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Abstract: Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithe-
lial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal
organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells
(hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications
to IRD presently display limited maturation and functionality, with most photoreceptors lacking
well-developed outer segments (OS) and light responsiveness comparable to their adult retinal
counterparts. In this review, we address for the first time the microenvironment where OS mature,
i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming
required for OS generation. We also address bioengineering issues to improve culture systems
proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the
demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for
disease modeling, drug development, and replacement therapies.

Keywords: iPSC; retinal organoids; inherited retinal degenerations; photoreceptors; disease model-
ing; transplantation; subretinal space; aerobic glycolysis; bioengineering

1. Introduction

The adult mammalian retina is a highly specialized tissue, localized in the posterior
region of the eye, responsible for light sensing and pre-processing of the visual information
that is readily delivered to the brain. As shown in Figure 1A, the retina has five major
retinal cell types organized in three main cell layers separated by two synaptic layers. The
visual experience starts in retinal photoreceptors (PRC) upon light stimuli conversion in
electrical signals that feed into retinal circuitries for neural computation [1,2]. Specifically,
PRC in the outer nuclear layer (ONL) transmit the neural signal to bipolar cells (BC) in
the inner nuclear layer (INL) that relay this information to ganglion cells (GC), the only
retinal cells whose axons exit the retina via the optic nerve. Amacrine and horizontal cells
(AC and HC) in the INL interconnect with either PRC, BC, or GC to integrate PRC-born
signals, letting the visual system operate over a range of environmental light intensities
spanning about 14 log units as parallel networks [3] extracting relevant features from the
visual scene [4,5]. Figure 1B provides an example of how retinal circuitries let the visual
system operate over a large range of light intensities via the parallel processing of rod and
cone signals (reviewed in [6]). As shown in Figure 1B, cones hyperpolarize in response
to light and connect with BC that either hyperpolarize (hyperpolarizing cone BC—red)
or depolarize (depolarizing cone BC—purple) in response to light. Hyperpolarizing BC
cells connect to OFF-type GC that reduce their firing rate in response to light. In turn,

Cells 2021, 10, 2489. https://doi.org/10.3390/cells10092489 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-7641-0426
https://doi.org/10.3390/cells10092489
https://doi.org/10.3390/cells10092489
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10092489
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10092489?type=check_update&version=3


Cells 2021, 10, 2489 2 of 42

depolarizing cone BC connect to ON-type GC that increase their firing rate in response
to light. Through these, ON and OFF GC cone-borne signals are relayed to higher visual
centers enabling vision in day-light. However, cones do not have enough sensitivity to
operate in dim light levels, preventing common tasks such as driving a car at night. Rods
(cyan) hyperpolarize in response to light and have enough sensitivity to operate in dim
light and connect with rod BC (blue) that respond to light with a depolarization. Rod BC
do not establish synaptic contact with GC and rod-born signals travel through a specialized
AC type (bistratified or AII AC-orange) to reach cone bipolar cells (Figure 1B). In addition
to this primary rod pathway, a second pathway directly connects rod to cones (Figure 1B).
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Figure 1. (A) In vivo cellular organization of the mature retina. The interactions occurring be-
tween distinct cell types and between photoreceptors and RPE are shown. GC: Ganglion Cells;
AC: Amacrine Cells; BC: Bipolar Cells; HC: Horizontal Cells PRC: Photo Receptor Cells. IPL: Inner
Plexiform Layer; OPL: Inner Outer Plexiform Layer. ONL: Outer Nuclear Layer; IS: Inner segment;
OS: Outer Segment. The blue bar above IS and OS represents the SRS depth interposed between
retinal pigment epithelial (RPE) cells and the end feet of Muller glial (MG) cells in the OR. The MG cell
is shown in light blue and extends across the whole retina. (B) Parallel processing of PRC-generated
signals by retinal networks. Cone cells (green) and hyperpolarizing response (on the left). Downward
pointing green arrows: transfer of cone signals to hyperpolarizing CB (HCB) (red) and depolarizing
CB (purple). Hyperpolarizing and depolarizing CB establish synaptic connection with OFF-type
(pink) and ON-type (olive green) GC, respectively. Rod cells (cyan) and hyperpolarizing response
to light on the right. Cyan arrows: transfer of rod-borne signals via primary and secondary rod
pathways. Primary rod pathway: downward pointing cyan arrows indicate rod responses transfer
to depolarizing rod BC (blue). Horizontal cyan arrows indicate the transfer of rod-borne signals to
cone BC by AII AC (orange), via a chemical synapsis with HCB and an electrical synapsis (red circle
containing a resistor symbol) with depolarizing CB. Secondary rod pathway: horizontal cyan arrows
indicate the transfer of rod-borne signals to cones via electrical synapses.
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In the case of Inherited Retinal Degenerations (IRD) affecting photoreceptors and the
retinal pigment epithelium (RPE), the progressive visual loss eventually leads to severe
blindness with a prevalence of about 10% [7].

The RetNet database (https://sph.uth.edu/RETNET/sum-dis.htm, accessed on 15
February 2021) reports 307 genetic loci associated with visual impairment, and most genetic
loci have been linked to a single gene. Table 1 reports data extrapolated from the RetNet
database, after excluding syndromic cases (i.e., involving disorders in other organs), non-
progressive visual disturbances, and visual loss involving damage to extraretinal eye
structures. The high numbers of involved loci (130) and identified genes (114) responsible
for Retinitis Pigmentosa (RP), Leber Congenital amaurosis (LCA), Cone or Cone-Rod
dystrophy (CORD), and Macular Degeneration (MD) indicate the genetic heterogeneity
of IRD.

Table 1. Genetic loci and number of genes, with their inheritance mode, for disease categories Retinitis
Pigmentosa (RP), Leber Congenital Amaurosis (LCA), Cone or Cone-Rod Dystrophy (CORD), and
Macular Degeneration (MD) from the RetNet database (https://sph.uth.edu/RETNET/sum-dis.htm,
accessed on 15 February 2021).

Diseases Category Inheritance Mode Loci Genes

retinitis pigmentosa dominant 23 22

retinitis pigmentosa recessive 43 41

retinitis pigmentosa x-linked 5 2

subtotal 71 65

leber congenital amaurosis dominant 1 1

leber congenital amaurosis recessive 13 13

subtotal 14 14

cone or cone-rod dystrophy dominant 9 5

cone or cone-rod dystrophy recessive 17 16

cone or cone-rod dystrophy x-linked 1 0

subtotal 27 21

macular degeneration dominant 14 10

macular degeneration recessive 4 4

subtotal 18 14

overall total 130 114

Several genes in the RetNet database involved in early- or late-onset IRD play a role in
either PRC development or function. Those mentioned in this review are listed in Table 2
below.

Table 2. Genes involved in photoreceptors development and function.

Acronym Full Name

ABCA4 ATP Binding Cassette Subfamily A Member 4

AIF Apoptosis-Inducing Factor

ALDOC Aldolase Isoform C

ARL2BP ADP Ribosylation Factor Like GTPase 2 Binding Protein

ARL6 ADP-Ribosylation Factor-Like GTPase 6

BMP Bone Morphogenetic Protein

C-KIT KIT Proto-Oncogene, Receptor Tyrosine Kinase (CD117)

https://sph.uth.edu/RETNET/sum-dis.htm
https://sph.uth.edu/RETNET/sum-dis.htm
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Table 2. Cont.

Acronym Full Name

C2ORF71 Photoreceptor Cilium Actin Regulator

CACNA1F Calcium Channel A Subunit Subfamily Xx Isoform 1F (Cav1.4)

CACNA2D4 Calcium Channel A2d Subunit Isoform 4 (Cava2d4)

CACNAB2 Calcium Channel B Subunit Isoform 2 (Cav2.2)

CD24 Cluster of Differentiation 24

CD44 Cluster of Differentiation 44

CD73 Cluster of Differentiation 73

CEP290 Centrosomal Protein 290

CLDN19 Claudin 19

CNGA1 A Subunit Of The Rod Cyclic-Nucleotide-Gated-Channel

CNGB1 B Subunit of The Rod Cyclic-Nucleotide-Gated-Channel

CRB1 Crumbs Homolog 1

CX3CL1 C-X3-C Motif Chemokine Receptor 1 Ligand

CX3CR1 C-X3-C Motif Chemokine Receptor 1

FGF1 Fibroblast Growth Factor 1

FGF9 Fibroblast Growth Factor 9

FOXM1 Forkhead Box M1

GLUT1 Glucose Transporter Isoform 1

GNAT1 G Protein Subunit A Transducin

HCN1 Hyperpolarization-Activated Cyclic Nucleotide-Gated Isoform 1

HIF-1alpha Hypoxia Inducible-Factor Subunit Alpha Isoform 1

HIF-1beta Hypoxia Inducible-Factor Subunit Beta Isoform 1

HK2 Hexokinase Isoform 2

IGF1 Insuline-like Growth Factor 1

IMPG1 Interphotoreceptor Matrix Proteoglycan 1

JAM Junctional Adhesion Molecules

KCNB1 Potassium Channel Subfamily B Isoform 1 (Kv2.1)

KCNV2 Potassium Channel Subfamily V Isoform 2 (Kv8.2)

KLF4 Kruppel-Like Factor 4

LDHA Lactic Dehydrogenase A

MCT1 Mono Carboxylate Transporter Isoform 1

MITF Melanocyte Inducing Transcription Factor

Mupp1 Multiple PDZ Proteins 1

NEUROG1 Neurongenin1

NEUROG2 Neurogenin 2

NRL Neural Retina Leucine Zipper

OCLN Occludin

PAX6D Paired Box 6 Isoform D

PDE6A Phospodiesterase 6A

PDE6B Phospodiesterase 6B

PDE6G Phospodiesterase 6G
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Table 2. Cont.

Acronym Full Name

PGAM1 Phosphoglyceraldehyde Mutase Isoform 1

Pgk1 Phosphoglycerate Kinase 1

PKM Pyruvate Kinase

RdCVF Rod-Derived Cone Viability Factor

REEP6 Receptor Expression Enhancing Protein 6

RETGC1 Retinal Guanylate Cyclase 1

RHO Rhodopsin

RP1 Oxygen- Regulated Prein-1 (ORP1)

RP2 Retinitis Pigmentosa 2

RPE65 Retinoid Isomerohydrolase 65

RPGR Retinitis Pigmentosa GTPase Regulator

RS1 Retinoschisin 1

SAG S-Antigen (Arrestin)

SSEA4 Stage-Specific Embryonic Antigen-4

TMEM16B Transmembrane Channel Family 16 Isoform B

TTC8 Tetratricopeptide Repeat Domain-Containing Protein 8

VEGF Vascular Endothelial Growth Factor

VHL Von Hippel Lindau

VSX2 Visual System Homeobox 2

WNT Wingless and Int1

ZO1 Zonula Occludens 1

Despite the impressive progress in identifying the genetic basis of IRD, translation of
basic science into effective treatments validated by clinical studies largely remains a work in
progress. This review is organized in four main sections. In the first one, we will recapitulate
the main issues in drug development and cell replacement strategies to treat or cure IRD in
order to restore vision (reviewed in [8]). In the same section, we will focus on the potential
of inducible pluripotent stem cells (iPS) and iPS-derived three-dimensional (3D) retinal
organoids (ROs) to promote drug development [9–13] and substitutive approaches to IRD
by improving disease modeling [9–12,14–24] and cell replacement therapies [12,25–27].

In Section 2, we will cover the significant improvements in hiPSC-derived ROs gen-
eration via culture protocols recapitulating retinal embryogenesis and leading to three-
dimensional structures with ordered retinal cells layering. Moreover, we will also address
the unsolved issue of photoreceptors maturation in hiPS-derived ROs and critically review
recent data on the functional properties of hiPS-derived ROs.

In Section 3, we will review evidence from the mammalian retina pointing to the
critical role of the subretinal space (SRS) microenvironment to support PRC metabolism
critical for their maturation. In Section 4, we will cover the bioengineering approaches to
reproduce the SRS and to improve donor photoreceptor transplantation to the SRS.

1.1. Disease Modeling by hiPSC-Derived ROs and Drug Development for Retinal IRD

Drug-based approaches may overcome the problems generated by the large number
of variants each one affecting a relatively small number of patients worldwide by targeting
apoptosis. Apoptosis, indeed was originally proposed as the final common pathway in
rod degenerations induced by defects in different biochemical mechanisms [28,29]. How-
ever, this notion was challenged by the discovery that multiple apoptotic pathways [30],
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microglia phagocytosis [31], necroptosis [32], autophagia, and their combinations [33]
contribute to rods demise (recently reviewed in [34,35].

