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Abstract  The paper is concerned with the IBVP of 
the Navier-Stokes equations. The result of the paper 
is in the wake of analogous results obtained by the 
authors in previous articles Crispo et  al. (Ricerche 
Mat 70:235–249, 2021). The goal is to estimate the 
possible gap between the energy equality and the 
energy inequality deduced for a weak solution.
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1  Introduction

This note concerns the 3D-Navier–Stokes initial 
boundary value problem:

In system (1) Ω ⊆ ℝ
3 is assumed bounded or exterior, 

and its boundary is assumed smooth.
In the two recent papers [5, 6] the authors look for an 

energy equality for suitable weak solutions. Here, the 
term suitable is meant in the sense that a new solution is 
exhibited and not that an improvement is obtained to the 
one given in [3]. Actually, the crucial result of papers 
[5, 6] is the strong convergence in Lp(0, T;W1,2(Ω)) , for 
all T > 0 and p ∈ [1, 2) , of a sequence {vm} of smooth 
solutions to the “Leray’s approximating Navier–Stokes 
Cauchy problem” (see (4) below), [11].

Since the strong convergence is not in 
L2(0, T;W1,2(Ω)) , the authors attempt to obtain the 
energy equality employing the (differential and inte-
gral) energy equality of the approximating solu-
tions and some auxiliary functions. Actually, the 
approaches used so far allow to prove an energy 
equality which involves other quantities. Here it is 
proved that a suitable weak solution exists and satis-
fies the following relation

(1)

vt + v ⋅ ∇v + ∇�v = Δv + f , ∇ ⋅ v = 0, in (0, T) × Ω,

v = 0 on (0, T) × �Ω, v(0, x) = v0(x) on {0} × Ω.

(2)

‖v(t)‖2
2
+ 2

t

∫
s

‖∇v(𝜏)‖2
2
d𝜏 +M(s, t)

= ‖v(s)‖2
2
+

t

∫
s

(f , v)d𝜏 for all 0 < s < t ∈ T,
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where, thanks to the result of strong convergence in 
Lp(0, T;W1,2(Ω)) , p ∈ [1, 2) (see Lemma 1),

is of full measure in (0, T) for all T > 0 , and

where Jm(�) is the union of, at most, a countable 
sequence ( ℕ(�,m) ) of disjoint intervals (sh, th) ⊂ (s, t) 
and the following holds:

Instead in the case of s = 0 , one obtains

where

Roughly speaking the above intervals seem to con-
tain the possible singular points S of the weak solu-
tion that, as is known, has H

1

2 (S) = 0 ( Ha Hausdorff’s 
measure), [16]. Of course, independently of the 
meaning of the conjecture for the intervals, from a 
physical view point the energy relation (2) would add 
a dissipative quantity which is not justifiable. If this 
is a necessary consequence of an initial datum only 
in L2 , then from a physical point of view it is a right 
reason to reject the L2-class as a class of existence.

Also in [15] the author considers the possibility to 
add a further dissipative term to the right hand side 
of the classical energy inequality, but, as already 

T ∶=
�
t ∈ (0, T) ∶ ‖vm(t)‖1,2 → ‖v(t)‖1,2

�

M(s, t) ∶= 2 lim
�→1−

lim
m ∫

Jm(�)

‖∇vm(�)‖2
2
d�

= lim
�→1−

lim
m

�
h∈ℕ(�,m)

�
‖vm(sh)‖22 − ‖vm(th)‖22

�

lim
�→1−

�Jm(�)�
1 − �

≤ 1

�
‖v0‖22 + 2

�

t

�
0

(f , v)d� ,

uniformly in m ∈ ℕ.

(3)

‖v(t)‖2
2
+ 2

t

∫
0

‖∇v(�)‖2
2
d� +M(0, t)

= ‖v0‖22 +
t

∫
0

(f , v)d� for all t ∈ T ,

M(0, t) ∶= lim
sk→0

M(sk, t) , for any {sk} ⊂ T .

stressed in [5], our result is different, since we obtain 
the equality (2) with M(s,  t) expressed only in terms 
of energy quantities (“kinetic or dissipated”). We 
think that this difference is of a special interest.

