

 ,
and M and N of size 64. The matrix is generated in the solution of 2D
Laplace’s equation with Dirichlet boundary conditions by Q1 finite elements
[15]. In Figure 2 we show the numerical ranks of the off-diagonal blocks in
the HSS representations of A, (ϕ1(A))

−1, ϕ2(A) and the approximation X7 of
(ϕ2(A))

−1 generated by Newton’s iteration applied for the inversion of ϕ2(A)
with starting point X0 = ψ1(A) = (ϕ1(A))

−1 stopped after 7 iterations with
error ∥ ϕ2(A)X7 − I ∥2≤ 2.3e − 12. The compression threshold value is set to
1.0e−12.

3. A Krylov-type Method for Computing the Action of ψ-Functions
on a Vector

The above results indicate the possibility of approximating B−1 = ψℓ+1(A),
ℓ > 0, using Newton’s method with starting point X0 = ψℓ(A) provided that
the eigenvalues of A are properly localized. Under the same assumption, we can
apply some Krylov-type method like GMRES [31] for approximating ψℓ+1(A)b
or, equivalently, for solving the linear system ϕℓ+1(A)x = b. Indeed, from (9)
we obtain that

X1 = 2X0 −X0BX0 = (2I −X0B)X0 = p1(X0B)X0,

with p1(z) a polynomial of degree 1. Inductively, we find that for k > 0

Xk = 2pk−1(X0B)X0 − pk−1(X0B)X0Bpk−1(X0B)X0 = pk(X0B)X0, (11)
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Figure 2: Illustration of the rank properties of HSS representations of the matrices involved

in the computation of (ϕ2(A))
−1

by Newton’s iteration for the matrix A given in (10). The
compression threshold value is set to 1.0e−12.

for a suitable polynomial pk(z) of degree 2k − 1. This means that the approxi-
mation xk = Xkb of the solution x of Bx = b satisfies

xk = pk(X0B)X0b, k > 0.

Hence xk belongs to the m− th Krylov subspace, m = 2k,

Km = span{X0b, (X0B)X0b, . . . , (X0B)m−1X0b}.

It follows that a Krylov-type method might be used for solving the equivalent
system

X0Bx = X0b. (12)

For instance, GMRES [31] after m iterations returns an approximation vk such
that

∥ X0b−X0Bvk ∥2≤∥ X0b−X0Bxk ∥2≤∥ X0 ∥2∥ b−Bxk ∥2 .

In this case X0 can play the role of a preconditioner suitably determined to
ensure the convergence of the projection method. The next result immediately
follows by combining Proposition 6.32 in [31] with the results of the previous
section.



Proposition 3. Let A ∈ CN×N be a diagonalizable matrix, i.e., A = SDS−1,
D = diag [λ1, . . . , λn], with all eigenvalues λi, 1 ≤ i ≤ N , lying in the strip
Ω = R× i[−π/2, π/2] in the complex plane. Let xm, m ≥ 0, be the approximate
solution of (12), with B = ϕℓ+1(A) and X0 = ψℓ(A), obtained from the m-th
step of the GMRES algorithm, and let rm = X0b−X0Bxm. Then, we have

∥ rm ∥2≤ κ2(S)ρ(R)
m ∥ r0 ∥2, R = I −X0B, m ≥ 0,

where ρ(R) < 1 denotes the spectral radius of R and κ2(S) is the 2-norm con-
dition number of S.

The convergence estimates for GMRES can be extended to general matrices
by replacing the spectral decomposition of A with its Jordan canonical form [32].
The bound in Proposition 3 depends on the 2-norm condition number of the
eigenvector matrix S. This is satisfactory in the normal case but if A is far from
normal, then κ2(S) may have large magnitude and this utterly invalidates the
bound. Alternative GMRES convergence bounds based on the numerical range
or the pseudospectra of the coefficient matrix have been proposed in the litera-
ture (see [12] and the references given therein). However, these bounds are not
easy to compute and they present other drawbacks so that a common approach
is to mitigate the impact of κ2(S) by assuming that the possible ill-conditioning
is due only to a low-dimensional invariant subspace which contribution can be
deflated in same way [12, 33].