An additional challenge to the notion of a single apoptosis-based mechanism in rod
loss is the evidence from animal models that distinct mutations of a single gene may cause
rod cell death via either apoptosis or necroptosis. The P23H variant of Rho (coding for
the light-sensitive protein rhodopsin) causes rod demise via necroptosis and cone loss via
inflammasome activation [32], with necroptosis occurring independently from caspases
and AIF activation [33]. In turn, the Rho S334ter variant causes rod death via caspases
activation and induces cones loss via necroptosis [32].

Inflammation in RP patients [36,37] may cause microglia activation, which precedes
apoptosis in animal models of RP [36,38,39]. Indeed, inhibition of microglial cells activation
by minocycline attenuates rd10 rod degeneration [40], and activation of microglia-expressed
C-X3-C Motif Chemokine receptor 1 (CX3CR1) by its ligand (CX3CL1, fractalkine) [41]
reduced inflammation, microglia infiltration of ONL, and altogether rod demise [40,42].

In summary, these data indicating inflammation and microglia activation precede
apoptosis in some RP models make somewhat unrealistic the idea of developing a single
drug to target a common molecular pathway to prevent PRC loss. In addition, considering
the evidence on multiple mechanisms underlying PRC demise in IRD animal models, the
development of human disease models through hiPSC-derived ROs (reviewed in [8,16–18])
may prove strategic to devise effective treatments as well as the time window for their
effectiveness (for an updated and detailed review on the use of human ROs for disease
modeling, see [43]).

In recent years, hiPSC-derived ROs and optic cups have been used to evaluate the basis
of diseases associated with early-onset IRD. These mechanisms include the interplay be-
tween MITF and VSX2 and their respective regulators Wnt/βCatenin and FGFs, in the cell
fate decision concerning neural retina versus RPE, during optic cup formation [24,44–46].
Moreover, several retinal pathologies have already been modeled in human organoids
generated from patient-derived cells. In this way, it has been possible to study the disease-
associated mechanisms caused by mutations in genes encoding for Retinitis Pigmentosa
GTPase regulator (RPGR), receptor expression enhancing protein 6 (REEP6) and X-linked
Retinitis Pigmentosa 2 (RP2) [47–50] as well as by an intronic mutation in the CEP290
gene encoding for a centrosome-cilia protein, responsible for LCA [51]. Furthermore,
phenotypes of mutations in the CRB1 gene, leading to disruption of the OLM [52] (see
Section 3.1) and in the RS1 gene, causing X-linked juvenile retinoschisis [53], have also
been recapitulated in organoids derived from specific patients. Additional models include
adRP [54], non-syndromic RP [44,49,55–57], and LCA [51].

Some of these studies also successfully used hiPSC-derived ROs to evaluate the
efficacy of different strategies aimed at rescuing or compensating the activity of the mutated
gene. Strategies include CRISPR-Cas9-mediated correction of the mutated gene [58,59],
antisense morpholino to block aberrant splicing [51], read-through promoting drugs to
treat frameshift mutations [56,60], and treatment with neuroprotective factors [53,61].

However, these disease models relate to early-onset IRD, and a meaningful comparison
to animal models or human samples may require ROs from healthy subjects or isogenic
controls with well-developed photoreceptors. Although this point appears especially
critical for late-onset IRD, even for a model of early-onset IRD, the lack of well-developed
ROs may blur important long-term difference between controls and patients and affect the
development of effective therapies.

1.2. hiPSC-Derived ROs and Replacement Therapy for Retinal IRD

Replacement therapy aims to cure IRD by replacing dead host cells with transplanted
donor cells. The cell replacement approach is conceptually attractive and straightforward,
overcoming the main limitations of gene therapy and drug-based approaches: it represents
a variant-independent approach that may work when host cells have already degenerated,
i.e., when drug therapy could not work. However, replacing dead cells in the degenerated
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retina proved more difficult than anticipated (for recent detailed reviews on replacement
therapies for retinal degenerations, see [62,63]).

Clinical trials in RP patients using retinal sheets of the human fetal retina with attached
RPE provided evidence for safety and lack of rejection, despite human leukocyte antigen
(HLA) mismatch. Efficacy appeared limited [64], lasting up to 5 years post transplants in
some RP patients [65] (reviewed in [66]). Importantly, transplantation of hESC-derived
ROs slices lacking RPE cells to the SRS of nude rat model of rapid (Rho S334ter-3 rats with a
truncation in the C-terminus causing endoplasmic reticulum stress) [67] and late IRD (RCS
rats with faulty OSs phagocytosis by the RPE) [68] led to visual improvements despite
human rods and cones organizing in rosettes [67,68]. Consistent with poor transplantation
outcomes in the same rat model when human fetal strips generate rosettes [69], the visual
improvement conferred by transplanted human ROs strips was transient [68], suggesting
their reduced viability upon transplantation to the SRS.

These clinical and preclinical studies using fetal and hESC-derived ROs slices did
not address the issue of the optimal developmental timing for transplantation. Instead,
this was addressed in preclinical models of retinal transplantation using post-mitotic rod
precursors isolated from the retina of transgenic Nrl:GFP mice [70], which express the
green fluorescent protein (GFP) under the control of the rod-specific Neural Retina Leucine
Zipper (NRL) transcription factor [71].

These studies indicated a higher success rate for rod precursors from retinas of post-
natal (PN) PN4-PN7 mice donors [72] compared to rod precursors isolated from adult
mice [73,74]. Although the host retinal environment emerged as an additional variable
affecting transplantation outcome [75] (reviewed by [76]), transplanted photoreceptor
precursors improved vision in both non-degenerative (night-blindness) [77] and end-stage
degenerated retina [78].

Several pre-clinical studies using iPSCs-derived donor cells (reviewed in [79,80]) have
also addressed open issues about cell replacement approaches to IRD. Evidence that rod
and cone precursors generated from hiPSC cells may develop IS and OS upon transplan-
tation to the SRS of recipients [81–83] represented a significant step toward translating
preclinical cell replacement approaches into clinical applications. However, the finding that,
upon transplantation of hESC-derived retinal cells, Crx−/− recipient mice became light
responsive, despite grafted cells failing to develop an OS [84], represents a puzzling obser-
vation bearing relevance to the functional evaluation of hiPSC-derived ROs. Specifically, in
response to light stimuli, Crx−/− mice recipients generate an ERG b-wave, indicating the
operation of the synapse between PRC and ON-bipolar cells, a finding consistent with the
expression of the presynaptic marker synaptophysin by grafted cells. Overall, these data
suggest some grafted cells establish functional synapses with postsynaptic ON-bipolar
cells. The puzzling finding is that PRC lack OS, and accordingly, the ERG lack a discernible
a-wave, the component ascribed to the suppression of the dark current circulating between
the OS and the IS [85–87] (reviewed in [88]). Importantly, light-responses in the absence
of well-developed OS have also been reported in 6–7 months rds mice [89], and b-wave
amplitude in P23H rats poorly correlates with ONL thinning [90]. In mice, immature rods
start expressing Rho before OS formation, and rhodopsin immunostaining reveals labeled
cell bodies. In case OS fail to develop, opsin may accumulate in the cells’ body and becomes
photosensitive upon linking RPE-generated 11-cis retinal. In these conditions, PRC may
become light responsive despite the lack of OS and ERG a-wave.

An interesting finding of this early work was the observation that upon transplantation
to the SRS, hESC-derived retinal cells may integrate into the retina of wt mice and human
PRC developed OS with the morphologies of wt mice, a striking difference with the finding
in Crx−/− mice. It is now clear that in some IRD models, material transfer between grafted
photoreceptor precursors and host rods [91–93] and cones [94–96] represents the primary
mechanism contributing to host cell rescue [95] by grafted cells and visual improvement in
some models of IRD.
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An additional mechanism, distinct from material transfer from grafted rod precursors,
is the one reported for late retinal progenitors, isolated as c-KIT+/SSEA4− cells from
human ESC-generated ROs. These progenitors may contribute to cell rescue via both cell
replacement and by material transfer [97], as well as by suppressing microglia activation
along with inflammatory cytokines production. Overall, these data indicate cell rescue
rather than cell replacement may represent the main mechanism underlying preserved
function in transplantation, depending on the developmental age of grafted cells, indicating
the importance of selecting cells of precise developmental stages.

It should also be considered that human rod precursors, which develop late in the
second trimester of gestation [98,99], may not be available for transplantation. Moreover,
photoreceptor precursors isolation from ROs requires transgene-independent sorting strate-
gies. Based on preclinical studies showing the successful isolation of mouse rod precursors
using the cell surface marker CD73 [100], additional work evaluated several CD combina-
tions [101,102]. However, the sorting selection based on several CD markers gave similar
results to cells selected on CD73/CD24 combination, with engrafted cells barely reaching
1% of donor cells [102]. Importantly, similar sorting strategies have been found effective in
isolating human rod precursors from hiPSC-derived ROs, and sorted cells did survive in
the SRS following transplantation [103].

The similar engraftment yields with different and progressively more selective sorting
criteria challenge the notion of an optimal maturation stage for engrafting and point to a
role for stage-independent mechanisms. In line with this notion, the successful engraftment
of donor cone precursors generated from hiPSC-derived ROs upon transplantation in
an end-stage model of retinal degeneration has recently been achieved [104], with donor
human cone precursors becoming light-responsive and establishing synaptic connection
with postsynaptic cells has recently been achieved [104]. An important difference with
previous transplantation work, where cone precursors survived in the SRS but failed to
mature OSs, was the increased donor cell number (5 × 105 cells/1.5 µL) transferred to the
SRS [104] compared to previous studies (1 × 105–2.5× 105 cells/1–2 µL, see Table 1 in [62]).
These findings hint to a role for cell–cell contacts or short-range diffusing molecules in
affecting maturation of grafted cells in the SRS.

In summary, multiple mechanisms may contribute to visual improvement upon
transplantation of PRC precursors isolated from hiPSC-derived ROs, ranging from cell
rescue to cell engraftments. PRC precursor maturation stages play an important role,
but the number of grafted cells also appears to have an additional effect in promoting
integration.

1.3. IRD Treatments: What Role for hiPSC-Derived ROs in Addressing Current Issues?

The possibility of deriving hiPSCs from readily available sources such as skin or blood
offers the opportunity to generate HLA-matched ROs with specific genotypes, allowing
personalized treatments through the development of in vitro 3D models of retinal dis-
eases [105–108]. Indeed, as already discussed in Sections 1.1 and 1.2, studies performed on
patient-derived ROs have cast light on the molecular mechanism underlying human retinal
development, otherwise very difficult to investigate. However, studies with hiPSC-derived
ROs and optic cups have so far mostly focused on early events in retinal development,
such as defects in VSX2 [44,46] and MITF [45] genes or on the role of retina-specific tran-
scription factor isoforms (PAX6D) [109], the epigenetic impact of variants associated with
RP [54], or diffusible factors such as FGF9 [110]. Analysis of the impact of defects affecting
genes expressed later during development, such as those involved in protein trafficking
at the connecting cilium between IS and OS have recently been attempted [50,55,60,111]
(reviewed by [17]). However, few human disease models requiring an advanced degree
of PRC functional maturation are available, such as those involving phosphodiesterase
or cGMP-gated channels defects. Animal models of PDE6B defects, such as the Rd1
mouse, have been found to involve multiple mechanisms [112–115] (reviewed in [35]),
with apoptosis lagging behind microglia activation [38,39,42]. hiPSC-derived ROs may
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provide knowledge of disease progression in humans rather than animal models, a key
step for testing novel drug combinations tuned to specific cascade events [11]. A recent
study generated hiPSC-derived ROs from patients bearing PDE6B mutations, and found
evidence for developmental defects at day 230 in culture, i.e., w32–33, when photoreceptors
mature in the human retina. However, considering that cGMP elevation caused by reduced
PDE6B activity may have pleiotropic effects [112–115] (reviewed in [35]), the extent to
which these ROs will recapitulate the human phenotype critically depends on the level of
morphological and functional maturation of their PRC.

As the number of retinopathies modeled in organoids is rapidly increasing, drug
discovery is another field in which human ROs can give a crucial contribution, providing
information complementary to 2D culture systems and animal models. However, the
application of human ROs in drug screening still presents several drawbacks, mainly
the heterogeneity of the organoids and extended developmental time, which spans from
several months to over one year, similarly to human embryo developmental timeline.
Laborious protocols not easy to automate, expensive reagents, and scarcity of quantitative
assays suitable for organoids represent additional challenges (reviewed in [13,116]).

The opportunity to use ROs as a renewable and scalable source of photoreceptors
for transplantation in patients affected by degenerative retinopathies has been explored
by transplanting organoid-derived retinal sheets [117,118] as well as purified rod precur-
sors [119,120] in mice models of retinal degenerations.

