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We investigate the multicritical behavior of the three-dimensional Z2 gauge Higgs model, at
the multicritical point (MCP) of its phase diagram, where one first-order transition line and two
continuous Ising-like transition lines meet. The duality properties of the model determine some
features of the multicritical behavior at the MCP located along the self-dual line. Moreover, we
argue that the system develops a multicritical XY behavior at the MCP, which is controlled by the
stable XY fixed point of the three-dimensional multicritical Landau-Ginzburg-Wilson field theory
with two competing scalar fields associated with the continuous Z2 transition lines meeting at the
MCP. This implies an effective enlargement of the symmetry of the multicritical modes at the MCP,
to the continuous group O(2). We also provide some numerical results to support the multicritical
XY scenario.

I. INTRODUCTION

The three-dimensional (3D) Z2 gauge Higgs model is
one of the simplest gauge theories with matter fields,
that shows a nontrivial phase diagram characterized by
the presence of a topological phase, see, e.g., Refs. 1–
19. The model can also be related to the quantum two-
dimensional toric model in the presence of external mag-

netic fields, by a quantum-to-classical mapping1,9,11, and
to a statistical ensemble of membranes7,12.

A notable feature of the model1,4,5 is the existence of a
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FIG. 1: Sketch of the phase diagram of the 3D Z2 gauge
Higgs model (1). The dashed line is the self-dual line, cf.
Eq. (9), the thick line corresponds to first-order transitions
on the self-dual line, extending for a finite interval. The two
lines labelled “Z2” are related by duality, cf. Eq. (7), and
correspond to Ising-like continuous transitions. They end at
J = JIs ≈ 0.22165, κ = ∞ and at J = 0, κ = κc ≈ 0.76141.
The three lines are conjectured to meet at a multicritical point
(MCP) on the self-dual line, at [κ⋆

≈ 0.7525, J⋆
≈ 0.2258].

We argue in the paper that the multicritical behavior belongs
to the XY universality class. The other endpoint of the first-
order transition line should give rise to a critical endpoint
(CEP).

duality transformation, which relates the free energy at
different points of the phase diagram1,3–5. A particular
line in the phase diagram, which will play an important
role in the following, is the self-dual line which is left
invariant by the duality transformation. In Fig. 1 we
sketch the phase diagram of the model, in the space of
the Hamiltonian parameters [they are defined in Eq. (1)].
It presents a topologically ordered deconfined phase, de-
limited by two continuous Ising transition lines that are
related by duality. In the context of two-dimensional
quantum systems, such a topological ordered phase is re-
alized in Z2 spin liquids20–25, which is the phase of matter
realized by the toric code9. Moreover, the 3D Z2 gauge
Higgs model presents a first-order transition line running
along the self-dual line, for a limited range of the Hamil-
tonian parameters6,8,11.

The available numerical results are consistent with the
existence of a multicritical point (MCP), where the first-
order transition line and the two continuous Ising tran-
sition lines meet, see, e.g., Refs. 11,17. Assuming the ex-
istence of the MCP, an interesting question concerns the
nature of the multicritical behavior. This issue has been
recently investigated in Ref. 17, which reported appar-
ently puzzling results, leading to estimates of the critical
exponents that are substantially consistent with those
of the XY universality class. This may suggest that the
multicritical behavior at the MCP is controlled by the 3D
XY fixed point, with an effective enlargement of the sym-
metry of the multicritical modes to the continuous O(2)
group. This scenario was considered unlikely in Ref. 17,
because of the unclear relationship between the multi-
critical XY behavior and the mutual statistics of the
condensing quasiparticles10,11,26,27 along the two distinct
Ising transition lines meeting at the MCP. These mutual
statistics do not affect critical exponents on the Ising
lines, because only one of the two excitations is massless
on them, but both excitations must become massless at
the MCP. Therefore, it is not clear how their competition
can give rise to the effective enlargement of the symmetry
at the MCP, as required by the XY universality class.

