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Abstract: Thyroid cancer is the most common (~90%) type of endocrine-system tumor, accounting for
70% of the deaths from endocrine cancers. In the last years, the high-throughput genomics has been
able to identify pathways/molecular targets involved in survival and tumor progression. Targeted
therapy and immunotherapy individually have many limitations. Regarding the first one, although
it greatly reduces the size of the cancer, clinical responses are generally transient and often lead to
cancer relapse after initial treatment. For the second one, although it induces longer-lasting responses
in cancer patients than targeted therapy, its response rate is lower. The individual limitations of
these two different types of therapies can be overcome by combining them. Here, we discuss MAPK
pathway inhibitors, i.e., BRAF and MEK inhibitors, combined with checkpoint inhibitors targeting
PD-1, PD-L1, and CTLA-4. Several mutations make tumors resistant to treatments. Therefore, more
studies are needed to investigate the patient’s individual tumor mutation burden in order to overcome
the problem of resistance to therapy and to develop new combination therapies.

Keywords: thyroid cancer; immunotherapy; new checkpoint inhibitors; tyrosine kinase inhibitors;
PD-1 inhibitors; PD-L1 inhibitors

1. Introduction

Thyroid cancer (TC) is the most common (~90%) type of endocrine system tumor [1],
accounting for 70% of the deaths from endocrine cancers [2]. Over the past two decades, its
incidence has increased [3,4]. Among the risk factors, we find the following: female sex,
history of goiter or thyroid nodules, family history of TC, radiation exposure, obesity, and
low-iodine diet [5].

Although TC occurs more frequently in women than in men (three to four times
more), it is more aggressive in men. In fact, men show more advanced disease and lower
survival rates [6]. The main histologic types of TC are the following: (a) differentiated TC
of follicular origin (DTC)—papillary (PTC, 80%), follicular (FTC, 11%), and Hürthle cells
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TC; (b) medullary TC (MTC, ~4%) (developed from C cells); and (c) anaplastic TC (ATC)
(2% of all TCs) [7]. Poorly differentiated TC (PDTC) and ATC together represent about
5–10% of all TCs [8] and are responsible of most deaths [9–11].

Surgery is the principal therapeutical strategy in patients with DTC and MTC [12].
In DTC patients, after thyroidectomy, radioactive iodine (RAI) is used for the ablation of
residual normal thyroid or residual metastatic tissue [13,14]. The subsequent follow-up is
important to detect possible persistent/recurrent disease, and it includes neck ultrasound
and basal/thyroid-stimulating hormone (TSH)-stimulated thyroglobulin (Tg) dosage, usu-
ally every 3–6 months during the first year, and then at different timings, which depend on
the initial risk evaluation [15–17].

TCs range from indolent cancers, usually with low mortality, to very aggressive ones
(for example, ATC) [18]. DTC represents more than 90% of TCs; in these cases, patients
have a normal life expectancy [18]. In fact, only about 5% of DTC patients report metastases
on lung, bone, or other sites at the diagnosis, and during the follow-up, ~15% of them show
relapse in thyroid tissue or lymph nodes. In this case, the survival rate at 10 years decreases
from 70% to 50% [19,20]. The progression of DTC causes the thyroid cells to lose the ability
to capture iodide, thus becoming RAI-refractory. This affects the prognosis in a negative
manner [19–21].

In the event of failure of RAI and TSH suppressive thyroid hormone (TH) treat-
ment [22], metastatic DTC patients are treated with other therapeutic strategies, such as
surgical resection, chemotherapy, and external beam radiotherapy (EBRT). However, they
can lead to significant collateral adverse events (AEs) and actually have a palliative role,
without prolonging survival whether used alone or in combination [23].

In recent years, new discoveries have been performed in the knowledge of the molecu-
lar/genetic basis of TC progression.

Most TCs are characterized by dysregulations involving the mitogen-activated protein
kinase (MAPK) and phosphatidylinositol-3 kinase/mammalian target of rapamycin/protein-
kinase B (PI3K/mTOR/Akt) signaling pathways that are crucial in the regulation of cellular
proliferation [24,25].

MAPK hyperactivation is crucial in PTC initiation through point mutations of the
BRAF oncogene. BRAF, a member of the RAF family of serine/threonine protein ki-
nases downstream of RAS, is mutated with a higher prevalence in PTC (29–83%) [26–29].
PI3K/mTOR/Akt pathway activation has a central role in FTC development. Activat-
ing RAS mutations are found more frequently in FTC patients (28–68%), in up to 43% of
follicular-variant PTCs (FVPTCs) [30], and in up to 47% of all non-invasive FVPTCs [31].