The proof of our result is based on a new existence 
theorem, where our weak solution is the limit of the 
sequence {vm} of solutions to problem (4). In addi-
tion to the usual weak convergences of {vm} , there is 
the peculiarity that our weak solution is strong limit 
in Lp(0, T;W1,2(Ω)) , for all T > 0 and p ∈ [1, 2) . This 
result, proved for the first time in [5] (as far as we 
know it is also the unique known proof), is obtained 
under the minimal assumption of v0 ∈ L2(Ω) and 
divergence free. As already said, it is important in 
order to obtain that limm ‖∇vm(t) − ∇v(t)‖2 = 0 
almost every where in t > 0 . This is a main differ-
ence with other results of existence of weak solutions, 
classical or more recent, as the ones furnished in [8] 
and in [9], obtained with stronger assumptions on the 
initial datum v0.

By making the minimal requirement on v0 , from 
one hand we match the result1 obtained in [13], and 
from another hand we better match the questions of 
counterexamples, as we remark below.

The validity of an energy equality, without requir-
ing extra conditions, is interesting to better delimit 
the case of validity of possible counterexamples.

Actually, in the papers [2] and [1] two examples of 
non-uniqueness are furnished.

The former works for very-weak solutions, which 
are continuous in L2-norm, but do not verify an 
energy inequality of the kind given by Leray-Hopf, in 
other words neglecting the term M(s, t) with ≥ 0 . Fur-
ther, in the case of Leray-Hopf weak solutions their 
counterexample does not work.

1    In this connection in paper [13], the so called Prodi-Serrin con-
dition for the energy equality for a weak solution is not required 
on the whole interval of existence, but just on (�,T) , that is 
L
4(�,T;L4(Ω)) , for all 𝜀 > 0 . This means that no extra assumption 

on the initial datum in L2 is needed for the validity of the energy 
equality.
  In [8], from a different point of view, the extra condition 
L
4(�,T;L4(Ω)) is deduced for a special weak solution. Conse-

quently, a local energy equality holds too.
  Following the approach given in [10], under the same 
weaker extra assumption, the energy equality holds in the set 
of very-weak solutions.
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The latter works with a homogeneous initial 
datum. Actually, the non-uniqueness is exhibited for 
solutions corresponding to a suitable data force, that, 
among other things, allows an energy equality.

The plan of the paper is the following. In Sect. 2 
some preliminary lemmas are recalled and some new 
results of strong convergence are furnished. In Sect. 3 
the statement and the proof of the chief result are 
performed.

2 � Preliminary results

We set J1,2(Ω):=completion of C0(Ω) in W1,2-norm, 
where C0(Ω) is the set of the test functions of the 
hydrodynamics.

Definition 1  For weak solution to the IBVP (1) we 
mean a field v ∶ (0,∞) × Ω → ℝ

3 such that for all 
T > 0

1.	 v ∈ L∞(0, T;L2(Ω)) ∩ L2(0, T;J1,2(Ω)),

2.	 the field v solves the integral equation
t∫
s

[
(v,�� ) − (∇v,∇�) + (v ⋅ ∇�, v) + (�v,∇ ⋅ �)

]

d� + (v(s),�(s)) = (v(t),�(t)),

for all � ∈ C1
0
([0, T) × Ω),

3.	 lim
t→0

‖v(t) − v0‖2 = 0 .

For our goals we consider a mollified 
Navier–Stokes system. Hence problem (1) becomes

where f ∈ L2(0, T , L2(Ω)) , {vm
0
} ⊂ J1,2(Ω) converges 

to v0 in J2(Ω) and Jm[⋅] ≡ J̃ 1

m

[⋅] where J̃ 1

m

[⋅] is Frie-
drichs’ (spatial) mollifier and we suppose that vm is 
extended to zero in ℝ3 − Ω.

Lemma 1  For all m ∈ ℕ there exists a unique solu-
tion to problem (4) such that for all T > 0

(4)

vmt + Jm[vm] ⋅ ∇vm + ∇�vm = Δvm + f , ∇ ⋅ vm = 0,

in (0, T) × Ω,

vm = 0 on (0,T) × �Ω, vm(0, x) = vm0 (x) on {0} × Ω,

Moreover, the sequence {vm} is strong convergent to 
a limit v in Lp(0, T;W1,2(Ω)) ∩ L2(0, T;L2(Ω)) , for all 
p ∈ [1, 2) , and the limit v is a weak solution to problem 
(1) with (v(t),�) ∈ C([0, T)) , for all � ∈ J2(Ω).