Optimizing donor cell engraftment [121] may require an improved knowledge over
the intrinsic and extrinsic factors controlling PRC maturation.

In this view, it is strategic to address the current limitations of three-dimensional (3D)
ROs to improve their usefulness as disease models for tailoring and testing new drug
combinations tuned to specific gene variants at a specific time of disease course (reviewed
in [12]), as well as their use as donor cells in regenerative approaches.

In the next sections, we will review how what we learned from retinal development
could be applied to hiPSC to generate 3D ROs and outline the problems that limit ROs
application to disease modeling and transplantation studies. We will then move to recent
technological advances that provide new perspectives on improved use of hiPSC and
3D ROs.

2. The Path from Retinal Development to ROs

The mammalian retina is a highly specialized tissue, whose complex functional struc-
ture is progressively shaped and organized due to well-orchestrated events occurring
during embryonic development of the nervous system. The territory fated to give rise to
the retina, the eye field, is first defined in the neural plate anterior-most region. Follow-
ing neurulation, two lateral regions of the diencephalon evaginate to generate the optic
vesicles, which in turn indent to form the optic cups, two-layered structures with the inner
layers (walls) giving rise to the retina surrounded by external layers fated to become the
RPE. The pool of multipotent retinal progenitor cells (RPCs) expands by symmetric cell
divisions, and through asymmetric cell divisions, they eventually give rise to all the five
principal retinal neurons (see Figure 1). The retinal cell types are generated according to an
evolutionary conserved temporal order, in partially overlapping waves of cell specification.
The cell bodies of each differentiated retinal cell type are localized in specific positions so
that the mature retina organization is constituted by three cell layers connected by two
plexiform layers, as shown in Figure 1A.

The great majority of our knowledge about the cellular and molecular mechanisms
governing mammalian retina development and differentiation arises from studies per-
formed in the mouse. Nevertheless, these studies have been preceded by functional
analysis carried out in more accessible lower vertebrate model systems, particularly the
frog Xenopus laevis, which led to discovering evolutionary conserved key regulators of
the different phases of retina formation [122]. Altogether, this work unraveled the retinal
development control exerted by the coordinated actions of intrinsic regulators of genetic
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programs, mainly including transcription factors and chromatin regulators, as well as
extrinsic signaling factors (reviewed in [123]). An interesting example of the role of se-
creted factors is the conversion by the secreted protein Noggin of Xenopus laevis animal
cap pluripotent stem cells into retinal precursors, which upon transplantation develop into
eyes with functional photoreceptors [124,125].

2.1. Derivation of 3D ROs from iPSC

The information gathered from lower vertebrate model systems has been crucial to
defining protocols driving mouse and human pluripotent stem cells toward a retinal fate.

In particular, the knowledge that inhibition of BMP and Wnt pathways lead to fore-
brain induction, while IGF1 instructs neural progenitors to adopt a retinal fate, proved
fundamental to develop retinal differentiation protocols for 2D adherent cultures [126].
However, these cultures did not recapitulate the complex cell–cell interactions and exposure
to gradients of diffusible factors that naturally occur in the retina.

A pivotal breakthrough was represented by the pioneering work of Yoshiki Sasai,
which led to the generation of the first self-organizing mouse 3D optic cups in vitro. The
original protocol used 3D aggregates of Pluripotent Stem cells (either ESC or iPSC), called
embryonic bodies (EBs), which are maintained in serum-free, floating conditions in the
presence of low concentrations of growth factors and Matrigel as a source of extracellular
matrix components [127]. This protocol allows the spontaneous formation of optic vesicles
and, following invagination, to optic cup-like structures, which are then excised from
the aggregate and develop individually to an inner multilayered neural retina and an
external RPE. Furthermore, dorsoventral and apical-basal polarities are established within
the self-formed retinal neuroepithelium, and retinal progenitors display the interkinetic
nuclear migration typically observed in vivo. These morphogenetic events occur in vitro
in the absence of cues or forces from external structures, such as the surface ectoderm or
the lens, indicating self-driven morphogenesis mechanisms.

The pursuit of potential future therapies for retinal neurodegenerations made apparent
the necessity to establish human ROs. This goal was initially achieved by the Sasai’s group
that, taking advantage of knowledge gained in earlier 2D studies, adapted their original
mouse protocol to human ES cells [128]. Main features of this new protocol were the
presence in the medium of 10% FBS and the addition of a Wnt inhibitor, as anteriorizing
factor, a Hedgehog agonist, to promote retinal differentiation, and a ROCK inhibitor to
prevent dissociation-induced apoptosis.

Despite the invaluable importance of this groundbreaking discovery, several groups
found that the original Sasai protocol displayed a remarkable heterogeneity, reflected in a
variable efficiency in generating invaginated optic cups and appropriate cell layering. To
improve these aspects, as well as to increase the scale production of ROs, distinct modifica-
tions of the original protocol were adopted by different laboratories. Although these im-
provements are continuously evolving, leading to a large variety of published procedures,
most protocols stem from two major approaches: embryoid body formation [82,128,129]
and a mixture of 2D and 3D protocols [14,130–132]. Comparisons between these different
types of protocols have been recently reviewed [11,24,116], and it is interesting to note that,
regardless of the presence or absence of growth factors and steps including cultures in
adherent or in suspension conditions, virtually all protocols include a neural induction
step and the subsequent isolation of neuroepithelia, followed by experimental conditions
that promote early and late phases of retinal cell maturation.

Overall, a comprehensive analysis of the different studies highlights the protocol and
indicates also potential factors that could overcome the problems.

An important issue concerns the variable efficiency in generating differentiated retinal
organoids displaying an appropriate layering. This heterogeneity has been shown to
depend on different epigenetic states of the source cell lines, resulting in different levels of
endogenous signaling activities and expression of retinal lineage markers [119,120,133–136].
As a consequence, the same protocol may show different efficiency in distinct cell lines,
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depending on whether the integration between the added factors and the endogenous
levels of key retinal regulators in the starting population of iPSCs reaches the optimal
concentration.

Generation of functional photoreceptors is another crucial topic in ROs protocols,
which has been addressed by regulating specific signaling and differentiation pathways
at different in vitro developmental times. In particular, maturation of photoreceptors can
be promoted by retinoic acid and by modulating oxygen concentration [82,117,119,137].
Furthermore, inhibition of Notch signaling enhances either cone or rod generation, depend-
ing on the developmental temporal window of treatment [138], whereas opsin-specific
9-cis-retinal promotes rod generation [139]. Another factor recently shown to be influential
for the generation of retinal organoids is the starting cell number, which should be in
the optimal range between 6000 and 8000 cells. Finally, several studies investigated the
role of extracellular matrix in the generation of ROs. The distribution of key components
of retinal extracellular matrix (ECM) was found to be very similar in developing retina
and ROs, while functional data indicated that CD44 and the photoreceptor-specific ECM
IMPG1 are necessary for the development of photoreceptors in human ROs [140]. To
better mimic the natural functions of ECM, which provides structural support and a source
of biochemical and physical cues necessary for cell survival and differentiation, tissue
decellularization protocols have been established. In particular, cell culture media sup-
plemented with decellularized ECM from neural retina and retinal pigment epithelium
have been shown to significantly increase photoreceptor differentiation, synaptogenesis
and light responsiveness in human iPSC-derived ROs [141]. In a different approach, which
uses biomaterial scaffold as substitute for ECM, alginate hydrogels, but not hyaluronic
acid-based hydrogels, were shown to enhance the generation of retinal cells in ROs [142].

2.2. Morphological and Transcriptomic Limitations of iPSC-Derived ROs

The potential inherent in ROs is unprecedented, especially in the field of human
retina research. However, despite the significant progress in the RO generation, molecular
characterization, and applications, some critical issues persist and need to be overcome to
unleash the full potential of these 3D in vitro models.

A major problem concerns the impaired differentiation of distinct cell types. Retinal
GC are among the most affected, as they are initially generated but then progressively lost,
possibly due to the lack of synaptic interactions with brain targets. In long-term culture,
interneurons of the INL are also lost, probably as a consequence of trophic deprivation
caused by loss of a synaptic partner, resulting in a disrupted inner layer lamination.

An issue of particular relevance for the development of human models of outer IRD
concerns the functionality of photoreceptors, as these are among the cell types primarily
affected in degenerative retinopathies.

As shown in Figure 2A, mature, healthy PRC are distinctively characterized by their
OS, a highly specialized light-sensitive ciliary organelle where phototransduction takes
place. OS are dynamic structures undergoing continuous renewal. New disc membranes
are added at the base, and old discs shed from the distal portion phagocyted by the
overlaying RPE cells [143].

Among the genes associated with RP in the RetNet database, several do code for pro-
teins involved in phototransduction (CNGA1, CNGB1, PDE6A, PDE6B, PDE6G, RHO, SAG,
ABCA4) and for cilium-associated proteins involved in OS morphogenesis and maintenance
(ARL6, ARL2BP, C2ORF71, RP1, and TTC8). Therefore, it is essential for transplantation
purposes and disease modeling to generate organoids with fully functional photoreceptors.

However, ROs generated with the original protocols featured photoreceptors that
lacked discernible OS [127] (Figure 2B), indicating that the conditions used for differen-
tiation in vitro differ from those present in the developmental niche of these cells [129].
More recent improvement of protocols resulted in generating photoreceptors carrying cilia
and nascent OS-like structures containing membranous discs (Figure 2C), albeit disorga-
nized [82,132,136,144] (reviewed in [17]). A crucial role in photoreceptor maturation and
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rhodopsin expression is played by retinoic acid, although cones and rods appear to have
different requirements for this molecule, and the time window of organoid treatment must
be finely modulated [132,145,146].

Cells 2021, 10, x  12 of 42 
 

 

 
Figure 2. (A) In vivo cellular organization of the mature retina. The interactions occurring between distinct cell types and 
between photoreceptors and RPE are shown. See Figure 1A legend. (B) ROs lacking RPE display photoreceptors with 
severely reduced OS and progressive loss of RGCs and interneurons. (C) ROs with a patch of RPE localized on one side 
develop photoreceptors with distinct OSs, although shorter than those observed in the retina. Progressive loss of RGCs 
and interneurons is also observed. 

Among the genes associated with RP in the RetNet database, several do code for pro-
teins involved in phototransduction (CNGA1, CNGB1, PDE6A, PDE6B, PDE6G, RHO, 
SAG, ABCA4) and for cilium-associated proteins involved in OS morphogenesis and 
maintenance (ARL6, ARL2BP, C2ORF71, RP1, and TTC8). Therefore, it is essential for 
transplantation purposes and disease modeling to generate organoids with fully func-
tional photoreceptors. 

However, ROs generated with the original protocols featured photoreceptors that 
lacked discernible OS [127] (Figure 2B), indicating that the conditions used for differenti-
ation in vitro differ from those present in the developmental niche of these cells [129]. 
More recent improvement of protocols resulted in generating photoreceptors carrying 
cilia and nascent OS-like structures containing membranous discs (Figure 2C), albeit dis-
organized [82,132,136,144] (reviewed in [17]). A crucial role in photoreceptor maturation 
and rhodopsin expression is played by retinoic acid, although cones and rods appear to 
have different requirements for this molecule, and the time window of organoid treatment 
must be finely modulated [132,145,146]. 

Figure 2. (A) In vivo cellular organization of the mature retina. The interactions occurring between distinct cell types and
between photoreceptors and RPE are shown. See Figure 1A legend. (B) ROs lacking RPE display photoreceptors with
severely reduced OS and progressive loss of RGCs and interneurons. (C) ROs with a patch of RPE localized on one side
develop photoreceptors with distinct OSs, although shorter than those observed in the retina. Progressive loss of RGCs and
interneurons is also observed.

In the mouse retina, a transcriptomic analysis indicated that a switch takes place at
PN6 when genes controlling neuronal generation are downregulated and those involved
in phototransduction become upregulated [147]. Interestingly, subsequent analysis high-
lighted that, although gene expression of mouse iPSC-derived ROs during cell lineage
specification largely overlaps in vivo retinogenesis, significant discrepancies exist at times
ranging from PN6 to PN10 [148]. In particular, the transcriptome shift, involving the coor-
dinated regulation of genes required for photoreceptor OS, synapses, and OPL formation,
seemingly does not occur in mouse ROs, displaying dysregulation of multiple transcription
factors controlling progenitor proliferation and cell differentiation timing [149–151].