In this paper we investigate the multicritical behav-

http://arxiv.org/abs/2112.01824v1


2

ior at the MCP. We argue that the multicritical behav-
ior is controlled by the stable XY fixed point of the 3D
multicritical Landau-Ginzburg-Wilson (LGW) field the-
ory with two competing scalar fields associated with the
Z2 transition lines meeting at the MCP28–32. Duality
properties play a crucial role for the realization of the
multicritical XY scenario, which implies an effective en-
largement of the symmetry of the multicritical modes,
to the continuous symmetry group O(2). To provide fur-
ther support to this scenario, we also report some numer-
ical finite-size scaling (FSS) analyses of data from Monte
Carlo (MC) simulations.
The paper is organized as follows. In Sec. II we present

the 3D lattice Z2 gauge Higgs model, and summarize the
known features of its phase diagram. In Sec. III we dis-
cuss the multicritical theory appropriate for the MCP,
and apply the multicritical LGW field theory to predict a
multicriticalXY behavior. In Sec. IV we report some nu-
merical results supporting the multicritical XY scenario,
obtained by FSS analyses of MC simulations. Finally in
Sec. V we draw our conclusions.

II. THE Z2 GAUGE HIGGS MODEL

A. Hamiltonian and duality transformations

We consider a lattice gauge model with Z2 gauge in-
variance defined on a cubic 3D lattice with periodic
boundary conditions. The fundamental variables are
Ising spins sx = ±1 defined on the lattice sites and Ising
spins σx,µ = ±1 defined on the bonds (σx,µ is associated
with the bond starting from site x in the µ direction,
µ = 1, 2, 3). The model is defined by the lattice Hamil-
tonian1,4,5

H = −J
∑

x,µ

sx σx,µ sx+µ̂ − κ
∑

x,µ>ν

Πx,µν , (1)

Πx,µν = σx,µ σx+µ̂,ν σx+ν̂,µ σx,ν . (2)

The corresponding partition function and free-energy
density are

Z =
∑

{s,σ}

e−βH(J,κ) , F (J, κ) = −
T

Ld
lnZ , (3)

where β = 1/T is the inverse temperature, and Ld is the
volume of the system. This paper only consider three-
dimensional systems, and therefore d = 3. However,
when arguments are independent of the space dimension,
we keep d generic. In the following, energies are measured
in units of T , which is equivalent to fix β = 1 in Eq. (3).
The model can be simplified by considering the so-

called unitary gauge. Indeed, the site variables sx can be
eliminated by redefining σx,µ as

sx σx,µ sx+µ̂ → σx,µ . (4)

Correspondingly, the partition function can be written as

Z =
∑

{σ}

e−Hug(J,κ) , (5)

Hug = −J
∑

x,µ

σx,µ − κ
∑

x,µ>ν

Πx,µν . (6)

An important property of the 3D lattice Z2 gauge
Higgs model is the existence of a duality mapping3 be-
tween the Hamiltonian parameters, that leaves the par-
tition function unchanged, modulo a regular function of
the parameters. If

(J ′, κ′) =

(
−
1

2
ln tanhκ ,−

1

2
ln tanh J

)
, (7)

we have3

F (J ′, κ′) = F (J, κ)−
3

2
ln[sinh(2J) sinh(2κ)] . (8)

One can also define a self-dual line,

D(J, κ) = J − J ′ = J +
1

2
ln tanhκ = 0 , (9)

where the duality transformation maps the model into
itself, i.e. J ′ = J and κ′ = κ. Note that D(J, κ) is
odd under the duality mapping (J, κ) → (J ′, κ′), i.e.,
D(J, κ) = −D(J ′, κ′).

B. The phase diagram

Some features of the phase diagram are well estab-
lished, see, e.g., Refs. 4,11,17. A sketch of the phase dia-
gram is shown in Fig. 1. For κ → ∞ an Ising transition
occurs at33 JIs = 0.221654626(5). By duality, in the pure
Z2 gauge model a transition occurs in the corresponding
point, J = 0 and

κc = −
1

2
ln tanh JIs = 0.761413292(11) . (10)

Two Ising-like continuous transition lines, related by the
duality transformation (7), start from these points4 and
intersect along the self-dual line17. Moreover, some nu-
merical studies8,11 have provided evidence of first-order
transitions along the self-dual line, in the relatively small
interval

0.688 . κ . 0.753 , 0.258 & J & 0.226 . (11)

Since the first-order transition line is limited to an inter-
val along the self-dual line, there are only two phases, sep-
arated by the two continuous transition lines, see Fig. 1.
For small J and large κ there is a topological deconfined
phase. The remaining part of the phase diagram corre-
sponds to a single phase that extends from the disordered
small-J, κ region to the whole large-J region. In partic-
ular, no phase transition occurs along the line κ = 0,
where the model (6) becomes trivial.
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FIG. 2: Sketch of the phase diagram close to the MCP. We
report the first-order transition line (thick line), the self-dual
line (dashed line), the two continuous transition lines (contin-
uous lines), and the line (dotted line) where u2 = 0. The line
u1 = 0 coincides with the self-dual line.