Proof  This lemma for data force f = 0 is Theo-
rem 6.1.1 proved in [5]. It is not difficult to image that 
the proof can be modified without difficulty assuming 
f ≠ 0 . So that we consider as achieved the proof of 
the lemma.	�  ◻

Lemma 2  Let Ω ⊆ ℝ
n and let u ∈ W2,2(Ω) ∩ J1,2(Ω) . 

Then there exists a constant c independent of u such 
that

provided that a ∈ [0, 1).

Proof  See [12, 14] .	�  ◻

The following lemma furnishes an integrabil-
ity property of derivatives with respect to t of the 
sequence {‖∇vm‖2} . This is made following the 
approach given in paper [5]. However, there are 
similar results directly concerning weak solutions. 
For the sake of completeness, we give the follow-
ing references [4, 7, 17]. In any case, our proof is 
different from those given in the quoted papers.

Lemma 3  For any T > 0 , there exists a constant 
M > 0 , not depending on m, such that

where vm is the solution of problem (4) stated in 
Lemma 1.

(5)

‖vm(t)‖2
2
+ 2

t

∫
0

‖∇vm(𝜏)‖2
2

= ‖vm
0
‖2
2
+ 2

t

∫
0

(f (𝜏), vm(𝜏))d𝜏 , for all t > 0 ,

vm ∈ C([0, T);J1,2(Ω)) ∩ L2(0, T;W2,2(Ω)) ,

vm
t
,∇𝜋m ∈ L2(0, T;L2(Ω)) .

(6)‖u‖r≤c‖PΔu‖a
2
‖u‖1−a

q
, a

�1
2
−

2

n

�
+ (1 − a)

1

q
=

1

r
,

�
T

0

���
d

dt
‖∇vm(t)‖2

2

����
1 + ‖∇vm‖2

2

�2 dt ≤ M
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Proof  By virtue of the regularity of (vm,�m) stated 
in (5), we multiply Eq. (4)1 by PΔvm − vm

t
 . Integrating 

by parts on Ω , and applying the Hölder inequality, we 
get

Applying inequality (6) with r = ∞ and q = 6 , by vir-
tue of the Sobolev inequality, we obtain

By inequalities (7) and (8), we get

for all m ∈ ℕ and a.e. in t > 0 . Substituting in ine-
quality (9) the identity

and dividing by (1 + ‖∇vm(t)‖2
2
)2 , we get the follow-

ing estimate

where we set �m(t) ∶= ‖∇vm(t)‖2
2
 . Integrating on 

(0, T) we have

It follows that

Using the identity (10) we get

(7)
‖PΔvm − vm

t
‖2
2
≤ 2‖Jm[vm] ⋅ ∇vm‖22 + 2‖f‖2

2
, a.e. in t > 0 .

(8)
‖Jm[vm] ⋅ ∇vm‖2 ≤ ‖vm‖∞‖∇vm‖2

≤ c‖PΔvm‖
1

2

2
‖∇vm‖

3

2

2
.

(9)
‖PΔvm − vm

t
‖2
2
≤ c‖PΔvm‖2‖∇vm‖32 + 2‖f‖2

2

≤ 1

2
‖PΔvm‖2

2
+ c‖∇vm‖6

2
+ 2‖f‖2

2
,

(10)

d

dt
‖∇vm‖2

2
+ ‖PΔvm‖2

2
+ ‖vm

t
‖2
2
= ‖PΔvm − vm

t
‖2
2

𝜌̇m

(1 + 𝜌m)
2
+

1

2
‖PΔvm‖2

2
+ ‖vm

t
‖2
2

(1 + 𝜌m)
2

≤ c𝜌m +
2‖f‖2

2�
1 + 𝜌m

�2 ,

1

1 + ‖∇vm
0
‖2
2

−
1

1 + ‖∇vm(T)‖2
2

+

T

�
0

1

2
‖PΔvm‖2

2
+ ‖vm

t
‖2
2

(1 + �m)
2

dt

≤ c

T

�
0

�m dt + 2�
T

0

2‖f‖2
2�

1 + �m
�2 dt ≤ C.

T

�
0

‖PΔvm‖2
2

(1 + �m)
2
dt ≤ 2C + 2,

T

�
0

‖vm
t
‖2
2

(1 + �m)
2
dt ≤ C + 1.