In addition to the intrinsic factors controlling retinal development and postnatal
maturation, the misplaced RPE (Figure 2C), failing to establish a close and functional
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connection with ROs, may cause a lack of soluble factors involved in photoreceptor survival,
such as the polyunsaturated fatty acid docosahexaenoic acid (DHA) and FGF1. This lack
of diffusible factors is a possible contributing cause for incompletely developed OS [148].
However, the limited improvements in photoreceptor maturation observed after DHA
and FGF1 treatment of ROs indicate the necessity to identify additional signaling factors
provided by RPE. RPE cells may nevertheless be important for ROs development even
without either close contact with photoreceptors OS or the release of DHA or FGF1, as it was
reported that hiPSC-derived ROs, with attached patches of RPE at their periphery, attain
an expression profile similar to the adult human retina by 30–38 weeks in culture [136].

2.3. Functional Limitations of hiPSC-Derived ROs

Although the transcriptomic profile of ROs provides important cues on the generation
of specific cell types and their relative ratios, the extent to which these molecular data
provide insights into function remains unclear. As several genes involved in IRD code for
proteins implicated in phototransduction, modeling and drug testing for IRD arising during
late developmental stages require ROs with advanced functionality. It should be noted
that the transcriptome of human ROs after 38 w in cultures approaches that of the adult
retina, but ROs do not generate long OS [136]. This observation may indicate the functional
maturation of human ROs lag behind the acquisition of mature molecular signature and
may require additional extrinsic factors not available in their present configuration. It is
therefore important to evaluate ROs from a functional perspective, as transcriptomic data
may provide insights on necessary, but not sufficient, factors for their maturation.

The first functional analysis of hiPSC-derived ROs was carried out in ROs generated
through a modification of the mixed 2D-3D protocol [14,152,153]. After 27–28 weeks
(w27–28) in culture, these ROs generate photoreceptor precursors with cilia, IS, and some
of them (on average 2 PRC every 150 µm of ONL length) also rudimentary OS with
few stacked disks [132]. These morphological features closely resemble those of human
photoreceptor precursors in the last month of the 2nd trimester (w21) of pregnancy [98,99].
At w25, photoreceptor precursors in ROs also express several components involved in
phototransduction, such as the α (CNGA1) and β (CNGB1) subunits of the rod cyclic-
nucleotide-gated-channel (CNG), the retinal guanylate cyclase 1 (RETGC1) required to
generate the second messenger activating the CNG channel, as well as the α-subunit of
rod transducin (GNAT1α) required for activating the rod cGMP-phosphodiesterase (PDE6),
composed of α- and β-subunits, to close CNG channels [132]. Perforated patch-clamp
recordings (to preserve the intracellular environment) in 13 w27–28 PRC from human
ROs indicated a large inward dark current suggestive of open CNG channels in 3 PRC.
Stimulation with a bright light suppressed a fraction of the large inward dark current in
2 out of 3 cells, suggesting that a fraction of PRC is light-responsive [132].

Although these results indicate that PRC in hiPSC-derived ROs are light-responsive,
it is also important to note some limitations. First, the PRC failed to respond to a second
stimulus, likely as a consequence of the lack of nearby RPE cells necessary to regenerate the
bleached pigment on a time scale of minutes after a bright stimulus. Response amplitudes
represent an additional issue, as the values recorded from photoreceptor precursors in ROs
(range 20–30 pA), are similar to those recorded with the suction pipette technique [154]
from adult primates PRC, whose OS length exceeds 20 µm [155,156]. Considering that
response amplitudes are proportional to OS length [154], after accounting for the fraction of
the dark current collected by the suction pipette, it is unclear whether responses recorded
from photoreceptor precursors in ROs result from the closure by the transduction cascade
of CNG channels open at their short OS. Finally, bright light appears to close a fraction
only of the dark current in responding cells, although the long time-course of response
recovery at 35 ◦C rather suggests all CNG channels had been closed by the bright light.
These functional data are hard to reconcile with the properties of adult primate PRC, and
perhaps reflect the functional immaturity of photoreceptor precursors in ROs.
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The notion of immature photoreceptor precursors in hiPSC-derived ROs is consistent
with the analysis of voltage- and cGMP-gated currents carried out at different develop-
mental time of ROs generated with the same mixed 2D–3D protocol used to generate ROs
with functional PRC [132]. Each cell type in the body expresses a unique combination of
ion channels that represent its electrophysiological fingerprint and provide a key to its
identification. Both rods and cones in the adult retina express a similar combination of
genes coding for voltage-gated currents that include: HCN1, KCNB1, KCNV2, CACNA1F,
CACNB2, CACNA2D4, and TMEM16B. Note that although no one gene is PRC specific,
their combination is unique for adult PRC. HCN1 is a member of the Hyperpolarization-
activated Cyclic Nucleotide-gated (HCN) family of ion channels [157,158] expressed by all
primary sensory neurons [159] and codes for an hyperpolarization-activated current (Ih),
which plays a role in the switch between rods and cones operation upon luminance changes
from scotopic to photopic light levels [160]. KCNB1 is a member of the potassium channel
superfamily widely expressed in the nervous system [161] and codes for the pore forming
subunit KV2.1 which in photoreceptors interacts with the accessory subunit Kv8.2 (coded
by KCNV2) to generate a heteromeric complex [162] carrying a depolarization-activated
current (IKx) [163] that contributes to set PRC membrane potential in darkness. CACNA1F
is a member of the L-type subfamily of high voltage-activated calcium channels and codes
for Cav1.4, the pore forming subunit that partakes with accessory subunits (CaVβ2 coded by
CACNA2B and CaVα2δ4 coded by CACNA2D4) in assembling the non-inactivating calcium
channel of photoreceptors synapse required to support synapses formation and mainte-
nance [164,165], and the continuous transmitter release in darkness by ribbon synapses of
adult PRC (reviewed in [166]). Calcium influx in the synaptic terminal activates a voltage-
and calcium-activated current (ICl(Ca)) through channels coded by TMEM16B. In mice
with defects in the accessory subunit α2δ-4 (coded by Cacna2d4), the synaptic terminal is
disorganized, and ICl(Ca) is lost [167], indicating it represents a sensitive indicator of PRC
synaptic terminal organization and calcium channels assembly.

The progressive acquisition of the electrophysiological fingerprint of PRC in hiPSC-
derived ROs is shown by patch-clamp recordings performed at early, middle, and late
time in culture, that is, at day (D) 90 (i.e., nearly w13), D150 (nearly w21), and D200 (i.e.,
nearly w29). In particular, Ih could not be recorded at D90, and its amplitude progressively
increases at D150 reaching at D200 values similar to those of adult primate rods. Authors
also report a non-significant reduction of the outward current, which includes IKx carried
by heteromeric KV2.1/KV8.2 channels. A decrease in the KV2.1/KV8.2 ratio has been reported
to reduce the outward current K [162], suggesting the developmental changes may reflect
an increased expression of KCNV2 (which codes for KV8.2), driven by the upregulation of
the rod-specific transcription factor NRL [168]. Overall, these data suggest PRC in D200
hiPSC-derived ROs acquire the electrophysiological fingerprint of primate photoreceptors,
suggesting they are progressing along their developmental trail up to D200.

After 300 days in vitro, i.e., w42–43 or the average gestational time in humans, ROs
derived from hiPSC through the embryoid bodies formation develop elongated structures
at their periphery. These elongated structures stain positive for rhodopsin, suggesting
ROs at w42–43 in culture develop OS-like structures. However, the shape of these OS-like
structures appears somewhat different from the morphologies of mature OS of mammalian
rods, lacking straight and smooth OS attached to irregularly shaped IS. Although it may
be surmised that handling and fixation may have damaged these bona fide OS, electron
microscopy did not show evidence for elongated OS with hundredth piled disks, as
expected for mature rods, and limited evidence is available about the light-responsiveness
of PRC at D300 (i.e., w42–43) [136]. In keeping with the notion of functional channels
and transporter localized at axon terminal at D200, it is interesting to note that PRC of
hiPSC-derived ROs at 300 days in culture express some components of ribbon synapses
and patch-clamp recordings provided clear and compelling evidence by capacitance-
tracking of vesicle fusion in response to depolarization-activated calcium entry through
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non-inactivating calcium channels, indicating functional ribbon synapses in ONL cells of
hiPSC-derived ROs.

Because of photoreceptors involvement in many degenerative retinopathies, in the
following, we will focus on the obstacles that still hamper photoreceptor functionality
in ROs. We will also look for potential solutions by critically reviewing the somewhat
fragmented data accumulated during the last 40 years on the SRS microenvironment, where
photoreceptors maturation occurs in vivo.

3. The SRS Microenvironment

Photoreceptor cells have a peculiar anatomical organization in that their cell bodies
lie within the ONL, while IS and OS lie within the subretinal space (SRS) (Figure 1A).
Accordingly, the retina can be subdivided into two distinct compartments [169]. The
inner compartment, also referred to as the Muller cell compartment, extends between the
inner limiting membrane and the OLM. The SRS is a closed extracellular compartment
several tenths of microns wide in mice [170] and is the remnant of the original optic vesicle
cavity that separates the retina from the RPE. The SRS represents the interface between
the inner retinal compartment and the RPE, critical for photoreceptors high oxidative
and glycolytic metabolism that supports phototransduction and OS renewal, the latter
occurring at an average daily rate of about 10% [170]. RPE functional characteristics are
tightly controlled to provide critical support to photoreceptor metabolism and viability. A
comparable structure is absent in ROs, and we will summarize data about SRS anatomical
and functional features that may prove critical to support IS and OS morphogenesis in
iPSC-derived ROs.

3.1. SRS Structures

The outer retinal compartment extends between the OLM and Bruch’s membrane and
includes the SRS and RPE. The OLM represents the border between the two compartments
and appears in histological sections as a demarcation line between the ONL and the
SRS [171]. The SRS is a privileged extracellular milieu into which the apical domains of
photoreceptors project. RPE and OLM intercellular junction complexes circumscribe the
SRS (tight and adherence junctions, TJ and AJ) on their lateral cell surfaces [172], as for all
epithelial layers.

The OLM is a continuous sheet of unique AJ connecting the external end-feet of Muller
cells with the proximal part of the photoreceptor IS as they emerge from the cell body
(heterotypic junction) and occasionally Muller cell to Muller cell and photoreceptor to
photoreceptor (homotypic junction) [171,173]. In mice, the OLM is first discernible by
PN5 [174].

The AJs in OLM determine apical-basal polarity in photoreceptor cells [175], provide
structural support for motile photoreceptors [171], and help them maintain their orienta-
tion to incoming light. AJs also provide a semipermeable diffusion barrier, preventing the
diffusion of proteins with Stokes radii above 30–36 Angströms [176–179] out of the extra-
cellular space surrounding the IS and OS. As an example, it is a barrier for retinoid-binding
proteins [180].

In the OLM, heterotypic junctions contain proteins from both AJ and TJ. AJs consist
of transmembrane protein E-cadherin, intracellular components p120-catenin, β-catenin,
and α-catenin [181]. AJs interact with a cytoplasmic plaque comprised of adaptor proteins
expressed in TJs as CRB1 and zonula occludens 1 (ZO-1) [173,182,183] and junctional adhe-
sion molecules (JAM) [184]. These specific TJ proteins are detected in the OLM subapical
region (SAR) and probably assemble differently in the junctions between Müller cells and
rods, Müller cells and cones, and between cones and cones [185]. The mammalian retinal
CRB comprises at least one of the three CRB family members, CRB1, CRB2, and CRB3,
associated with multiple PDZ proteins 1 (Mupp1) and membrane-associated palmitoylated
protein (MPP) [186,187]. The core CRB localized at the SAR [188,189] has a prominent role
in controlling apical-basal polarity, acting as a sensor for cell density, and is an essential
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component of the intracellular scaffold for the assembly of the protein complex at the
AJs [189–191].

In photoreceptors, the separation of their apical and basal compartments is critical for
correct functioning in cell-to-cell adhesion, intercellular signaling, directional transport of
molecules, and correct tissue formation. In mouse cone cells, the development and mainte-
nance of IS and OS critically depends on miRNA 182 and 183 [149], which represent over
70% of cone miRNA and are also highly expressed in rods (reviewed in [150]). Intriguingly,
these miRNAs also control the expression of Crb1 [151].

Several labs reported the presence of an OLM in ROs generated from mouse [192,193]
and human [53,136,194] iPSC, respectively at D2–25 and D150–190, the time of IS emergence
from PRC in the ONL. The presence of the OLM at the time of IS emergence suggests
these ROs activate the transcriptional switch preceding IS and OS maturation. However,
ROs generated from mouse iPSC and cultured up to D60 never generated OS of length
comparable to those in the adult mouse retina [193].