A natural conjecture is that the first-order and the two
continuous Ising transition lines meet at the same point
located along the self-dual line, giving rise to a multicrit-
ical point (MCP). Numerical results11,17 are consistent
with this conjecture. In particular, Ref. 17 reported ev-
idence of a critical transition point along the self-dual
line—we identify it with the MCP—with critical param-
eters κ⋆ ≈ 0.7526 and J⋆ ≈ 0.2257. The correspond-
ing critical exponents are close to, and substantially con-
sistent with, those associated with the XY universality
class31,32,34,35. In spite of these results, Ref. 17 consid-
ered an XY multicritical behavior unlikely. In the paper,
we rediscuss the issue, and give additional theoretical and
numerical arguments that support the hypothesis that
the MCP belongs to the XY universality class.

We finally note that the first-order transition line start-
ing from the MCP ends at J ≈ 0.258 and κ ≈ 0.688. We
expect this endpoint to correspond to a continuous tran-
sition, likely belonging to the Ising universality class.

III. MULTICRITICAL BEHAVIOR

As discussed above, the phase diagram of the lattice Z2

gauge Higgs model shows a MCP, where a first-order and
two continuous transition lines meet (this MCP is usually
called bicritical28–30). In the following, we first discuss
the expected behavior of the model close to the MCP,
on the basis of the renormalization-group (RG) theory.
Then, we discuss a a LGW field theory characterized by
two interacting local real scalar fields28–30,32, which may
describe the multicritical behavior.

A. Multicritical scaling theory

At a MCP, the singular part of the free-energy density
can be written as

Fsing(J, κ, L) = L−dF({uiL
yi}) , (12)

where ui are the nonlinear scaling fields and the RG ex-
ponents yi are ordered so that

y1 > y2 > y3 > y4 > ... , (13)

In the present model, we expect two relevant RG pertur-
bations. Therefore, y1 and y2 are positive, and the corre-
sponding scaling fields u1 and u2 vanish at the MCP. The
exponents yi with i ≥ 3 are instead negative and control
the corrections to the multicritical behavior. All the scal-
ing fields ui are analytic functions of the model parame-
ters J and κ. In the infinite-volume limit and neglecting
subleading corrections, we can rewrite the singular part
of the free energy density as

Fsing(J, κ) = |u2|
d/y2F±(X) , (14)

X ≡ u1|u2|
−φ , φ ≡ y1/y2 > 1 , (15)

where the functions F±(X) apply to the parameter re-
gions in which ±u2 > 0, and φ is the so-called crossover
exponent associated with the MCP. Close to the MCP,
the transition lines follow the equation

X = u1|u2|
−φ = const , (16)

with a different constant for each transition line. Since
φ > 1, they are tangent to the line u1 = 0.
The duality mapping (7), and in particular Eq. (8),

implies the relation

Fsing(J
′, κ′) = Fsing(J, κ) . (17)

Then, if we set

u′
1 = u1(J

′, κ′) , u′
2 = u2(J

′, κ′) , (18)

using Eq. (14) we obtain the equality

|u2|
d/y2F±(u1|u2|

−φ) = |u′
2|

d/y2F±(u
′
1|u

′
2|

−φ) . (19)

Since along the self-dual line u1 = u′
1 = 0, this relation

can only be satisfied if |u2| = |u′
2|. If we then expand the

scaling function F±(X) in powers of X , Eq. (19) implies
um
1 = (u′

1)
m for all values of m such that the derivative

Fm =
∂mF(X)

∂Xm

∣∣∣∣
X=0

(20)

is nonvanishing. This condition can be satisfied only if
u1 changes at most by a sign under duality. As we shall
argue below, u1 is odd under duality, i.e., u′

1 = −u1. In
this case, we should additionally require Fm = 0 for any
odd m: the functions F±(X) are even in X .
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To show that u1 is odd, note that, as discussed in
Sec. II B, the first-order transition line runs along the
self-dual line (9) ending at the MCP, located at

J = J⋆, κ = κ⋆ = −
1

2
ln tanh J⋆ . (21)

This transition line is expected to coincide28–30 with the
line u1 = 0, close to the MCP. Since the self-dual line is
given by D(J, κ) = 0, we can make the identification

u1 = D(J, κ) , (22)

close to the MCP. As noted before, D(J, κ) is odd un-
der duality. The scaling field u2 is then necessarily even
under duality and is therefore given by

u2(J, k) = −J + J⋆ +
1

2
ln

tanhκ

tanhκ⋆
. (23)