The computational cost for the GMRES algorithm is dominated by the cost
of matrix-vector multiplications with the matrix X0B. It is worth noticing that
from relation (5)

X0B = ψℓ(A)ϕℓ+1(A) = A−1(I − ψℓ(A)/ℓ!), (13)

which implies that the multiplication ofX0B by a vector reduces to first multiply
ψℓ(A) by the same vector, and then solve a linear system with coefficient matrix
A. This is particularly interesting for ℓ = 1 since an efficient algorithm to
evaluate ψ1(A)b has been proposed in [5, 6]. The algorithm relies upon the
family of polynomial/rational expansions of ψ1(z) given in (7). Based on (13),
complementing the GMRES iterative solver with the approximation (7) provides
an effective method for computing the action of ψ2(A) on a vector. A basic
MatLab skeleton implementation is as follows:

Algorithm 1: Given in input the matrix A ∈ CN×N and the vector b ∈ CN ,
this algorithm approximates the vector w = ψ2(A)b

1: Define funmv = @(z)A\(IN − rn,m(A))z, where rn,m(A) is given in (8) ;
2: Call w = gmres(@funmv, rn,m(A)b, tol,maxit);
3: return w

In view of (13), Algorithm 1 can be the building block of a recursive pro-
cedure for the evaluation of ψℓ(A)b, ℓ > 1. Some explanations are, however,



tol 1.0e− 7 1.0e− 9 1.0e− 11 1.0e− 13
m 71 152 325 698
err 1.8e− 6 1.4e− 8 8.8e− 10 2.0e− 11

Table 2: Convergence and error estimates for the adaptive computation of w = ψ1(A)z, with

A = gallery(
′
hanowa

′
, 128) and z = ones(128, 1), using the incremental approximation (14).

in order with respect to the execution of the first two steps. Specifically, the
crucial point is the selection of the approximation rn,m(A) of ψ1(A).

For a general A, the choice of the approximation can be performed adaptively
by means of an incremental scheme where we add one term at a time until a
fixed tolerance is reached. Specifically, for a given value of n and tol we compute
the approximation

wm+1 = rn,m+1(A)z = wm+
1

(m+ 1)2n

(
A

2π

)2(n+1)

(

(
A

2π

)2

+(m+1)2IN )−1z

(14)
of w = ψ1(A)z until the stopping criterion ∥ wm+1 −wm ∥2 / ∥ wm ∥2≤ tol is
satisfied. The value of n should be chosen very small. In our experiments we use
n = 2. In Table 2 for A = gallery(′hanowa′, 128) we show the value of m and
the corresponding error err =∥ wm+1 −w ∥2 / ∥ w ∥2 generated with different
tolerances. Here z = ones(128, 1) and the vector w = ψ1(A)z is computed by
using expm and the backslash operator.

Differently, for a normal matrix A the selection of n and m in (8) might
be addressed a priori by looking at the corresponding approximation problem
depending on the localization of the spectrum of A. In Figure 3 we show the
plot of the absolute error |ψ1(z)− rn,m(z)| for different values of n and m and
for different domains.

Recall that ψ1(z) is a meromorphic function with poles ±2πik, k ∈ N,
and a removable singularity at the origin. It is remarkable that the approx-
imation is quite accurate even close around the singular points, whereas the
error increases appreciably with the size of the domain. A widespread approach
to the computation of exponential and ϕℓ−functions combines polynomial or
Padé approximation with a few steps of scaling-and-squaring [16]. In principle,
scaling-and-squaring may also be applied to our mixed polynomial-rational ap-
proximation, scaling the function argument by a suitable power of 2 and then
making use of the squaring formulas

ψ1(2z) =
2ψ1(z)

ez + 1
=

2ψ1(z)
2

z + 2ψ1(z)
. (15)

The efficient implementation of (15) is an ongoing research project and this
scaling-and-squaring scheme is not considered here.



(a) n = 2 and m = 32 over [−3, 3] × i[−3, 3] (b) n = 2 and m = 64 over [−3, 3] × i[−3, 3]

(c) n = 2 and m = 64 over [−9, 9] × i[−3, 3] (d) n = 2 and m = 64 over [−3, 3] × i[−9, 9]

Figure 3: Surf plots of the absolute errors |ψ1(z)− rn,m(z)| generated for different values of
of n and m over different domains.