OLM development may represent a required, but not sufficient, step for PRC matu-
ration, and OLM roles may not be limited to its contribution to the barrier between SRS
and retina and to provide polarity signals. Muller glial cells digitations extend up to half IS
length and affect the precise spatial organization of nascent IS in a honeycomb-like struc-
ture [195]. This precise spatial arrangement of IS may be critical for the precise localization
of IS elongated mitochondria, which associate to the plasma membrane and position in
register with mitochondria of neighboring IS. In regards to the relevance of mitochon-
dria for energy production, the OLM may provide a polarity cue critical for constraining
mitochondria positions across IS and optimize energy production in PRC. Importantly,
the morphological maturation and the anatomical arrangement of IS mitochondria in the
mouse start around PN5-7 and reach completion around PN20 [195], when OS approach
their adult length, a finding consistent with OLM role in OS maturation. The distribution
and localization of mitochondria in IS of ROs in long-term culture may provide insights
into their morphological and functional maturation.

Dysfunctional Crumbs proteins have been associated with different types of retinal
degeneration in humans [175]. Mutations in CRB1 cause autosomal recessive LCA, several
subtypes of autosomal recessive RP [196,197], and autosomal dominant pigmented par-
avenous chorioretinal atrophy [198]. Loss of CRB1 disrupts the OLM complexes at the SAR
and the AJ [182,199].

In the mouse model of retinal degeneration 8 (rd8), a single base deletion in Crb1
causes a frameshift and premature stop codon, which truncates the transmembrane and cy-
toplasmic domain of CRB1. In this model, staining for AJs is discontinuous and fragmented.
Shortened photoreceptor IS and OS are observed as early as 2 weeks after birth, suggesting
a developmental defect in these structures rather than a degenerative process. Photorecep-
tor degeneration is observed only within retinal spotting regions, predominantly in the
inferior nasal quadrant of the eye, caused by retinal folds and pseudo rosettes [200].

In Crb1–/– mice, the retinas are initially normal, but in 3–9 months, they develop
localized lesions where the integrity of OLM is lost, and giant half rosettes are formed.
These data suggest that CRB1 is not essential for the initial assembly of the AJs between
photoreceptors and Muller Glia cells but rather for their maintenance during exposure to
light [182].

A recent study reveals that the CRB2a intracellular tail promotes AJs apical distribution
in zebrafish retinal and lens epithelia, and the extracellular region of CRB2a drives AJs
transformation from punctum adherens into stable zonula adherens [201]. The OLM
disruption, either chemically or genetically induced, leads to aberrant localization of retinal
cell bodies into the SRS at foci of adhesion loss followed by rosettes formation, a hallmark
of loss of polarity in a CRB-dependent manner [191]. In the developing retina of double
Crb1/Crb2 KO mice, this leads to an initial increased retinal thickness due to increased
proliferation of late retinal progenitors, followed in the mature retina by increased apoptotic
cell loss [202].
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On the SRS RPE side, junctional complexes separate cell surface membrane into apical
and basolateral domains [203] and set the characteristics of the outer blood–retinal barrier
(oBRB) regulating metabolites trafficking between the retina and choriocapillaris (ChC)
of the choroidal vascular bed [204] via the SRS. RPE TJs are composed of transmembrane
proteins, such as Occludin (OCLN); Claudin 19 (CLDN19); MARVEL; and JAM-A,-B,-C and
peripheral membrane proteins ZO-1,-2,-3 [204], that work as scaffold proteins binding the
transmembrane proteins to each other and the cytoskeleton [205]. Considering TJ relevance
for RPE function maintenance, their dysfunction may play a relevant role in a range
of ocular pathologies. Disruption of RPE cell–cell junction promotes the production of
Vascular Endothelial Growth Factor (VEGF) [206], whose overexpression plays an essential
role in the pathogenesis of choroidal neovascularization associated with wet age-related
macular degeneration (AMD) [207].

Claudin-19 plays multiple roles in RPE and neurosensory retina development and
function [208], and CLDN19 variants in human iPSC affect retinal neurogenesis and RPE
maturation [208]. A CLDN19 variant causes the renal disease familial hypomagnesemia
with hypercalciuria and nephrocalcinosis and ocular involvement (FHHNCOI) [208,209].
Affected patients present with disruption of optic disc development resulting in near
blindness and horizontal nystagmus.

Impairment of TJ and accumulation of misfolded proteins drive Epithelial to Mes-
enchymal transition (EMT) in RPE cells (Reviewed in [210]), which could contribute to
different retinopathies, such as proliferative vitreoretinopathy (PVR), AMD, and IRDs
(Reviewed in [210]).

3.2. SRS Biochemical and Functional Features

The mechanisms underlying OS maturation in rod precursors and OS maintenance
in adult rods may provide insights into the critical steps preventing OS full maturation in
iPSC-derived ROs. A first relevant point is the identification of the SRS as the dynamic
environment where OS growth occurs at a steady pace [170] to balance rhythmic disk
shedding [143] with worn-out OS phagocytosis by RPE cells preventing retinal degener-
ation [211]. A second relevant point is recognizing the high metabolic load imposed on
photoreceptors by their OS turnover, which may explain their metabolic reprogramming
revealed by aerobic glycolysis.

Warburg initially reported the retina reliance on aerobic glycolysis, which is typical of
proliferating neoplastic cells [212]. The puzzling notion of cells resorting to the less efficient
glycolytic metabolism despite oxygen availability and an overall high metabolic rate has
now been explained by the requirement of biochemical pathways alternative to oxidative
phosphorylation (OXPHOS) to provide metabolites required by rapid cell growth [213].
Indeed, aerobic glycolysis may contribute a minor fraction of ATP used by rods [214], but
it provides intermediates required for lipid synthesis [214,215] to support the high OS
turnover in both rods [170] and cones [216].

The present understanding of photoreceptors metabolism and OS generation has been
stepped forward by novel evidence shedding light on the complex relationships occurring
in the SRS between cones, rods, and RPE cells. These cells are now better portrayed
as symbionts in a metabolic ecosystem organized to meet rods and cones demanding
metabolic needs [215,217–219]. As shown in Figure 3A, RPE cells provide the outer Blood
Retinal Barrier (oBRB) that controls glucose flux to rods and cones from the large and
fenestrated choriocapillaris (ChC) of the choroidal circulation, a peculiar vascular bed
(reviewed in [220]). Glucose permeates across RPE cells basal and apical membranes via
the GLUT1 facilitated transporter to reach the SRS and fuel photoreceptors high oxidative
metabolism [218,221] and aerobic glycolysis [219]. The observation that the localized
loss of GLUT1 in RPE cells leads to OS shortening, photoreceptor loss, and Muller glia
activation [222] indicates the critical role of GLUT1-mediated glucose flux through RPE to
support OS assembly and photoreceptors viability. Figure 3A also shows rods and cones
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export lactate via the mono carboxylate transporter (MCT) to the SRS. Early work indicated
that about 80% of glucose consumption by the retina generates lactic acid [217].
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Figure 3. (A) Glucose diffuses from fenestrated choriocapillaris (ChC) and crosses the outer Blood Retinal Barrier (oBRB)
represented by the tight junctions between RPE cells orange ellipses), reaching the SRS by permeating the basolateral
and apical plasma membrane of RPE cells through the facilitated glucose transporter GLUT1 (yellow arrows and boxes).
Glucose diffuses along a concentration gradient in the SRS (yellow dotted arrows) to reach GLUT1-expressing rod and cone
cells. Lactate generated at the end of the glycolytic pathway is exported from photoreceptors through the monocarboxylate
transporter MCT1 (purple arrows and boxes) and diffuses to RPE cells. RPE cells transport lactate and convert it to pyruvate
for OXPHOS. Rods promote glucose use by cones by expressing and releasing RdCVF, whose receptor couples to GLUT1.
RdCVF expression is strongly reduced in Nrl-KO mice (not shown). (B) Schematic representation of the primary enzymatic
steps of glucose aerobic glycolytic metabolism, with boxes indicating enzyme isoforms expressed by photoreceptors. (C–H)
Datapoints plot expression data (FPKM) for Glut1 (C), Hk2 (D), Aldoc (E), Pgam1 (F), Pkm (G), and Ldha (H) genes replotted
from the RetSeq Database (see text) of transcriptome analysis of flow-sorted mouse rod precursors at different developmental
ages, from postnatal (PN) days 2, 4, 6, 10, 14, and 28. Blue and magenta circles plot data for rods isolated from wt and
Nrl-KO mice, respectively. Note the prominent upregulation of Pgam1 and Pkm after PN6 in Nrl wt mice. (I) Fructose 1,6
diphosphate and serine (upward-pointing red arrow) promote PKM2 (green circles) conversion tetrameric assembly, while
light and phosphoinositide 3-phosphate kinase (PI3K) (downward-pointing red arrow) promote the dimeric/monomeric
forms. The dimeric/monomeric forms enter the cell nucleus (dotted green arrow) to bind response elements and promote
the expression of selected genes, such as Glut1, Pkm, Ldha, and Pde6b.

RPE cells take up lactate by MCT1 (Figure 3A) and convert it into pyruvate to feed the
Krebs’s cycle and generate the ATP required to support their functions [215].

The observation of reduced glucose transport by RPE cells upon reduction of lactate
availability [215] supports the notion of the mutualistic relationship between rods and
RPE cells metabolism. Lactate generation from pyruvate requires the LDH5 isoform of
lactate dehydrogenase, which assembles as a homomeric tetramer of subunits coded by
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Ldha. Photoreceptors express Ldha, while inner retinal neurons express Ldhb [223,224].
Recent evidence indicates Ldha expression by photoreceptors is critical for OS genesis, as
electroporation of a short hairpin RNA targeting Ldha transcript 3′-UTR resulted in reduced
IS and OS length of transfected rods [214]. Moreover, data support the notion of a metabolic
ecosystem [215] where retinal and RPE cells engage in a mutualistic relationship providing
their partner with energetic substrates. The notion of a metabolic ecosystem involving
RPE, rods, and cones fits with the observation of rod-derived cone viability factor (RdCVF)
isoforms enhancing glucose transport by cones [225]. RdCVF also contributes to cones
viability by protecting them from oxidative stress [226]. Muller glial cells overcome their
enzymatic limitations by using metabolites provided by photoreceptors, extending the
metabolic ecosystem to retinal glial cells, which provide the OLM that separates the SRS
from the retina [227].

The retina generates lactate from glucose despite the concurrent oxidative metabolism
providing enough ATP to support the Na/K pump operation required to balance ion influx
in darkness and prevent Ca2+ build-up [228–230]. The conversion of a large fraction of
pyruvate into lactate in the presence of oxygen is a hallmark of aerobic glycolysis and
requires Ldha expression to assemble LDH5. However, the metabolic reprogramming
associated with aerobic glycolysis is not limited to the high Ldha expression and requires
the increased expression of several enzymes involved in glycolysis, as shown in Figure 3B.

Metabolic reprogramming of rods leads to the expression of isoforms characteristic of
aerobic glycolysis, such as HK2 [231] and PKM2 [214,232,233], the last one playing a pivotal
role in promoting aerobic glycolysis in photoreceptors [214,233]. Rod precursors undergo
metabolic reprogramming to aerobic glycolysis during postmitotic specification steps, as
shown in Figure 3C–H, which plots publicly available data from the RetSeq Database
(https://retseq.nei.nih.gov/, accessed on 15 April 2021) [234]. The increased expression of
Hk2, Aldo, Pgam1, and Pkm after PN5 is consistent with the development of OS and light
responses in rodent rods by PN8 and PN13, respectively [235]. Intriguingly, cells lacking
the rod-specific transcription factor Nrl fail to upregulate Pkm and Pgam1 expression after
PN5. The increased Pkm expression in rods matches data indicating rod expression of the
alternative splicing variant Pkm2 [214,223,227,233], which plays a crucial role in driving
the metabolic reprogramming of photoreceptors.

PKM2 may assemble as a homotetramer with high enzymatic activity or as a
monomeric/dimeric form with reduced enzymatic activity [236]. Glycolytic intermediate
fructose 1,6 diphosphate [237] and serine [238,239] stabilize the homotetramer, promoting
glucose metabolism via OXPHOS. On the other hand, tyrosine 105 (Y105) phosphoryla-
tion reduces PKM2 association as a homotetramer and stabilizes the monomeric/dimeric
form [240]. As shown in Figure 3I, PKM2 phosphorylation on Y105 promotes its nuclear
translocation, where it may bind the response element of genes involved in aerobic glucose
metabolism, such as Glut1, Ldha, and Pkm [241,242]. In PRC, PKM2 localizes to IS and cell
nuclei in both rodent and primate retina [223]. Suppression of PKM2 levels by a shRNA in-
duces a reduction of OS length [214], consistent with the key role of PKM2-driven metabolic
reprogramming for OS renewal. bFGF induces PKM2 phosphorylation on Y105 [214], con-
sistent with FGFR1 localization in the ONL of human [243] and rodent [243,244] retinas. Of
possible functional relevance for rod function is the observation that light also triggers Y105
phosphorylation [233], and dimeric PKM2 upregulates the expression of the rod-specific
phosphodiesterase isoform Pde6b [245].