The scaling fields can be straightforwardly linearized ob-
taining

u1 ≈ ∆J + c∆κ , u2 ≈ −∆J + c∆κ , (24)

where

∆J = J − J⋆ , ∆κ = κ− κ⋆ ,

c = sinh(2J⋆) =
1

sinh(2κ⋆)
≈ 0.467 . (25)

In terms of u1 and u2, close to the MCP the first-order
transition line corresponds to X = 0, u2 < 0. The two
continuous transition lines are defined by X = ±k with
u2 > 0.
Using the above results we can also predict how the

latent heat ∆h vanishes along the first-order transition
line when approaching the MCP. A straightforward scal-
ing argument36 gives

∆t ∼ |u2|
θ , θ =

d− y1
y2

. (26)

Note that this scaling behavior is the same as that of the
magnetization M at the Ising transition, with the corre-
spondence y1 = yh and y2 = 1/ν: M indeed vanishes as
M ∼ |T − Tc|

β with β = (d− yh)ν, see, e.g., Ref. 31.

B. Scaling of the energy cumulants

Due to the fact that we are considering a lattice gauge
theory, and therefore that we cannot easily access the or-
der parameters associated with the phase transitions, we
focus on the multicritical behavior of the energy opera-
tors. We define

HJ =
∑

xµ

σx,µ , Hκ =
∑

xµ>ν

Πx,µν , (27)

H = −JHJ − κHκ .

We consider the cumulants

Cnm = −Ld ∂n+m

∂Jn∂κm
F (J, κ, L) , (28)

where F is the free-energy density. For n+m ≤ 3, Cnm =
Mnm, where Mnm are the central moments defined by

Mnm = 〈(HJ − EJ )
n(Hκ − Eκ)

m〉 , (29)

with EJ = 〈HJ 〉 and Eκ = 〈Hκ〉. For n + m ≥ 4,
central moments and cumulants differ. For instance,
C40 = M40 − 3M2

20.
Using the cumulants Cmn we can easily construct the

cumulants Kn of the total energy H , defined by the
derivatives of lnZ with respect to β, see Eq. (3). For
example, we have

K2 = J2C20 + 2JκC11 + κ2C02 , (30)

K3 = −
(
J3C30 + 3J2κC21 + 3Jκ2C12 + κ3C03

)
,

etc... Note that the specific heat is given by CV = K2/V .
In the following, we consider periodic boundary con-

ditions, which preserve the duality property in finite-
size systems. Using Eq. (8), and taking the appropriate
derivatives with respect to J and κ, we can obtain an in-
finite series of exact relations among the expectation val-
ues EJ , Eκ and the cumulants Cmn at (J, κ) and at the
corresponding duality-transformed couplings (J ′, κ′), cf.
Eq. (7). Along the self-dual line where (J, κ) = (J ′, κ′),
they turn into an infinite series of exact relations among
expectation values of cumulants computed on the self-
dual line. The lowest-order cumulants satisfy the rela-
tions

Eκ + sinh(2J)EJ − 3 cosh(2J)L3 = 0 , (31)

sinh2(2J)C20 − C02 − 2 cosh(2J)Eκ + 6L3 = 0 . (32)

Relations for higher-order cumulants are more cumber-
some. Neglecting the regular terms arising from the sec-
ond term of the r.h.s. of Eq. (7), third-order cumulants
satisfy the relations

C12 + sinh(2J)C21 + 2 cosh(2J)C11 ≈ 0 , (33)

C03 + sinh3(2J)C30 + 6 cosh(2J)C02 +

+2[3 + cosh(4J)]Eκ ≈ 0 .

The scaling behavior of the cumulants Cnm can be de-
rived by differentiating the asymptotic scaling relation

Fsing(J, κ, L) ≈ L−df(x1, x2) , xi = uiL
yi , (34)

where we only keep the relevant RG contributions. Note
that the duality relation (8) for the free energy, and the
duality properties of u1 and u2, imply that

f(−x1, x2) = f(x1, x2) . (35)

Introducing the derivatives

fn,m(x1, x2) =
∂n+mf(x1, x2)

∂xn
1∂x

m
2

, (36)
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the leading critical contribution is generally given by

Cnm(J, κ, L) ≈ un
1,Ju

m
1,κL

(n+m)y1fn+m,0(x1, x2) , (37)

where u1,J and u1,κ are the derivatives of u1 with re-
spect to J and κ. The cumulants of the total energy are
expected to develop an analogous scaling behavior, i.e.