The evaluation of the function funmv at step 1 of Algorithm 1 basically
amounts to compute rn,m(A)z. In the typical situation where n ≪ m this
computations reduces to solve m shifted linear systems of the form

(A2 + (2πk)2IN )zi = (A+ 2πikIN )(A− 2πikIN )zi = b, 1 ≤ i ≤ m. (16)

There is an extensive literature on the solution of shifted linear systems. In the
case of interest where A is quasiseparable we make use of the backward stable
algorithm proposed in [5]. This algorithm saves about half of computations in
the solution of the shifted linear systems by reusing pieces of the structured QR
factorization of the matrix A. According to [5] for a quasiseparable matrix A
of size N partitioned in blocks of size n that are represented via quasiseparable
generators of length r ≪ m the arithmetic cost of solving the systems (16) is of
the order 4n2mN .

Some numerical tests showing the effectiveness of Algorithm 1 are presented
in Section 4.

4. Numerical Results

We have tested the application of Algorithm 1 for computing w = ψ2(A)b
numerically by using MatLab. We do not exploit the use of restarting techniques



and specific selections of the initial guess in the gmres function by accepting
the default values.

Numerical experiments have been carried out for comparison with the classi-
cal approach based on the Arnoldi method [9, 21, 13], where w is approximated
bywj =Wjψ2(Hj)e1 ∥ b ∥2, j ≥ 1, andWj andHj are generated in the Arnoldi
process. This scheme seems to be performing very efficiently whenever it works.
The crux is that the performance is depending on a number of issues such as the
choice of the starting vector and the stopping criterion in the Arnoldi process
as well as the properties of the spectrum of the matrices Hj and the quality
of the polynomial approximation of ψ2(z) on this spectrum. These issues can
be difficult to tackle and resolve for a certain class of matrices. In order to
illustrate these difficulties, let us consider the following examples.

1. In the first test we analyze some classical models of quasiseparable matri-
ces generated by a rank-one perturbation of unitary and banded matrices.
The matrices of size N = 128 are:

(a) A = Z + ϵeeT , Z =


1

. . .

1
1

, eT = [1, . . . , 1];

(b) A = B − eeTN , B = i


1
1 2

. . .
. . .

1 N

;
(c) A = diag(ξ,−ξ) ⊗ I + ϵeeT , where ξ = lambertw(−2,−exp(−1)),

lambertw computes the Lambert W function [8] and ξ is the first
pole of ψ2(z) [20].

We have implemented the Arnoldi-based method in MatLab. As a stop-
ping criterion we evaluate the relative error between two consecutive ap-

proximations err
(j)
1 =∥ wj+1−wj ∥2 / ∥ wj ∥2. As a measure of accuracy

we also determine the relative error err
(j)
2 =∥ w −wj ∥2 / ∥ w ∥2, where

w is computed in some way (varying with the considered example) to
achieve a greater accuracy.
The matrix in (1a) is well conditioned with eigenvalues far from the poles
and the removable singularity of ψ2(z) and thusw is found using the direct
approach based on expm and the backslash operator applied to ϕ2(A)w = b
with b = e1. For ϵ = 0 the matrices Hj , 1 ≤ j ≤ N − 1, generated by the
Arnoldi scheme are lower bidiagonal matrices with zero diagonal entries.
Hence, the direct approach do not work for computing the intermediate
approximations wj . A method for dealing with singular matrices was pro-
posed in [34]. This method determines ϕ2(G) for a possibly singular G
of size m at the cost of approximating the exponential of a matrix of size
3m. The modified Arnoldi scheme complemented with this method and
the backslash operator for computing wj succeeds to find an approxima-

tion of w with relative error err
(j)
2 of order 1.0e− 12 in 15 iterations. For



(n,m) (3, 8) (3, 16) (3, 32)
itgmres 17 17 17
rgmres 4.8e− 14 4.8e− 14 4.8e− 14
err2 8.7e− 14 5.3e− 14 5.3e− 14

Table 3: Performance of Algorithm 1 applied to the matrix in (1a) of size N = 128 with
ϵ = 1.0e− 14 and the tolerance of gmres set at tol = 1.0e− 12. .

k 1 2 3 4 5 6
res 0.3 0.1 0.01 1.7e− 4 2.9e− 8 8.9e− 16

Table 4: Convergence history of Newton’s iteration applied for the inversion of ϕ2(A), where
A is the matrix in (1a) of size N = 128 with ϵ = 1.0e− 14.