3.3. Oxygen Levels in the SRS and the Outer Retina

Ldha expression represents a critical step for pyruvate conversion to lactate, which
controls glucose flux from ChC to the SRS through RPE cells [215] and hence for OS
turnover [214]. Transcription factors expressed by rods, such as KLF4, FOXM1, and HIF-1α,
may directly control Ldha expression in rods (reviewed in [246]). KLF4 represses Ldha
expression in terminally differentiated epithelial cells, and Klf4 downregulation correlates
with increased Ldha expression in pancreatic tumors [247]. FOXM1 plays critical roles

https://retseq.nei.nih.gov/
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during development and mitosis execution and affects glycolysis mainly by upregulating
phosphoglycerate kinase (Pgk1) and Ldha expression. Increased FOXM1 promotes glucose
consumption and increases LDH activity and lactate production [248]. Intriguingly, despite
opposite effects on Ldha transcription, both Klf4 and Foxm1 expression vanish by PN
10 during rod development, as shown in Figure 4A,B, plotting data from the RetSeq
database [234].
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Figure 4. (A–C) Datapoints plot expression data (FPKM) for Klf4 (A), Foxm1 (B), and Hif1a (C) genes replotted from the
RetSeq Database of transcriptome analysis of flow-sorted mouse rod precursors at different developmental ages, from
postnatal (PN) days 2, 4, 6, 10, 14, and 28. Blue and magenta circles plot data for rods isolated from wt and Nrl-KO mice,
respectively. (D) Curves are drawn according to a diffusion-based model using average values from best-fitting curves for
pO2 changes measured by oxygen-sensing microelectrodes from ChC to ONL in dark-adapted (black) and light-adapted
(blue) cat retina (see text). (E) The blue curve plots average values from best-fits of pO2 values in light-adapted mouse
retinas. The upward dashed lines were drawn at positions corresponding to the OS tips, the OS/IS junction, the OLM, and
the OPL (left to right), from the CT optoretinogram (see text). (F) Scheme of synergic activation of Ldha transcription by
dimeric/monomeric PKM2 and HIF-1a. The downward blue triangle represents the pO2 gradient across the SRS, with
lower levels at the ONL than at the IS. Hif1a transcription translates into HIF-1a transcription at the IS and may escape
degradation by reduced pO2 levels, then shuttling back to the cell nucleus to establish a complex with dimeric/monomeric
PKM2 and bind the Ldha promoter to increase its transcription.

These data suggest neither KLF4 nor FOXM1 affects Ldha expression during rod
precursors specification steps leading to initial OS assembly, challenging the role of these
TF in regulating aerobic glycolysis and OS maturation in rods.

On the other hand, Hif1a upregulation during development may affect the metabolic
reprogramming of adult rods via cis response elements upstream of Ldha transcription
start site [249], including a HIF essential binding site [250]. HIF-1 is a heteromeric protein
assembled from HIF-1β and HIF-1α subunits and controls cell responses to hypoxia [251].
As shown in Figure 4C, Hif1a is already highly expressed at PN2, and its expression
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further increases after PN5, suggesting it may contribute to Ldha upregulation during OS
development and in adult rods.

A critical factor in HIF-1 signaling is the posttranslational control over HIF-1α stability
by oxygen partial pressure (pO2). In normoxia, HIF-1α undergoes degradation by the
26S proteasome upon O2-regulated propyl hydroxylation at two key residues [252,253],
thus preventing HIF-1 assembly [254]. Accordingly, HIF-1 transcriptional control over
Ldha requires HIF-1 heterodimer stabilization by low pO2 levels in photoreceptor nuclei,
i.e., at the ONL levels, a concept hard to reconcile with the high oxidative metabolism of
photoreceptors.

Measurements by O2-sensitive microelectrodes across retinal layers, SRS, and RPE of
the dark-adapted cat retina indicate a steep pO2 gradient across the SRS, falling from a
value higher than 70 mm Hg close to the ChC to almost 0 mm Hg in a region proposed
to correspond to the ONL [218]. The black curve in Figure 4D plots pO2 levels computed
according to average values generated by fitting a one-dimensional diffusion model to
experimental data [218]. The minimum pO2 level close to 0 mm Hg measured in the
dark-adapted cat retina appears lower than the 35–40 mm Hg reported for the human
cortex and closer to values reported for several neoplastic tissues (reviewed by [255]).

As shown by the blue curve in Figure 4D, the minimum pO2 increases during light
exposure [218], indicating a retinal area, possibly corresponding to the ONL, experiences
low O2 conditions in darkness and could then be considered hypoxic [255].

Similar pO2 profiles across the SRS and retina have been obtained in the light-adapted
mouse retina [256] (Figure 4E), and the comparison with retinal layers thickness in vivo
provided by the CT optoretinogram [170] indicates the pO2 minimum effectively coincides
with the ONL and the proximal IS, as initially proposed in the cat retina [218].

A possible model, integrating available molecular data on HIF-1α and PKM2 control
over Ldha expression with pO2 gradient across the SRS, is illustrated in Figure 4F. Low pO2
levels in darkness may stabilize HIF-1α and promote Ldha expression and lactate produc-
tion driving the increase in OS length observed in mice kept for days in darkness [214].
This model suggests that in darkness low pO2 levels in the ONL may promote aerobic
glycolysis via HIF-1α stabilization and will sum up with the lack of OS disk shedding
triggered by light onset [170].

Interestingly, HIF-1α also upregulates Pkm expression [241,257]. As shown in Figure 4F,
dimeric PKM2 (green) may act as a HIF-1α coactivator to promote the transactivation of
HIF-1 target genes [241]. This mechanism provides PKM2-specific positive feedback that
amplifies the response to HIF-1α and induces the metabolic reprogramming of cells by
promoting the transcription of genes involved in aerobic glycolysis, such as Pkm, Glut1,
and Ldha [241].

This evidence may indicate that the precise spatial arrangement of the SRS is con-
strained by the requirements of aerobic glycolysis-based OS generation. Relatively high
pO2 supports OXPHOS by IS mitochondria, and hypoxic conditions at the nuclear region
(ONL) stabilize HIF-1α and promote Ldha and Pkm expression. The control over Pkm and
Ldha by HIF-1α may represent a critical step for the metabolic reprogramming underlying
the operation of the metabolic ecosystem supporting OS development, which requires
fine-tuning. In agreement with this notion, Pkm1 upregulation increases the expression of
genes coding for enzymes of the glycolytic pathway in rod photoreceptors of Pkm2−/−

mice, and the subsequent loss of aerobic glycolysis protects rods from degenerating in
response to long-term retinal detachment [258], i.e., from chronic hypoxia. These findings
indicate metabolic reprogramming toward aerobic glycolysis may only operate under
tight-controlled pO2 and glucose levels. Accordingly, HIF-1α may act as a double-edged
sword in photoreceptors, as shown by the slow rod degeneration in mice with about 50%
of rods lacking the expression of Vhl factor [259]. Vhl codes for a protein that binds proline-
hydroxylated HIF-1α and promotes its proteasomal degradation [260], and Vhl loss mimics
hypoxia-driven HIF-1α increase. Indeed, preventing Hif1a expression rescues the slow
rods degeneration in Vhl mice, pointing to a causal role for increased HIF-1α in reducing
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rods viability [259]. These data fit with the notion of a critical role of the precise spatial
tuning of pO2 values to permit OXPHOS at the IS while allowing a long-term moderate
HIF-1α stabilization in the nuclei.

Intriguingly, one-week-long detachment of primate retina induced by the injection of
a balanced salt solution in the SRS leads to OS loss but spares the IS [261]. This observation
suggests that distancing the retina by just 100 µm from the RPE, i.e., leading to hypoxia by
increasing the diffusion length through the SRS, severely impairs OS renewal via a selective
mechanism that does not affect neither IS nor rods viability. Indeed, retinal reattachment
led to a slow recovery of OS length, which took over 30 days to complete [261], with the
cone recovery rate exceeding that expected from the 10 days estimated for human cones
OS turnover from shedding [216].

It is interesting to note that retinal detachment may not simply affect rods because
of reduced O2 availability. Increasing O2 saturation of breathed air may bring back the
outer retinal surface pO2 back at its normal levels, but O2 consumption fails to recover
to its regular rate [262]. It is possible to explore the impact of the main factors affecting
the diffusion length of glucose and O2 using the one-dimensional diffusion equation
that models metabolite supply from a constant-concentration source, such as the ChC.
Equation (4) in [263] provides a simple formula for the maximum diffusion length (LMAX),
i.e., the diffusion distance where the metabolite concentration attains the 0-level from its
initial concentration at the source (C0):

LMAX =

√
2C0D

Q
(1)

where D is the diffusion coefficient, and Q is the metabolite consumption rate. Retinal
detachment increases the distance between ChC and IS, causing IS to experience very low
pO2 and glucose levels. According to Equation (1), increasing pO2 in the breathed air may
increase C0 and LMAX and normalize pO2 levels at the IS, but it will likely leave rods and
cones with insufficient glucose levels to support OXPHOS [262].

For optimal conditions for OS growth, the SRS microenvironment should match LMAX
for O2 and glucose. The three parameters in Equation (1) may be pretty similar for glucose
and pO2 and provide similar LMAX for these metabolites. The ratio between glucose and
O2 consumption rates (Q) may be inferred considering the conversion into lactate of about
80% glucose consumed by the retina and assuming the remaining glucose is used to fuel
OXPHOS. Under this assumption, of every 5 glucose molecules used by the retina, 1 will
go to OXPHOS, which requires 6 O2 molecules, suggesting similar Q values for glucose
and pO2. The initial concentration of glucose (C0) may differ from its plasmatic value at
ChC (about 5 mM), as it needs to cross twice the plasma membrane of RPE cells via the
facilitated transporter GLUT1, which requires a concentration gradient across both the
basolateral and apical membranes to let glucose cross the oBRB. Considering GLUT1 Km
for glucose (1–2 mM), a C0 close to the upper value reported for the human brain using
microdialysis (median 1.6–1.7 mM with a range 1.15–4.13 mM, [264,265]) is reasonable.

Considering the similar consumption rate for O2 and glucose (see above) and assuming
the highest value of the range (4 mM) as the standard C0 value for glucose diffusion after
the RPE, a concentration change within the SRS similar to that measured for pO2 would
end up with glucose concentrations at the IS close or even lower than GLUT1 Km for
glucose. The functional impact would be a transport rate substantially lower than the
maximum transport velocity, possibly limiting glucose use by photoreceptors compared
to O2.

A factor that may shape glucose and pO2 concentrations drop along the SRS is the
diffusion coefficient (D), whose value according to the Stokes–Einstein relation depends on
medium viscosity, as shown in Equation (2):

D =
kT

6πηrs
(2)
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where k is the Boltzmann constant, T is the temperature in K◦, η is the viscosity, and rs the
Stokes’ radius of the molecule. Interestingly, the extracellular matrix may affect the viscosity
of the SRS microenvironment, but it also has effects on D that depends on matrix charac-
teristics, such as its mesh size. As reported for a silated-hydroxypropylmethylcellulose
(Si-HPMC) hydrogel, the O2 diffusion coefficient dropped from 2.8 × 10−9 m2 s−1 in
culture medium to less than 3 × 10−10 m2 s−1 in a 2% hydrogel, i.e., a nearly 10-fold reduc-
tion [266]. Intriguingly, the time required to reach 50% of the equilibrium concentration
increased with hydrogel concentration much more for O2 than for glucose [266], indicating
hydrogel characteristics may modulate the diffusion coefficient of solutes to tune their
LMAX to optimal values for a given 3D environment. Interestingly, similar effects have been
found for hydrogels of the extracellular matrix of biological tissue (see Table 1 in [266]).

These findings suggest hydrogels of the extracellular matrix may influence cell fate
and differentiation and modulate the availability of crucial nutrients, such as glucose and
O2, to support cell growth and differentiation by fine-tuning their LMAX parameters via
control over their diffusion coefficients. The influence of the extracellular matrix over
nutrients availability may add up on other effects on ROs development [267].