Kn(J, κ, L) ≈ Lny1Kn(x1, x2) . (38)

Along the self-dual line u1 = 0 the duality symmetry
leads to some cancellations, as a consequence of Eq. (35).
For n+m even, the leading terms of the cumulants Cnm

are given by

Cnm(J, κ, L) ≈ un
1,Ju

m
1,κL

(n+m)y1fn+m,0(0, x2)

≈ cmL(n+m)y1fn+m,0(0, x2) . (39)

Note that Eq. (39) is consistent with the exact relations
derived from duality, such as Eq. (32). For n + m odd,
the relation (35) implies that

fn+m,0(0, x2) = 0 . (40)

Therefore, the leading scaling behavior is obtained by
differentiating once with respect to u2. Thus, for odd
n+m we obtain

Cnm ≈ L(n+m−1)y1+y2fn+m−1,1(0, x2)× (41)

×(n un−1
1,J um

1,κu2,J +m un
1,Ju

m−1
1,κ u2,κ)

≈ (m− n)cmL(n+m−1)y1+y2fn+m−1,1(0, x2) ,

where u2,J and u2,κ are the derivatives of u2 with re-
spect to J and κ, respectively. Using these asymptotic
behaviors along the self-dual line and the relations (30),
we can also derive the corresponding asymptotic FSS of
the cumulants Kn of the total energy, which behave as

Kn ≈ Lny1 K̃n(x2) for even n , (42)

Kn ≈ L(n−1)y1+y2 K̃n(x2) for odd n . (43)

It is also useful to consider combinations whose cumu-
lants have definite properties under duality transforma-
tions. We define

A = HJ − sinh(2κ)Hκ , (44)

S = HJ + sinh(2κ)Hκ . (45)

Since

∂u1

∂J
+ sinh(2κ)

∂u1

∂κ
= 0 , (46)

∂u2

∂J
− sinh(2κ)

∂u2

∂κ
= 0 ,

one can easily check that the cumulants An of the oper-
ator A, defined in Eq. (44), do not receive contributions
associated with the scaling field u1. Therefore, they gen-
erally scale as

An ≈ Lny2An(x1, x2) , An = (−2)nf0n(x1, x2) . (47)

The cumulants Sn of the operator S behave as

Sn ≈ Lny1Sn(x1, x2) , Sn = 2nfn0(x1, x2) . (48)

Along the self-dual line, however, this diverging behavior
is not observed for n odd, since fn0(0, x2) = 0, thus Sn

is expected to diverge as L(n−1)y1.
We finally note that the above scaling equations as-

sume that the leading contribution is due to the singular
part of the free energy. However, contributions due to
the regular free-energy term, of order Ld, may provide
the leading contribution for the lowest-order cumulants,
depending on the values of the RG exponents y1 and y2.

C. Multicritical field theory

The results of Sections III A and III B only rely on the
existence of a duality transformation and make no as-
sumption on the nature of the MCP. To go further and
make more quantitative predictions, it is crucial to un-
derstand the nature of the order parameters. Along the
finite-J transition line that ends at κ = ∞, the order
parameter is expected to be a local function of the sx
fields, which should correspond to the Ising magnetiza-
tion. Of course, because of gauge invariance, any rigor-
ous definition requires the introduction of an appropriate
gauge fixing, which however would not change any gauge-
invariant correlation function (in Ref. 37 this approach
has been used to obtain rigorous results for the phase
behavior of the U(1) Abelian-Higgs model). The order
parameter for the Z2 gauge theory is instead expected to
be nonlocal and indeed the transition has a topological
nature. Apparently, this observation seems to indicate
that one cannot use standard symmetry arguments to
understand the critical behavior at the MCP, as they as-
sume that the order parameters are coarse-grained local
functions of the microscopic fields.
We wish now to argue that, at the MCP (and only

there), because of duality, we can assume that both or-
der parameters are local. Strictly speaking, duality is
only a mapping of the Hamiltonian parameters, but here
we will enlarge its role and assume that duality pro-
vides a mapping for all RG operators. Essentially, let us
assume that we are working in the infinite-dimensional
space of Hamiltonians on which the RG transformations
act38. If we start from a Z2 gauge Hamiltonian, under
RG transformations, we will generate a flow towards a Z2