Using once again identity (10) we get

	�  ◻

Lemma 4  Let {hm(t)} be a sequence of non-negative 
functions bounded in L1(0, T) . Also, assume that 
hm(t) → h(t) a.e. in t ∈ (0, T) with h(t) ∈ L1(0, T) . Let 
be g ∶ (0, �0) ⟶ ℝ a continuous and strictly increas-
ing function such that lim

�→�0
g(�) = +∞ and 

p ∶ [0, 1) × [0,∞) ⟶ [0, 1] a continuous function 
such that p(�, �) = 1 if 0 ≤ � ≤ g(�) , p(�, ⋅) is weakly 
decreasing and lim

�→+∞
p(�, �) = 0 for any � ∈ (0, �0).

Then we get

Proof  We have

T

�
0

‖PΔvm − vm
t
‖2
2

(1 + �m)
2

dt =

T

�
0

d

dt
�m

(1 + �m)
2
dt +

T

�
0

‖PΔvm‖2
2

(1 + �m)
2
dt

+

T

�
0

‖vm
t
‖2
2

(1 + �m)
2
dt

≤ 1

1 + ‖∇vm
0
‖2
2

−
1

1 + ‖∇vm(T)‖2
2

+ 3C + 3 ≤ 3C + 4.

T

�
0

���
d

dt
�m

���
(1 + �m)

2
dt ≤

T

�
0

‖PΔvm − vm
t
‖2
2

(1 + �m)
2

dt

+

T

�
0

‖PΔvm‖2
2

(1 + �m)
2
dt +

T

�
0

‖vm
t
‖2
2

(1 + �m)
2
dt

≤ 6C + 7 =∶ M.

(11)lim
�→�0

lim
m

T

∫
0

hm(t)p(�, hm(t))dt =

T

∫
0

h(t)dt ,

T

∫
0

hm(t)p(�, hm(t))dt

=

T

∫
0

(hm(t) − h(t))p(�, hm(t))dt

+

T

∫
0

h(t)p(�, hm(t))

=∶ I1(�,m) + I2(�,m) .
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We fix � ∈ (0, �0) and we consider the first integral. 
For any � ∈ (0, �0 − �) we set

Hence we have

By (12) we get

hence, by the dominated convergence theorem, we 
have

Since p(�, ⋅) is decreasing, we get

Using the boundedness of the sequence {hm} in L1 we 
obtain that

By (13) and (14) we get

Since lim
�→0

p(�, g(�0 − �)) = 0 we have that

Now we consider the integral I2(�,m) . Since 
||p(�, hm(t))h(t)|| ≤ 1 and lim

m
hm(t) = h(t) a.e. in 

t ∈ (0, T) , by the dominated convergence theorem, we 
get

(12)
J−
m
(𝜀) = {t ∶ hm(t) ≤ g(𝛼0 − 𝜀)},

J+
m
(𝜀) = {t ∶ g(𝛼0 − 𝜀) < hm(t)}.

I1(�,m) =

T

∫
0

�J−
m
(�)(t)(hm(t) − h(t))p(�, hm(t))dt

+

T

∫
0

�J+
m
(�)(t)(hm(t) − h(t))p(�, hm(t))dt

=∶ I−
1
(�,m, �) + I+

1
(�,m, �).

|�J−
m
(�)(t)(hm(t) − h(t))p(�, hm(t))| ≤ g(�0 − �) + |h(t)|

(13)lim
m

I−
1
(�,m, �) = 0, ∀ �, �.

|||�J+
m
(�)(t)(hm(t) − h(t))p(�, hm(t))

|||
≤ p(�, g(�o − �))

(|hm(t)| + |h(t)|).

(14)|I+
1
(�,m, �)| ≤ cp(�, g(�0 − �)), ∀m ∈ ℕ.

0 ≤ lim
m
|I1(�,m)| ≤ cp(�, g(�0 − �)), ∀ �, �.

lim
m

I1(�,m) = 0, ∀ �.

Finally, since lim
�→�0

p(�, h(t)) = 1 we have that

and this completes the proof. 	�  ◻

3 � The chief result

We recall the definition

where {vm} is the sequence of solutions to problem 
(4). By virtue of the strong convergence stated in 
Lemma  1, the set T  is certainly not empty and, as 
matter of fact, it is of full measure in (0,  T) for all 
T > 0.