4. Bioengineering the SRS Microenvironment

According to the evidence discussed in Sections 3.2 and 3.3, oxygen and glucose
spatial gradients within the SRS microenvironment are critical for OS turnover, the viabil-
ity of metabolically reprogrammed photoreceptors, and the development of mutualistic
relationships with RPE cells. It is generally surmised that static culture systems may not
provide enough O2 and glucose to support OS turnover in retinal photoreceptors, but the
point has never been addressed. It is relevant to note that, contrary to the effects of pO2
on the maturation of postmitotic rod precursors presented and discussed in Sections 3.2
and 3.3, several protocols included culturing embryoid bodies or ROs in the presence of
either increased (40% rather than 20%) [127] or time-limited decreased (5% for 10 days
followed by 20%) O2 levels [268]. Additional variants for hESC-derived ROs used intermit-
tent exposure to 40% O2 levels [269] at relatively early developmental stages (D38, D50,
and D62). However, in these studies, low pO2 levels were used at specific time points of
early ROs development, to affect progenitor cells proliferation and increase the number of
photoreceptor-fated cells [268]. A second related issue is whether the dynamic culturing
conditions provided by available bio incubators may reproduce the SRS microenvironment
to support metabolic reprogramming of photoreceptors and OS maturation. Assessing
whether either static or dynamic culture conditions may secure enough glucose and O2 to
support OS growth and photoreceptors operation in a native retina bears a clear relevance
to the issue of whether or not 3D ROs may develop full-length OS, similar to native retinas.

4.1. Limitations of Conventional Static Culture Systems

Retinal glucose consumption has been measured in primates and non-primate mam-
malian species. For the rat retina, the rate of glucose consumption has been estimated at
1.6 µmoles/retina/h [217]. Assuming the dry weight of the mouse retina is about 1/10
of the rat retina, under the hypothesis that rat and mouse retinas have similar metabolic
rates per unit of dry weight, the glucose metabolic rate of the mouse retina should be
0.16 µmoles/retina/h. Considering a dish containing 2 mL medium with 4.5 mM glucose
(about 0.08 g/dL), the amount of glucose available for metabolism before its concentration
drops to 1 mM is 7 µmoles. Assuming glucose utilization proceeds unabated at the rate of
0.16 µmoles/retina/h, it would take about 44 h to reach a glucose concentration of 1 mM
(0.018 g/dL), corresponding to a plasma glucose level associated with brain damage [270].
According to these estimates, static culture conditions with media change every 2/3 days
may bring the retina close to severe hypoglycemic conditions.

The glucose consumption rate has been measured with oxygen supporting light
responsiveness through OXPHOS [217]. Light-induced 11-cis retinal isomerization triggers
a metabolic cascade leading to the closure of cGMP-sensitive channels (CNGs) open in
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darkness [271]. CNGs have a high permeability to both Na+ and Ca2+ ions [272] (for review,
see [273]), causing a steady influx of cations in darkness [228], balanced by Na/K ATPase
and Na:Ca;K exchanger [274]. In both primate and rodents rods, the block of the Na/K
ATPase leads to a rapid and irreversible loss of the dark current [228], indicating a high
turnover for Na+ in mammalian rods at body temperature. Furthermore, the activation
of a hyperpolarization-activated current in primate [275] and non-primate [276–278] rods
generates a Na+ influx through hyperpolarization-activated channels requiring Na/K
ATPase operation to prevent Na+ build-up and calcium increase [229]. The O2 requirement
of 7 mL min−1 for 100 g tissue estimated for the dark-adapted cat outer retina [218] could be
scaled down to the mouse retina and converted to an O2 consumption rate (Q) of 47 µMoles
O2 s−1 L−1 in darkness and 20 µMoles O2 s−1 L−1 in bright light. Table 3 reports LMAX
values computed inserting Q values either in darkness or in bright light in Equation (1)
and the height of culture medium for a 3 cm diameter dish and a 1.1 cm diameter well.

Table 3. O2 diffusion coefficient (D) is assumed similar in medium and water (2.8 × 10−9 m2 s−1). C0, the air/medium
interface at 37 ◦C (2.09 × 10−4 Moles L−1), converted in Moles L−1 from tabulated values in mg/mL (http://www.fao.org/
3/ac183e/ac183e04.htm, accessed on 15 February 2021) at 37 ◦C. Q for the mouse retina was computed assuming a retinal
volume of 10 µL and a retinal weight of 9 mg to account for the high lipid content of the OS. The retinal weight is about
three times the values reported in Figure S3 of Cerani et al., 2013 [279], but consumption for unit retinal volume is similar.

Medium Volume
(ml)

D (Diffusion
Coefficient)

C0 (pO2 in Air ×
Solubility Coefficient)

Q (O2 Consumption Rate
× Retina Volume) LMAX (µm) Medium Height

(mm)

2 (Dark) 2.8 × 10−9 m2 s−1 2.09 × 10−4 Moles L−1 47 µMoles O2 s−1 L−1 158 2830

2 (Light) 2.8 × 10−9 m2 s−1 2.09 × 10−4 Moles L−1 20 µMoles O2 s−1 L−1 241 2830

1 (Dark) 2.8 × 10−9 m2 s−1 2.09 × 10−4 Moles L−1 47 µMoles O2 s−1 L−1 158 2610

1 (Light) 2.8 × 10−9 m2 s−1 2.09 × 10−4 Moles L−1 20 µMoles O2 s−1 L−1 241 2610

Comparing the computed LMAX with the height of 2 mL medium in a 3 cm diameter
Petri dish (2830 µm) or 1 mL in a well of a 12-well plate (2610 µm), it is evident that the
height of medium exceeds the computed LMAX by over an order of magnitude, both in
light or darkness.

From this analysis, it is clear that an adult mouse retina with fully developed OS may
not thrive using conventional static culture methods, failing to receive enough O2 to support
OXPHOS. It is relevant to note that upon OXPHOS block by KCN, the rat retina increases
its already high lactate production by over 50% [217], i.e., glucose consumption increases
by over 50%, suggesting that in static culture conditions glucose may take approximately
30 h to approach the critical 1 mM level. In addition, when cultured in a well with 1 mL
medium, glucose may fall below 1 mM in less than 15 h.

The same approach could be used to assess the upper limit for the metabolic rate of
a 3D RO. The computation indicates that upon reaching a metabolic rate of 1/100 of a
dark-adapted mouse retina, LMAX approaches 2730 µm, i.e., a value in between the medium
heights in a 3 cm dish and 1.1 cm diameter well, suggesting static culture conditions limit
the growth and maturation of iPSC-derived ROs.

4.2. Dynamic Culture Systems

Both hamster [280] and mouse [281] retinas cultured at 27 ◦C in a flow-through
apparatus maintain rhythmic melatonin production up to 5 days, providing evidence for
improved retinal viability and function using dynamic culturing conditions compared
to static culture systems. Intriguingly, light stimulation reverses the melatonin rhythm,
indicating retinas remain light-responsive for several days when cultured at 27 ◦C. The
evidence of preserved viability and function up to 5 days, when cultured with continuous
perfusion, matches ONL thickness and IS length preservation. However, after 6 days
in culture, OS appear swollen and shorter than freshly isolated retinas, suggesting dark
current reduction at 27 ◦C [282] allows photoreceptors survival in low pO2 levels by

http://www.fao.org/3/ac183e/ac183e04.htm
http://www.fao.org/3/ac183e/ac183e04.htm
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relieving their dependence on OXPHOS. Still, the reduced metabolic rate may impair the
synthesis of new building blocks required for OS turnover [214,215,233,245]. According to
Section 3.3, the flow-through apparatus may prevent the glucose shortage expected from
static culture conditions, but O2 availability may fall short of supporting OXPHOS at 37 ◦C,
requiring a lower temperature to match O2 request by OXPHOS with O2 diffusion rate.

An increase in flow rate may overcome the limited O2 diffusion by mass transfer
and provide enough O2 to support OXPHOS, but it may cause tissue damage by shear
stress, a shortcoming of the flow-through apparatus. Shear stress is also an issue with
stirred bioreactors, which exploit mass transfer to overcome the O2 diffusion limits. Stirred
bioreactors have been used for the development of iPSC-derived cerebral organoids [283]
and ROs [284]. Cerebral organoids may fail to increase in size due to limited O2 diffusion
within the tissue [283]. This problem may be solved by culturing an organoid slice at
the air–liquid interface [285], a condition supporting axonal growth and the assembly
of neuronal networks for up to one year. In human iPSC-derived ROs, culturing in a
stirring bioreactor led to increased ONL thickness associated with increased progenitor
proliferation. Culturing in a stirred bioreactor also decreased apoptosis of postmitotic cells
and led to the earlier development of IS and OS compared to static culture conditions [284].
However, at late developmental times, organoids miss OS upon prolonged culturing in a
stirred bioreactor compared to static cultures [284]. Although the reasons underlying OS
loss with time in the stirring bioreactor had not been identified, fully developed OS are a
lipid-rich compartment whose density is lower than the remaining organoid and, as such,
may increase the 3D structure tendency to float and move in medium, similar to retinal
slices ticker than 150 µm (GCD personal observations). 3D ROs of increased OS length
may relocate closer to the stirring vanes and experience increasing shear stress, ultimately
breaking the mechanically sensitive cilium connecting IS and OS. However, no compelling
experimental support for this hypothesis is available yet.

The National Aeronautics and Space Administration (NASA) initially developed the
Rotating Wall Vessel (RWV) to investigate microgravity impact on cells and tissue. However,
the RWV is also a culture system able to minimize the issue of unstirred layers typical of
static culture systems while minimizing shear stress, therefore apt for the development of
3D tissues [286]. A clear description of the fundamental physical principles underlying the
RWV bioreactor operation and its main trade-offs has already been presented [287].

The multipotential human retinal progenitor cell line (KGLDMSM) [288–290] grown
attached to laminin-coated microcarrier beads in the RWV developed progressively larger
aggregates, up to a size of several hundred microns, by bead fusion [291]. Tissue growing
between fused beads generated 3D-like structures, with several cells acquiring a mor-
phology reminiscent of photoreceptors, with IS and OS-like structures [291], despite these
structures lack evidence of their organization in laminated structures as ESC- or iPSC-
derived ROs. Intriguingly, the same cells grown in a stirring bio-incubator developed
large cell aggregates similar to those grown in the RWV but failed to evolve differentiated
morphologies reminiscent of IS and OS [291].

The use of RWV also improved the development of murine ESC-derived ROs com-
pared to static culture [192]. In general, RWV incubation led to accelerated development
of iPSC-derived RO compared to static cultures, which required more time to reach the
same developmental stage of RWV-cultured ROs [192]. This notion has also been substan-
tiated by transcriptome analysis, which indicates that murine ESC-derived ROs reach a
maturation stage corresponding to a PN6 mouse retina but fail to show further progress,
independently of the culturing conditions [192]. Considering that RWV provides ROs
with improved nutrient availability, the most straightforward interpretation is that ROs
require additional factors not available in vitro, unrelated to O2 and glucose supply, to
promote transcriptional changes leading to enhanced expression of genes involved in OS
biosynthesis and phototransduction cascade components. A difference between the retinal
progenitor cell line [291] and ESC-derived ROs [192] cultured in RWV is the coculturing
of the progenitor cells line with the D407 human RPE cell line [292] in a 1/3 ratio, mim-
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icking the ratio occurring in the eye between RPE cells and photoreceptors. Note that
although transcriptomic data indicate the evidence of a gene cluster signaling the occur-
rence of RPE cells in ESC-derived ROs [192], there is no indication of the ratio between
RPE cells and photoreceptors. However, considering the lack of molecular characterization
of photoreceptor-like cells [291], the role of RPE may not represent the only difference
between the two models, and RPE role in driving photoreceptor OS maturation requires a
detailed investigation.

A hint on the functional role of RPE cells in OS development in culture comes from a
system merging organ-on-a-chip bioengineering with iPSC-derived ROs. The retina-on-
a-chip (RoC) platform aims at reproducing in vitro the micro-physiological environment
where IS and OS mature, usually missing in conventional culture systems, either static or
dynamic. The organ-on-a-chip retina features a two-chamber system, assembling a human
iPSC-derived ROs in close contact with an RPE cell layer in the upper compartment, with
O2 and nutrients diffusing from the lower compartment perfused by culture medium,
mimicking ChC role in the eye [21]. This design provides a constant supply of nutrients
and O2, overcoming a critical limitation of static culture systems. Compared to stirred
bioreactors, the RoC provides O2 and nutrients supply by diffusion rather than mass
transfer, thus avoiding tissue exposure to shear stress. The system also offers an advantage
over the RWV by avoiding organoids spiraling in the medium with cells moving at a
variable distance from the oxygenator membrane that provides O2 by diffusion, thereby
avoiding exposure of cells to varying pO2.

Last but not least, continuous perfusion of the RoC avoids the periodic interruptions
of incubation, required for medium replacement by both stirred bioreactors and RWV. In
addition, microfluidic channels in the RoC require far smaller fluid volumes than stirred
bioreactors and RWV, a critical issue when using expensive chemical factors for steering
iPSC toward a specific fate. RPE cells and ROs were derived in static cultures from
human iPSC using specific mixed 2D/3D differentiation protocols [132], confirming the
previously reported [132] generation of short IS and OS at 190D, roughly corresponding to
the developmental stage of photoreceptors in a human fetus at the beginning of the 3rd
trimester of pregnancy. Upon coculturing RPE cells with ROs embedded in the hyaluronan
matrix, OS comes close to RPE cells, and RPE cells’ phagocytic activity supports disk
shedding [21] and possibly OS renewal in these culture conditions.