gauge-invariant fixed point, while starting from the usual
Ising model, we will observe a flow towards the Wilson-
Fisher Z2 fixed point. The existence of an exact micro-
scopic relation between the Z2 gauge model and the Ising
model allows us to conjecture that the two fixed points
are equivalent, with the same set of RG dimensions and
operators. In other words, there is a mapping (we call it
duality) between all RG operators at the different fixed
points. It is then plausible that this duality transforma-
tion maps the local order parameter of the Ising model
to the nonlocal order parameter of the gauge model. The
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mapping changes the Hamiltonian parameters, except on
the self-dual line, and therefore at the MCP. Here, the
mapping would imply the equivalence of the local and
of the nonlocal order parameters for the same model.
Therefore, it seems reasonable to describe the multicrit-
ical behavior in terms of two local quantities. We thus
consider two different scalar fields ϕ1(x) and ϕ2(x), as-
sociated with the two transition lines.
To derive a Lagrangian for the effective model, we note

that the theory should be invariant under a change of sign
of both fields, so that only even powers of each field are
allowed. Under these conditions the LGW Hamiltonian
is28–30

H =
1

2

[
(∂µϕ1)

2 + (∂µϕ2)
2
]
+

1

2

(
r1ϕ

2
1 + r2ϕ

2
2

)

+
1

4!

[
v1ϕ

4
1 + v2ϕ

4
2 + 2wϕ2

1ϕ
2
2

]
. (49)

This model has been studied at length. In the mean-
field approximation28–30, the field theory (49) admits a
bicritical point analogous to the one appearing in Fig. 2.
Moreover, if the transition is continuous, it should belong
to the XY universality class28–32 thereby leading to an
effective enlargement of the symmetry from Z2 ⊕ Z2 to
O(2).
Several field-theoretical and numerical works have de-

termined the exponents yi entering the multicritical scal-
ing ansatz (12), see, e.g., Refs. 32,35. As shown in
Ref. 32, the leading exponents correspond to the RG di-
mensions at the isotropic XY fixed point of quadratic
and quartic perturbations that belong to different repre-
sentations of O(2) group. The leading RG exponent y1
is associated with the quadratic spin-two perturbation.
The corresponding RG dimension is32,35

y1 = 1.7639(11) . (50)

The second largest exponent is associated with the
spin-zero quadratic operator, and is directly related to
the correlation-length critical exponent at standard XY
transitions:

y2 =
1

νxy
= 1.4888(2) , (51)

where we used the estimate νxy = 0.6717(1) (see, e.g.,
Refs. 31,34,39–42 for theoretical results by various meth-
ods). Using the above results, we can estimate the
crossover exponent,

φ = y1/y2 = 1.1848(8) . (52)

Scaling corrections at the multicritical XY point are con-
trolled by the negative RG dimensions yi. The most rel-
evant ones are32,35,41,43

y3 = −0.108(6) , (53)

y4 = −0.624(10) , (54)

y5 = −0.789(4) , (55)

which are related to the spin-4, spin-2, and spin-zero
quartic perturbations, respectively. Note that, at stan-
dard XY transitions, corrections decay as L−ω with
ω = −y5 ≈ 0.79. At the MCP, scaling corrections de-
cay much slower, as Ly3 ≈ L−0.108, which may compli-
cate the analysis of the universal multicriticalXY behav-
ior. Moreover, corrections with any integer combination
of the subleading exponents are also expected, and thus
corrections Lny3 with n = 2, 3, . . . should also appear.
In the LGW approach the analogue of the duality

mapping is the exchange of the two fields (ϕ1 → ϕ2,
ϕ2 → ϕ1). The RG operators associated with the scal-
ing fields ui must have definite properties under these
transformations. The leading operator of RG dimension
y1 is odd under the field exchange. This implies that u1

is odd under the simultaneous exchange of r1, r2 and of
v1, v2. In the Z2 gauge Higgs model this implies that
the scaling field u1 is odd under duality, in agreement
with the arguments presented in Sec. III A. Analogously,
we predict u2 to be even, as already discussed before.
We can also predict the transformation properties of the
irrelevant scaling fields: u3 and u5 are even functions un-
der duality, while u4 is odd. In particular, there are no
corrections with exponent y4 on the self-dual line.