Theorem 1  Let v be the weak solution and {vm} the 
related approximating sequence stated in Lemma 1. 
Then, for all t, s ∈ T  , v satisfies the relation

with

where, for a suitable positive �0 depending on (s, t), for 
all � ∈ (�0, 1) , Jm(�) ≡ ∪

i∈ℕ(�,m)
(si, ti) with ℕ(�,m) 

which is, at most, a sequence of integers, and for all 
i ∈ ℕ(�,m) (si, ti) ⊂ (s, t) with (si, ti) ∩ (sj, tj) = � for 
any i ≠ j , and

lim
m

I2(�,m) =

T

∫
0

h(t)p(�, h(t))dt.

lim
�→�0

lim
m

I2(�,m) =

T

∫
0

h(t)dt,

(15)T ∶=
�
t ∈ (0, T) ∶ ‖vm(t)‖1,2 → ‖v(t)‖1,2

�
,

(16)

‖v(t)‖22 + 2
t

∫
s

‖∇v(�)‖22d� +M(s, t) = ‖v(s)‖22

+

t

∫
s

(f , v)d� ,

M(s, t) ∶= 2 lim
�→1−

lim
m ∫

Jm(�)

‖∇vm(�)‖2
2
d�

= lim
�→1−

lim
m

�
h∈ℕ(�,m)

�
‖vm(sh)‖22 − ‖vm(th)‖22

�
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Moreover, if s = 0 , the relation (16) holds with 
M(0, t) = lim

k
M(sk, t) where {sk} is any sequence in T  

converging to 0.

Proof  We consider the sequence {vm} of solu-
tions to problem (4) whose existence is ensured by 
Lemma 1. For all m ∈ ℕ the Reynolds-Orr equation 
holds:

We set �m(t) ∶= ‖∇vm(t)‖2
2
 , and we consider

Fix s, t ∈ T  , with s < t  , T  given in (15)  . Let �1 be 
such that

Hence, by virtue of the pointwise convergence, we 
claim the existence of m0 such that

We set Am ∶= max
[s,t]

�m(t) . We denote by

If Am ≤ tan �
�

2
 , then Jm(�) is an empty set. If 

Am > tan 𝛼
𝜋

2
 holds, since 𝜌m(s) < tan 𝛼

𝜋

2
 , there exists 

the minimum s > s such that �m(s) = tan �
�

2
 , as well, 

being 𝜌m(t) < tan 𝛼
𝜋

2
 , there exists the maximum t < t 

such that �m(t) = tan �
�

2
 . Thus, if Jm(�) is a non-

empty set, by the regularity of �m(t) , we get that Jm(�) 
is at most the union of a sequence of open interval 
(sh, th) such that �m(sh) = �m(th) = tan �

�

2
 . We justify 

the claim.

(17)

lim
�→1−

�Jm(�)�
1 − �

≤ 1

�
‖v0‖22

+
2

�

t

�
0

(f , v)d� , uniformly with respect to m .

(18)
d

d�
‖vm(�)‖2

2
+ 2‖∇vm(�)‖2

2
= (f , vm) .

(19)

� ∈ (0, 1) , p(�, �m) ∶=

{
1 if �m ∈ [0, tan �

�

2
]

�

2
−arctan �m

(1−�)
�

2

if �m ∈ (tan �
�

2
,∞)

.

max{‖∇v(s)‖2
2
, ‖∇v(t)‖2

2
} < tan 𝛼

𝜋

2
, for all 𝛼 ∈ (𝛼1, 1) .

(20)
max{‖∇vm(s)‖22, ‖∇v

m(t)‖22} < tan ��
2
,

for all m ≥ m0 and � ∈ (�1, 1) .

Jm(�) ∶= {� ∶ �m(�) ∈ (tan �
�

2
,Am]}.

The set Jm(�) is an open set, hence it is at most the 
countable union of maximal intervals (sh, th) . We set 
Em ∶= (s, t) − ∪

h∈ℕ
(sh, th).