The protocol adopted for ROs generation supports OS functionality, as shown by the
response to light stimuli in about 10% of rods [132] (but see Section 2.3). The ability of ROs
to generate light responses in GC/AC cells has also been reported [136,144]. The finding of
the interaction between rods and RPE in the RoC [21], with rhodopsin-positive membrane
inclusion suggestive of OS renewal and phagocytosis by RPE cells, represents a significant
advance in the generation of functionally mature photoreceptors from human iPSC and
the SRS microenvironment for modeling and treatment of IRD.

Further development of the RoC should evaluate the long-term stability of ROs and
OS development in the RoC. This evaluation may require critical analysis to assess O2
consumption by mature RO and match it with its delivery by diffusion from the media
lacking an O2 carrier. Estimates of O2 consumption by an adult mouse retina provided
in Section 3.3 (of 47 µMoles O2 s−1 L−1 for a 10 µL retina) translates into 470 pMoles O2
s−1 retina−1. The 20 µL h−1 medium perfusion rate of the RoC provides an amount of
dissolved O2 of 1.14 pMoles O2 s−1, clearly lower than the 470 pMoles O2 s−1 required by
an adult mouse retina. Although the mouse retina volume exceeds that of a RO, and retinal
full-length OS outnumbers those in the RO, the retinal O2 consumption should be regarded
as an upper limit estimate for the O2 requirement by a RO with fully developed OS.

4.3. Biotechnologies and Human ROs-Derived Photoreceptor Precursors in Transplantation

The number of donor photoreceptor precursors transplanted into the SRS may repre-
sent an important variable in the outcome of regenerative approaches to cure IRD [104]. It
is presently unclear how the number of grafted cells (an extrinsic factor) may affect cone OS
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maturation, but the finding may lead to a significant paradigm change in transplantation
work, which has so far mostly focused on the identification of improved sorting criteria to
select optimal engrafting donors and discard inappropriate cells. The lack of substantial
improvements in the yield of engrafting donor cells despite their selection by progressively
more stringent sorting criteria [101–103] may indicate a role for maturation independent
factors in transplantation outcome, i.e., for extrinsic in addition to intrinsic factors and their
interplay, as detailed in Sections 3.2 and 3.3.

Data discussed in Sections 2 and 3 indicate several SRS characteristics, such as glucose
and O2 gradients, as wells as the presence of a hyaluronan-based extracellular matrix,
may also affect transplantation outcomes. Specifically, hyaluronan-based hydrogels may
swell in response to the saline volume used to transfer donor cells in the SRS [293]. RPE
cells will then transfer H2O from the SRS to the perivascular space of ChC (for review
see [294,295]), and the water flux may drag transplanted cells toward the RPE. As discussed
in Sections 3.1 and 3.2, the high pO2 on the RPE side of the SRS may adversely affect donor
cells metabolic reprogramming required to support OS synthesis and turnover.

Ideally, the optimal strategy to improve transplantation yield would take care of three
aspects: (a) increase the number of photoreceptors precursors transplanted to the SRS and
maximize the seeding density to enhance cell–cell contact; (b) minimize the volume of
saline volume transplanted to the SRS to prevent swelling of the hyaluronan-based ECM;
(c) keep grafted precursors closer to the retina than to the RPE, to promote the metabolic
reprogramming required for IS and OS generation. However, these conditions may not
be easily achievable. Increasing the mass of grafted cells within volumes smaller than
microliters may increase the adhesion of precursor cells to plastic and needles, causing
uncertainties in the number of delivered cells. Even more difficult would be controlling the
position of delivered cells within a SRS a few tenths of microns wide.

Micro scaffolds may meet the requirements of high cells per unit volume, minimal
volume of transferred water, and the distancing of grafted cells from the RPE. The fabrica-
tion of 3D micrometer-size scaffolds has recently been found suitable for the maturation
and polarization of photoreceptor precursors isolated from hiPSC-derived ROs [296]. The
scaffold has been designed as an array of cup-shaped wells that funnel the cell toward
a channel for promoting cells attachment to the cup wall and generate polarization cues
for basal neurites extension. This “wine glass” model was originally designed as a repro-
ducible in vitro platform for scalable monolayer model of photoreceptor diseases. This 3D
microstructured scaffold design has been recently upgraded by improving the microfabri-
cation technology to reduce wall thickness and increase the number of cells loaded for each
well and better mimic the multilayer ONL structure with densely packed cells [297]. This
“ice cube” model may better approximate the 3D ONL structure with higher cell numbers
for unit volume than the “wine glass” model design and may represent a model for cell
replacement approaches meeting the constrain of high seeding density, minimal saline
volume, and improved control over cell positioning in the SRS outlined above.

5. Conclusions

The introduction of the iPSC-derived ROs technology opened new perspectives for
developing cell-based approaches to treat or cure IRD. It is now possible to generate
in vitro and sort human donor cells of the appropriate stage for transplantation [81–83],
corresponding to the end of the second trimester of pregnancy, solving the issues with donor
cells otherwise not available for ethical reasons. Furthermore, reports from independent
laboratories on human iPSC-derived 3D ROs with rudimentary IS and OS [21,132,284]
demonstrate the possibility of generating and isolating properly developed donor cells for
transplantation.

These impressive achievements represent an undeniable success that paves the way
toward developing a cure for IRD by replacing missing cells with iPSC-derived cells. How-
ever, the development of human disease models for discovering novel drug targets and
the development of drug tests remains a largely unmet need for late-onset IRD. In vitro
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modeling of IRD caused by defective genes coding for phototransduction components
requires the well-developed OS to investigate the pathogenetic mechanisms associated
with the misfolding of highly expressed proteins, such as rhodopsin, or the metabolic
overload caused by variants affecting cGMP turnover. Although the functional analysis of
hiPSC-ROs indicates their ability to respond to light in parallel with the development of
rudimentary OS [82], the critical review of these data in Section 2.3 reveals their responses
to light stimuli do not match those of adult human rods [156]. Light responses were re-
ported in rods with the larger holding currents in darkness, suggestive of endogenous
cGMP generation, but light does not close most of this large inward current in darkness [82].
These findings could be compared to mouse ciliary margin-derived cells, which generate
endogenous cGMP, express cGMP-gated channels, and respond to 8-Br-cGMP by generat-
ing an inward current through channels with the biophysical properties of cGMP-gated
channels [298]. In these rod-like cells lacking an OS, the current evoked by 8-Br-cGMP
current does not correlate with the holding current at −40 mV (i.e., the rod voltage in
darkness) [298], suggesting that care should be taken in correlating the holding current at
−40 mV with the dark current through cGMP-gated channels.

Patch-clamp analysis shows ONL cells in hiPSC-derived ROs held at −40 mV re-
spond to 250 µM cGMP (a concentration opening nearly 100% of cGMP-gated channels) by
generating an inward current of about 100 pA [299]. However, the physiological cGMP
concentration in dark-adapted rods is much lower than 250 µM and activates about 1–4%
of total channels [300,301], which translates in response amplitudes to saturating light
intensities within a range of 1–4 pA. This value is much lower than the light response
amplitudes of human [156] and primate rods [275], but consistent with the authors report-
ing occasionally small light response from ONL cells in their late-stage hiPSC-derived
ROs with rudimentary OS [299]. Dark current amplitudes impact on IRD because of the
Ca2+ permeability of cGMP-gated channels, which impose a metabolic toll on photore-
ceptors due to the cost of Ca2+ extrusion required to balance the steady Ca2+ influx in
darkness [228,229]. Immature ONL cells in hiPSC-derived ROs with rudimentary OS and
reduced dark current amplitudes may not fully recapitulate the Ca2+ overload occurring
in late-onset retinal degenerations linked to phosphodiesterase defects [112–114] and as a
consequence may provide insights on disease progression in patients biased on the cGMP
increase component independent from the increased Ca2+ influx.

Progress toward improved OS generation by human iPSC-derived 3D RO requires
an understanding of the roles played in OS maturation by intrinsic and extrinsic fac-
tors and their interplay, as shown by PKM2 isoform role in both metabolism and gene
expression [214,232,233,245], which appears critical for aerobic glycolysis and OS genera-
tion [214,215,222–224]. While the recent focus on the role of glucose metabolism in photore-
ceptor precursors maturation represents a critical conceptual innovation compared to the
notion of purely intrinsic mechanism in fate assignment in retinal development [302,303],
the possible role of O2 in steering photoreceptors maturation remains to be investigated.

3D RO incubation in 5% O2 increases retinal progenitors proliferation [192,268], but
the lack of awareness on the possible role played by O2 in photoreceptor precursors mat-
uration is surprising, considering the well-known roles of O2 on gene transcription in
other systems [251,304]. In this regard, if a glycolytic intermediate may have pleiotropic
effects on gene expression in photoreceptors by promoting the PKM2 tetrameric assem-
bly [236,237,239], O2 may affect rods beyond OXPHOS. We put HIF-1α in the context of
OS maturation by reviewing data on the sharp pO2 gradient in the SRS [218,221,256], the
microenvironment where OS and IS develop and mature in the eye. We also stressed
the possible connection between PKM2, a master regulator of aerobic glycolysis, and
HIF-1α, a critical factor in O2-mediated transcriptional regulation, to control Ldha expres-
sion [241,242].

We believe the critical review of data from different fields and methodologies may
help investigators understand the physical constraints required by photoreceptors to thrive
in the face of the high metabolic load imposed by the rhythmic renewal of their OS.
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According to O2 and glucose constraints associated with diffusion within the SRS,
the limited O2 availability in static culture may impair photoreceptors maturation via the
metabolic reprogramming that supports OS turnover, a critical issue in the generation of
iPSC-derived ROs. Data on dynamic culture systems indicate an improved functionality
for the RoC design [21], which appears to overcome the shear stress associated with
mass-transfer of O2 and glucose in the case of stirred bioreactors [284] and the diffusion-
limited O2 supply in RWV [192]. The small volume of incubation medium required by
the RoC compared to stirred bioreactors and RWV represents a feature of interest for drug
development.

The RoC design may offer the exciting opportunity to investigate the mechanisms
involved in material transfer between donor and recipient human photoreceptors in a
more accessible and controlled system than in vivo and the factors either promoting or
preventing the engraftment of human donor rod precursors in the host human ROs.

To this end, some adjustments would be required to improve photoreceptors matu-
ration and stability over a few weeks by improving O2 and glucose availability to iPSC-
derived RO cultured as RoC. Improving the RoC operating conditions may prompt the use
of hiPSC-derived 3D ROs for IRD modeling and treatment development. In this regard, the
optimization of the extracellular matrix may provide a significant improvement toward
the optimization of ROs generation [267].

An emerging question is whether the SRS represents a permissive place for donor cell
transplantation, a question tightly connected to the low yield of cell engraftment upon
transplantation to the SRS. Upon transplantation, rod precursors nuclei may experience a
higher pO2 level than in the ONL, possibly undermining the cooperative transcriptional
control by PKM2 and HIF-1α over genes coding for aerobic glycolysis key enzymes. It is
interesting to note that most transplantation studies just mention that donor cells survive
in the SRS but provide few insights on their characteristics [63,72–78,81,95,101,102,117,
118,120,145]. In cone precursors transplantation, the SRS donor cell mass never develops
an OS despite cells remaining viable for months and staining positive for cone-specific
arrestin isoform. The failure of viable cone precursors in the SRS to generate an OS
may result from the loss of polarity and/or dissociation and sorting-induced changes.
However, data from 3D retina-like structures (i.e., maintaining cell–cell contact and polarity
signals) generated within the SRS by forcing the expression in RPE cells of TF promoting
neural retina fate suggest dissociation and sorting-associated changes may not explain ROs
failure to mature full length OS. Indeed, ROs generated upon forcing Neurogenin-1 and
Neurogenin-3 expression in RPE cells under the control of either RPE-specific TF bestrophin
or RPE65 [305], respectively, fail to mature IS and OS. Intriguingly, these latter 3D retina-like
structures have an opposite orientation than normal retinal tissue, i.e., the presumptive
GC cells are closer to the RPE than the presumptive ONL [305], thus preventing the IS of
the ectopic retina-like tissue from obtaining enough O2 and glucose for supporting OS
operation and growth, respectively.

The development of bioengineered RoC assembling iPS-derived 3D ROs with RPE
cells may prove suitable to address pO2 contribution to OS generation and devise solutions
to improve cell transplantation yield.
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