IV. NUMERICAL RESULTS

In this section we report some numerical results sup-
porting our hypothesis of an emerging XY multicritical-
ity at the MCP, as discussed in the previous sections.
For this purpose, we present FSS analyses of MC simu-
lations of the unitary-gauge model (6), using a standard
Metropolis upgrading of the discrete spin link variables44.
We consider cubic systems of size L with periodic bound-
ary conditions.
We perform simulations along the self-dual line u1 = 0

and along the line u2 = 0, measuring the energy cumu-
lants defined in Sec. III B. We verify the predicted FSS
behavior, using the RG exponents y1 = 1.7639(11) and
y2 = 1.4888(2) of the XY universality class. We should
remark that the observation of the asymptotic scaling
behaviors predicted by the multicritical XY scenario is
made difficult by the existence of several sources of slowly
decaying scaling corrections. The leading ones decay very
slowly, as Lny3 ≈ L−0.108n with n = 1, 2, . . .. Then, we
should consider terms decaying as L−(y1−y2) ≈ L−0.28

[they are absent on the self-dual line because of Eq. (35)],
as L−2(y1−y2) ≈ L−0.55, L−y4 ≈ L−0.62 (they are absent
along the self-dual line), L−y5 ≈ L−0.79. For m + n = 2
also the regular background plays a role, giving rise to
corrections of order L3−2y1 ≈ L−0.53.
Along the self-dual line the scaling field u1 vanishes.

Thus, according to the RG analysis reported in Sec. III B,
we expect that the asymptotic scaling behavior of the en-
ergy cumulants depends on the FSS variable x2 = u2L

y2 .
Along the self-dual line the numerical FSS analyses of
the energy cumulants Kn , An , Sn are consistent with the
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FIG. 3: Scaling behavior of the third cumulant K3 of the
Hamiltonian along the u1 = 0 line as a function of u2L

y2 .
We use the XY exponents y1 = 1.7639, y2 = 1.4888 and
κ⋆ = 0.7525.

predictions of the multicritical theory, see Eqs. (42) and
(43) for the total energy, once the XY values of the RG
exponents reported in Eqs. (50) and (51) are used. The
most accurate estimate of the MCP point is obtained by
biased analyses of the third cumulant A3 ∼ L3y2 of the
operator A, see Eq. (44), along the self-dual line, using
the XY values for the exponents. Fitting the data to
Eq. (47), we obtain

κ⋆ = 0.7525(1) , J⋆ = 0.22578(5) . (56)

This estimate of the MCP is consistent with the results
reported in Ref. 17. The analysis of the other cumulants
gives consistent results.
The accuracy of the description in terms of the mul-

ticritical XY predictions is demonstrated by the scaling
plots of the data of the cumulants using the XY expo-
nents and the estimates (56). In Fig. 3 we show data for
the third cumulant K3 of the Hamiltonian, which is ex-
pected to scale with the power law L2y1+y2 , cf. Eq. (43).
We observe a reasonably good scaling: scaling corrections
are hardly visible within the statistical errors. Note that,
according to the multicritical XY scenario, one expects
slowly decaying corrections with exponent |y3| ≈ 0.11,
cf. Eq. (53). We do not observe them here. In our
range of values of L, Ly3 varies only slightly, and thus it
is conceivable that they do not affect the divergent be-
havior of the observables, but only the accuracy of the
scaling functions. In Fig. 4 we report the scaling plots
of A3 and A4. Data are again in good agreement with
the theoretical predictions for their asymptotic scaling
behavior, cf. Eqs. (47). We do not report the second
cumulant A2, whose singular part should scale as L2y2 .
Since 2y2 ≈ 2.9775 < 3, its behavior is dominated by the
regular contribution, that scales as the volume L3.
Beside checking the consistency of the numerical data

with the multicritical XY scenario, we can also perform
unbiased fits, to determine y1 and y2. If we fit the third
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FIG. 4: Scaling behavior of cumulants A3 (top) and A4 (bot-
tom) along the u1 = 0 line as a function of u2L

y2 . We use the
XY exponents y1 = 1.7639, y2 = 1.4888 and κ⋆ = 0.7525.

and fourth cumulant of the Hamiltonian (they should
scale as K3 ∼ L2y1+y2 and K4 ∼ L4y1, respectively) we
obtain 2y1 + y2 = 5.0(1) and 4y1 = 7.0(1), which are
consistent with the predictions 2y1+y2 ≈ 5.02 and 4y1 ≈
7.06. The exponent y2 can also be estimated from An.
We obtain y2 = 1.495(10) and y2 = 1.48(2) from A3 and
A4, respectively. The agreement with the conjectured
XY values is quite good.
We also performed simulations along the u2 = 0 line,

see Eq. (23), using the estimate κ⋆ = 0.7525 obtained
from the FSS analyses along the self-dual u1 = 0 line.
Along the u2 = 0 line, the asymptotic FSS of the cumu-
lants of the total energy is that given in Eq. (38), i.e.