For all � ∈ Em we have �m(�) ≤ tan �
�

2
 , thus, by 

continuity of �m , we get �m(sh) = tan �
�

2
= �m(th) for 

all h ∈ ℕ . For the measure of Jm(�) we get

where we took the energy relation (18) into account 
and the strong convergence of the right-hand side too. 
Estimate (21) leads to (17). Recalling the definition of 
p(�, �m(t)) , we have

where we took into account that, for all � ∈ (0, 1) , 
function p is a Lipschitz’s function in �m , and �m(t) 
is a regular function in t. Hence, we get p(�, �m(t)) is 
a Lipschitz’s function with respect to t. We multiply 
Eq. (18) for p(�, �m(�)) , with 𝛼 > 𝛼1 , and we integrate 
by parts on (s, t):

where we set

where we took (20) and definition of p into account. 
Letting m → ∞ and � → 1 , by virtue of the pointwise 
convergence in s and in t, and Lemma 4, we arrive at

where we set

(21)

�Jm(𝛼)� tan 𝛼𝜋
2
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2
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�
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d
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0 a.e. in 𝜏 ∈ Em ,

−2

(1 − 𝛼)𝜋
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1 + (𝜌m(𝜏))
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for all 𝜏 ∈ Jm(𝛼) ,

‖vm(t)‖22 + 2
t

∫
s

p(�, �m(�))‖∇vm(�)‖22d� +
2A(t, s,m, �)
(1 − �)�
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∫
s

(f , vm)p(�, �m(�))d� ,
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Recalling the properties of Jm(�) , for all � and m, 
integrating by parts, we get

Hence, we arrive at

We estimate the last integral. Let be

It results that

Hence, if � ∈ J̃(�) ∩ T  we get that

M(s, t) ∶= lim
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m

2
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∫
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∫
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2𝜌2
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m
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∫
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On the complement of the set T  we can set � = 0 , 
since the value on a null measure set does not change 
the estimates. Since 0 ≤ �Jm(�)

�2
m

1+�2
m

≤ 1 , by Fatou’s 
lemma, it follows that

Since � ∈ L1 and, by (26),

the last integral vanishes as � tends to 1− . Moreover

hence

Concerning the force term we have
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It follows that

Using algebraic manipulation we obtain the following 
relation:

Substituting the above relation in Eq. (24) we get

At last we estimate the integral

where the last inequality follows by Lemma 3. Hence, 
by (28), we get
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Multiplying Eq. (31) by 2

(1−�)�
 and passing to the limit 

using (32), (30) and (29), we get

By Eq. (18) we get

Let us consider the last integral. Since 
�(f (�), vm(�))� ≤ ‖f (�)‖2‖vm(�)‖2 ≤ c‖f (�)‖2 we can 
apply the Fatou’s lemma to get

with J̃(�) defined in (25). Since ‖f (�)‖2 is summable, 
considering (27), we get

and this completes the proof in the case of s, t ∈ T  . 
In order to complete the proof of the theorem, we 
limit ourselves to remark that, letting s → 0 , the left-
hand side tends to values in 0, in particular on any 
sequence {sk} ⊂ T  letting to 0, and as a consequence 
the limit on {sk} of the right hand side is well posed. 	
� ◻

lim
𝛼→1−

lim
m

�������
2

1 − 𝛼 �
Jm(𝛼)

‖vm‖2
2

(1 + 𝜌2
m
)2
𝜌̇md𝜏

�������
≤ lim

𝛼→1−

2

1 − 𝛼

2cM

1 + (tan
𝛼𝜋

2
)2

= 0.

M(s, t) = lim
�→1−

lim
m

�
h∈ℕ(�,m)

�
‖vm(sh)‖22 − ‖vm(th)‖22

�
.

�
h∈ℕ(�,m)

�
‖vm(th)‖22 − ‖vm(sh)‖22

�
=

− 2 ∫
Jm(�)

‖∇vm(�)‖2
2
d� + ∫

Jm(�)

(f , vm) d�.

lim
m

�������
�

Jm(�)

(f , vm) d�

�������
= lim

m

�������

t

�
s

�Jm(�)(f , v
m) d�

�������

≤
t

�
s

lim
m

����Jm(�)(f , v
m)

��� d�

≤ c

t

�
s

‖f‖2lim
m

�Jm(�) d� ≤ c

t

�
s

‖f‖2�J̃(�) d�

lim
�→1−

lim
m

|||||||
∫

Jm(�)

(f , vm) d�

|||||||
= 0



Meccanica	

1 3
Vol.: (0123456789)

Acknowledgements  The research activity of F.C. and P.M. 
is performed under the auspices of GNFM-INdAM, and the 
research activity of C.R.G. is performed under the auspices of 
GNAMPA-INDAM. The research activity of F.C has been sup-
ported by the Program (Vanvitelli per la Ricerca: VALERE) 
2019 financed by the University of Campania “L. Vanvitelli”. 
The research activity of C.R.G. is partially supported by PRIN 
2020 “Nonlinear evolution PDEs, fluid dynamics and trans-
port equations: theoretical foundations and applications.” The 
author express special thanks to the referees for the interesting 
comments that make the paper more readable.