a small nonzero ϵ the construction is numerically stable but it generates
submatrices Hj that are severely ill-conditioned due to the occurrence of
eigenvalues clustered around the origin. However, the modified Arnoldi
scheme is still effective by reaching an approximation of w with relative

error err
(j)
2 of order 1.0e−12 in 18 iterations for ϵ = 1.0e−14. For compar-

ison in Table 3 we describe the results obtained by Algorithm 1 applied to
the matrix in (1a). We show the value of n and m in the rational approxi-
mant, the number itgmres of iterations of gmres, the relative residual rgmres
of the approximation returned by gmres together with the relative error
err2. Since the mixed polynomial-rational approximation performs quite
well on this example we have also tested the performance of Newton’s
iteration described in Section 2. The direct and the modified algorithm
can equivalently be used for computing ϕ2(A). An initial guess is found
by setting X0 = r3,8(A). In Table 4 we illustrate the convergence history
of the Newton scheme by showing the residual res =∥ ϕ2(A)Xk − IN ∥2.

The rapid convergence of the modified Arnoldi scheme on example (1a)
can be explained in terms of its approximation properties. The eigenval-
ues of the matrices Hj are zero or clustered around zero and, therefore,
the polynomial approximation induced by the Arnoldi scheme behaves as
the series expansion (6). The dependence on the spectral properties of
the matrices Hj is the mixed blessing for the Arnoldi scheme. To see this,
let us consider the matrix in example (1b). The eigenvalues of A are lo-
cated close to the imaginary axis in the interval between 1 and N = 128.
The modified Arnoldi scheme applied for solving the problem ϕ2(A)w = b

with b = e1 returns an approximation with relative error err
(j)
2 of order

1.0e−12 in 20 iterations. Differently, the same algorithm applied for solv-
ing the problem ϕ2(A)w = b with b = rand(N, 1) is unable to provide
an approximation with relative error less than or equal to 1.0e− 7 in N



iterations. In the first case the eigenvalues of the matrices Hj are the
corresponding diagonal entries of A and the approximation is quite effec-
tive. On the contrary, in the second case the eigenvalues of the matrices
Hj are scattered in the complex plane and the approximations improve
slowly. This effect combined with the simultaneous loss of orthogonality
in the vectors of Wj leads to a poor accuracy. Concerning Algorithm 1,
we observe that the eigenvalues λj of A are not in a region Ω of guaran-

teed convergence and we find that
∣∣∣1− ϕ2(λj)

ϕ1(λj)

∣∣∣ > 1 for about half of the

eigenvalues. Notwithstanding that, for b = e1 Algorithm 1 complemented
with the adaptive computation of r2,m(A) converges with error 1.1e− 9
after 15 iterations of gmres whereas for b = rand(N, 1) the convergence
requires 65 iterations of gmres with error 1.2e− 8.
To further evidence the role of the spectral properties of A and its approxi-
mations Hj , we consider the matrix in (1c) whose eigenvalues are clustered
around the two points ξ and −ξ with ξ being a pole of ψ2(z). Here ϵ is
set to be equal 1.0e− 8, w is fixed equal to e and then b is determined
by ϕ2(A)w = b. The spectrum of the matrices Hj accumulates around
the two points ξ and ξ and the origin. In two steps the errors reach a
minimum value of order 1.0e− 8 and after that rapidly grow and stabilize
around the unit. This loss of accuracy displayed in Figure 4 is caused
by catastrophic cancellation which determines the loss of orthogonality
of the computed basis. The selection of the threshold value is critical to
obtaining a feasible approximation.
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(a) Semilog plot of err
(j)
1 for the matrix in (1c)
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(b) Semilog plot of err
(j)
2 for the matrix in (1c)

Figure 4: Semilog plots of err
(j)
1 and err

(j)
2 for the matrices defined in (1a) and (1c) of size

N = 128 with ϵ = 1.0e− 14, 1.0e− 8, respectively.

For comparison in Table 5 we show the results obtained by Algorithm 1
applied to the matrix in (1c).