Kn ≈ Lny1Kn(x1, 0) . (57)

Note that, for n odd, consistency with the FSS be-
havior along the self-dual line, see Eq. (43), requires
Kn(0, 0) = 0. The data are plotted in Fig. 5, We ob-
serve a nice collapse of the data, again fully supporting
the multicritical XY scenario.
Finally, we also check the scaling behavior of the third

cumulants of A and S along the u2 = 0 line, in Fig. 6.
The scaling behavior of the cumulants of A is given in
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FIG. 5: Scaling plot of the second cumulant K2 (bottom)
and of the third cumulant K3 (top) of the Hamiltonian along
the u2 = 0 line, using the XY exponent y1 = 1.7639 and
κ⋆ = 0.7525. Data confirm the scaling prediction, Eq. (57) .
Notice that the error bars of K3 for u1L

y1 & 1 may be under-
estimated. In this region of the phase diagram we observe an
increasing inefficiency of the MC algorithm.

Eq. (47). It depends on f0n(x1, 0) which is always an
even function of x1. The data shown in the top Fig. 6
are definitely consistent within the errors. As for the cu-
mulants of S, they scale as reported in Eq. (48). Relation
(35) implies that the odd (resp. even) cumulants are odd
(resp. even) functions of x1. Again, this is confirmed by
the data shown in the bottom Fig. 6. In particular, the
ratio S3/L

3y1 is consistent with zero at the critical point
x1 = 0.
Note that statistical errors of the MC simulations along

u2 = 0 line increase significantly in the region x1 & 1.
The link update algorithm for the model (6) becomes
indeed less efficient as κ and J are increased. Autocor-
relation times increase by more than one order of mag-
nitude, likely due to a different dynamic regime related
to the presence of relevant nonlocal configurations, which
are hardly modified by local moves.
The results we have presented here complement those

reported in Ref. 17, which were already providing a re-
markable evidence of the multicritical XY behavior (al-
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FIG. 6: Scaling plot of the third cumulants A3 (top) and
S3 (bottom) of the operators A and S along the u2 = 0 line,
using the XY exponents y1 = 1.7639 and y2 = 1.4888, and
κ⋆ = 0.7525.

though the authors were quite skeptical on its inter-
pretation in terms of a multicritical XY behavior). In
particular, their estimates of the multicritical exponents
y1 = 1.778(6) and y2 = 1.495(9) (other compatible, but
less precise, results were also reported in Refs. 10,13)
are in substantial agreement with the XY predictions
(50) and (51). The small difference in the estimate of
y1 can be easily explained by the very slowly decaying
scaling corrections predicted by the multicritical XY sce-
nario, that make a precise determination of the universal
asymptotic quantities very hard. The leading one van-
ishes as L−0.108, so that, to reduce it by a factor of two,
the lattice size must be increased by a factor of 600, which
is unattainable in practice.

Overall, we believe that the numerical results pre-
sented in this paper, and those already reported in
Ref. 17, provide strong evidence of the multicritical XY
scenario put forward in the previous sections.
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V. CONCLUSIONS

We study the multicritical behavior of 3D Z2 gauge
Higgs model at the MCP, where one first-order transi-
tion line and two continuous Ising transition lines meet,
as sketched in Fig. 1. The duality properties of the model
play a key role in the phase diagram, and in determin-
ing the main features of the multicritical behavior at the
MCP located on the self-dual line.
We exploit duality to identify the scaling fields asso-

ciated with the relevant RG perturbations at the MCP,
and outline the corresponding multicritical scaling be-
haviors. Moreover, we present arguments supporting the
identification of the multicritical universality class with
the one controlled by the stable XY fixed point of the 3D
multicritical LGW field theory (49), with two competing

scalar fields associated with the continuous Z2 transition
lines meeting at the MCP. The XY nature of the MCP
implies an effective enlargement of the symmetry of the
multicritical modes, to the continuous group O(2).

We have also reported numerical FSS analyses of sev-
eral energy cumulants. The results are in good agreement
with the theoretical predictions based on the multicritical
XY scenario. We believe that our numerical results, to-
gether with those already reported in the literature, see,
in particular, Ref. 17, provide a strong evidence in favor
of the multicritical XY scenario at the MCP. Of course,
this picture calls for a deeper understanding of the mech-
anisms that combine the local and nonlocal critical modes
of the Z2 gauge Higgs model to give rise to the multicrit-
ical XY behavior, entailing an effective enlargement of
the symmetry at the MCP, to the continuous group O(2).
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