Funding  Open access funding provided by Università degli 
Studi della Campania Luigi Vanvitelli within the CRUI-CARE 
Agreement.

Declarations 

Conflict of interests  The authors declare that they have no 
conflict of interest.

Open Access  This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Albritton D, Brué E, Colombo M (2021) Non-unique-
ness of Leray solutions of the forced Navier-Stokes 
equations, arXiv:​ 2112.​03111​v1

	 2.	 Buckmaster T, Vicol V (2019) Nonuniqueness of weak 
solutions to the Navier-Stokes equation. Ann Math 
189(1):101–144

	 3.	 Caffarelli L, Kohn R, Nirenberg L (1982) Partial regu-
larity of suitable weak solutions of the Navier-Stokes 
equations. Comm Pure Appl Math 35(6):771–831

	 4.	 Chen G-Q, Glimm J (2012) Kolmogorov’s theory of 
turbulence and inviscid limit of the Navier–Stokes equa-
tions in ℝ3 . Comm Math Phys 310:267–283

	 5.	 Crispo F, Grisanti CR, Maremonti P (2018), Some new 
properties of a suitable weak solution to the Navier- 
Stokes equations, In: Galdi GP, Bodnar T, Nečasová S, 
Birkhäuser (eds.) Waves in Flows: The 2018 Prague-
Sum Workshop Lectures, series: Lecture Notes in Math-
ematical Fluids Mechanics

	 6.	 Crispo F, Grisanti CR, Maremonti P (2021) Navier–
Stokes equations: an analysis of a possible gap to 
achieve the energy equality. Ricerche Mat 70:235–249

	 7.	 Duff GFD (1990) Derivative estimates for the Navier-
Stokes equations in a three-dimensional region. Acta 
Math 164:145–210

	 8.	 Farwig R, Giga Y, Hsu P-Y (2017) The Navier-Stokes 
equations with initial values in Besov spaces of type 
B
−1+

3

q

q,∞  . J Korean Math Soc 54(5):1483–1504
	 9.	 Farwig R, Giga Y (2018) Well-chosen weak solutions of 

the instationary Navier–Stokes system and their unique-
ness. Hokkaido Math J 47(2):373–385

	10.	 Galdi GP (2019) On the relation between very weak and 
Leray-Hopf solutions to Navier–Stokes equations. Proc 
Am Math Soc 147:5349–5359

	11.	 Leray J (1934) Sur le mouvement d’un liquide visqueux 
emplissant l’espace. Acta Math 63(1):193–248

	12.	 Maremonti P (1998) Some interpolation inequalities 
involving Stokes operator and first order derivatives. 
Ann Mat Pura Appl 175:59–91

	13.	 Maremonti P (2018) A note on Prodi-Serrin conditions 
for the regularity of a weak solution to the Navier–
Stokes equations. J Math Fluid Mech 20(2):379–392

	14.	 Maremonti P (2018) On an interpolation inequality 
involving the Stokes operator, mathematical analysis in 
fluid mechanics—selected recent results, Contemp Math, 
vol 710, Am Math Soc, Providence, RI, pp 203–209

	15.	 Nagasawa T (2001) A new energy inequality and partial 
regularity for weak solutions of Navier–Stokes equa-
tions. J Math Fluid Mech 3(1):40–56

	16.	 Scheffer V (1977) Hausdorff measure and the Navier-
Stokes equations. Comm Math Phys 55:97–112

	17.	 Vasseur A (2010) Higher derivatives estimate for the 
3D Navier-Stokes equation. Ann Inst H Poincaré C Anal 
Non Linéaire 27:1189–1204

Publisher’s Note  Springer Nature remains neutral with 
regard to jurisdictional claims in published maps and 
institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2112.03111v1

	Navier–Stokes equations: a new estimate of a possible gap related to the energy equality of a suitable weak solution
	Abstract 
	1 Introduction
	2 Preliminary results
	3 The chief result
	Acknowledgements 
	References