2. In general, our approach can outperform the Arnoldi method when this
latter exhibits a poor convergence. An example is given by the matrix
A = gallery(′hanowa′, 256). In Figure 5 we show the plot of the error

err
(j)
2 generated in the computation of ψ2(A)b with b = ones(256, 1). The

process is stable and at the very end we compute an accurate approxima-
tion using the Hessenberg reduction of A. The matrix has eigenvalues



(n,m) (3, 16) (3, 32) (3, 64) (3, 128)
itgmres 3 3 3 3
rgmres 1.8e− 15 1.8e− 15 1.7e− 15 1.8e− 15
err2 5.0e− 3 4.4e− 5 3.6e− 7 1.8e− 8

Table 5: Performance of Algorithm 1 applied to the matrix in (1c) of size N = 128 with
ϵ = 1.0e− 8 and the tolerance of gmres set at tol = 1.0e− 12. .
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Figure 5: Semilog plot of err
(j)
2 generated by the Arnoldi method applied to A =

gallery(
′
hanowa

′
, 256).

located on a straight line parallel to the imaginary axis. The poor conver-
gence is probably related with the periodicity of the complex exponential
function which is not easily captured by the polynomial approximation
induced by the Arnoldi construction. Algorithm 1 complemented with
the adaptive computation of r2,m(A) returns an approximation with error
1.0e− 5 after 14 iterations of gmres. The value of m ranges in the interval
[165, 238]. Observe that the eigenvalues of A are not lying in the strip
Ω = R × i[−π/2, π/2] in the complex plane. Indeed, the preconditioned
matrix has eigenvalues of modulus in the range [0.59, 1, 59]. The precondi-
tioning is still effective and this opens an interesting perspective for future
researches.

Numerical tests have been also performed to investigate the application of
Algorithm 1 in the solution of the inverse problems described in the introduction.
For the sake of illustration let us consider the following differential problem:

∂u(z, t)

∂t
=
ez−4

σ2

∂2u(z, t)

∂z2
+ tf(z), f(z) = sin(2πz), (z, t) ∈ [−1, 1]× [0, 1],

(17)
with boundary conditions u(−1, t) = u(1, t) = 0, u(z, 0) = 0 and σ = 10. The
differential problem has been solved in Mathematica using the internal function
NDSolve with extended precision. The computed solution u(z, t) evaluated at
t = 1 is used to define h(z) = u(z, 1). Then the inverse problem concerns
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Figure 6: Plots of the error vectors generated by Algorithm 1 for N = 128 (a) and N = 512
(b).

the reconstruction of f(z) from the boundary conditions and the additional
constraint u(z, 1) = h(z). Using a discretization in space by finite differences
over N+2 equispaced points in the interval [−1, 1] leads to the first order system

du

dt
= Au(t) + tf ,

A =

(
N + 1

2σ

)2

diag(ez1−4, . . . , ezN−4)


−2 1

1
. . .

. . .

. . .
. . . 1
1 −2


with conditions

u(0) = 0, u(1) = h,

and f = [f(z1), . . . , f(zN )]
T
, h = [h(z1), . . . , h(zN )]

T
. The unknown vector

f can thus be determined by means of formula (3). The matrix A is similar
to a negative definite matrix and therefore our methods can be applied. In
Figure 6 we plot the absolute error vector with entries |f̂i − f(zi)|, 1 ≤ i ≤ N ,

N ∈ {128, 512}, where f̂i are generated by Algorithm 1 with n = 2, m = 32,
tol = 1.0e− 10 and maxit = 40. The gmres command detects convergence at
iteration 7 and 8 forN = 128 andN = 512, respectively. The finer discretization
produces a small error. Similar plots are observed for the vectors generated by
using expm and the backslash operator. The condition number of the matrices
involved is of order 1.0e+ 8.

5. Conclusions and Future Work

In this paper we have presented two approaches based on Newton’s iteration
and Krylov-type methods for the efficient computation of the inverse of a matrix



ϕ-function as well as the action of this inverse matrix on a vector. In particu-
lar, an appealing iterative procedure for computing ψ2(A)v has been devised.
Numerical experiments show that the proposed methods exhibit good robust-
ness and convergence properties. The iterative scheme for the approximation
of ψ2(A)v requires at each step to compute an approximation of products of
the form ψ1(A)w by solving several linear systems whose matrices differ from
A by a complex multiple of the identity matrix. Future work is concerned with
the efficient solution of these shifted systems using the techniques introduced
in [3]. Another interesting research topic would be the design of an adaptive
modification of the algorithm in [5, 6] for computing ψ1(A) capable to determine
automatically the ”best” polynomial/rational approximation formula for ψ1(z).

Acknowledgment

The author would like to thank Prof. Paola Boito and Prof. Yuli Eidelman
for useful discussions and feedback. The author is also indebted to Yuli Eidelman
for the English translation of reference [20].

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with
formulas, graphs, and mathematical tables. National Bureau of Standards
Applied Mathematics Series, No. 55. U. S. Government Printing Office,
Washington, D.C., 1964. For sale by the Superintendent of Documents.

[2] M. Benzi. Localization in matrix computations: theory and applications.
In Exploiting hidden structure in matrix computations: algorithms and ap-
plications, volume 2173 of Lecture Notes in Math., pages 211–317. Springer,
Cham, 2016.

[3] D. Bertaccini, M. Popolizio, and F. Durastante. Efficient approximation
of functions of some large matrices by partial fraction expansions. Int. J.
Comput. Math., 96(9):1799–1817, 2019.

[4] D. A. Bini and B. Meini. Approximate displacement rank and applications.
In Structured matrices in mathematics, computer science, and engineering,
II (Boulder, CO, 1999), volume 281 of Contemp. Math., pages 215–232.
Amer. Math. Soc., Providence, RI, 2001.

[5] P. Boito, Y. Eidelman, and L. Gemignani. Efficient solution of parameter-
dependent quasiseparable systems and computation of meromorphic matrix
functions. Numer. Linear Algebra Appl., 25(6):e2141, 13, 2018.

[6] P. Boito, Y. Eidelman, and L. Gemignani. Computing the reciprocal of a
ϕ-function by rational approximation. Adv. Comput. Math., 48(1), 2022.



[7] M. Caliari, F. Cassini, and F. Zivcovich. BAMPHI: Matrix-free and
transpose-free action of linear combinations of ϕ-functions from exponential
integrators. J. Comput. Appl. Math., 423:Paper No. 114973, 2023.

[8] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth.
On the Lambert W function. Adv. Comput. Math., 5(4):329–359, 1996.

[9] V. L. Druskin and L. A. Knizhnerman. Two polynomial methods for cal-
culating functions of symmetric matrices. Zh. Vychisl. Mat. i Mat. Fiz.,
29(12):1763–1775, 1989.

[10] Y. Eidelman and I. Gohberg. On a new class of structured matrices. Integral
Equations Operator Theory, 34(3):293–324, 1999.

[11] Y. Eidelman, I. Gohberg, and I. Haimovici. Separable type representa-
tions of matrices and fast algorithms. Vol. 1, volume 234 of Operator The-
ory: Advances and Applications. Birkhäuser/Springer, Basel, 2014. Basics.
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https://amslaurea.unibo.it/13501/1/sacchi giulia tesi mag.pdf.

[33] G. Sacchi and V. Simoncini. A GMRES convergence analysis for localized
invariant subspace ill-conditioning. SIAM J. Matrix Anal. Appl., 40(2):542–
563, 2019.

[34] R. B. Sidje. Expokit: A software package for computing matrix exponen-
tials. ACM Trans. Math. Softw., 24(1):130–156, mar 1998.



[35] A. Y. Suhov. A spectral method for the time evolution in parabolic prob-
lems. J. Sci. Comput., 29(2):201–217, 2006.

[36] I. V. Tikhonov and Y. Eidelman. Questions of the well-posedness of di-
rect and inverse problems for an evolution equation of special type. Mat.
Zametki, 56(2):99–113, 160, 1994.

[37] M. Veneva and A. Ayriyan. Performance analysis of effective methods for
solving band matrix slaes after parabolic nonlinear pdes. In K. Georgiev,
M. Todorov, and I. Georgiev, editors, Advanced Computing in Industrial
Mathematics: 12th Annual Meeting of the Bulgarian Section of SIAM De-
cember 20-22, 2017, Sofia, Bulgaria Revised Selected Papers, pages 407–
419. Springer International Publishing, Cham, 2019.

[38] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Fast algorithms for hierar-
chically semiseparable matrices. Numer. Linear Algebra Appl., 17(6):953–
976, 2010.