Additional mutations on other pathways, i.e., p53 and Wnt/β-catenin, have been
described in case of TC progression and dedifferentiation to PDTC and ATC. Recent
telomerase reverse transcriptase (TERT) promoter mutations have been reported in all
histological subtypes of TC, with a significantly higher prevalence in aggressive and
undifferentiated tumors, suggesting their role in TC progression [32].

New drugs, such as tyrosine kinase inhibitors (TKIs), have been described as emerging
new therapies for progressive, aggressive, and refractory tumors. They are able to inhibit
the oncogenic kinases (such as v-Raf murine sarcoma oncogene homolog B (V600EBRAF)
and rearranged during transfection (RET)/PTC) or to inhibit the signaling kinases, such as
Vascular Endothelial Growth Factor Receptor (VEGFR) or Platelet-Derived Growth Factor
Receptor (PDGFR), that are implicated in the cell growth [33–37].

Most of these molecular targets might be new diagnostic/prognostic markers and
could be targeted by new oncogenic therapies for TC [33,34,36].

In the last years, high-throughput genomics has been able to identify pathways/molecular
targets involved in survival and tumor progression, revolutionizing personalized medicine.
In the past, the therapies of TC were based on tumor type and histology; however, since
several mutations make tumors resistant to conventional and already known treatments,
recent approaches have focused on specific gene mutations and their dysregulation [38].
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This inherent cancer heterogeneity contributes to the ever-increasing development of
personalized and precision medicine. Personalized therapies may arrest tumor growth,
as well as enhance anticancer immunity in a more efficient manner. The synergy between
immunotherapies and targeted therapies leads to a personalized treatment. Targeted
treatment acts on different oncogenic proteins involved in cancerogenesis, such as those of
the MAPK pathways. Inhibitors against these pathways have led to promising results in
several types of cancer, such as TC, melanoma, pancreatic cancer, Non-Small-Cell Lung
Cancer (NSCLC), and colorectal cancer (CRC). A limitation of these targeted therapies is
that, despite the considerable cancer size reduction, clinical responses are usually transient
and often lead to cancer relapse after initial treatment. Although immunotherapy induces
longer-lasting responses in cancer patients than targeted therapy—in particular, one form of
immunotherapy, that is, the checkpoint blockade—its response rate is lower. The checkpoint
blockade acts on checkpoint proteins involved in the suppression of the immune system.
Individually targeted therapies and immunotherapies have many limitations, which can
be overcome by their combination [39]. Indeed, recent evidence of this combination is
represented by MAPK-targeted therapies, which can synergize with immune cells.

In this review, we discuss recent findings investigating combination strategies involv-
ing immune checkpoint inhibitors (ICIs) and TK or BRAF inhibitors in aggressive TC.

2. Methodology

The PUBMED database was searched by using the following search terms in the
English language: thyroid cancer, immunotherapy, new checkpoint inhibitors, tyrosine
kinase inhibitors, BRAF, MAPK, MEK, aggressive thyroid cancer, PD-1 inhibitors, PD-L1
inhibitors, and CTLA-4. The reference lists of selected articles were screened for additional
relevant studies. Data from eligible studies were extracted and reviewed by the authors.

3. BRAF in TC
3.1. BRAF

The V600EBRAF mutation, characterized by the substitution of glutamate with valine, is
found in about 45% of PTCs (especially tall cell variants and classic papillary) and in 25% of
ATCs [11,40]. This mutation, which causes the phosphorylation of a lot of targets (including
mitogen activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK))
by the activated BRAF kinase [41], is associated with malignant features, such as cancer
aggressiveness and poor prognosis (larger tumoral size, metastases to lymph node, or
distant) [42]. Regarding the prognostic role of the V600EBRAF in PTC, there are studies
showing contrasting results: (1) after adjustment for different risk factors (age, presence
of lymph node or distant metastasis, and extra-thyroidal invasion), a large multicenter
retrospective study showed no associated risk [43]; (2) a retrospective study on PTC patients
showed different rates of cancer relapse in presence or absence of V600EBRAF mutation
(25% vs. 9.6%) [44].

3.2. Sorafenib in Aggressive DTC

Sorafenib (BAY 43–9006) is a multitarget TKI, able to inhibit several kinases, including
RAF, RET, VEGFR-2 and -3, PDGFR, and KIT [45,46]. Sorafenib has been shown to exert
anticancer effects both in preclinical models of tumor xenograft (such as breast cancer,
colon, and non-small-cell lung) and in vitro by inhibiting TPC1 and TT growth, which
carry the RET/PTC1 mutation and C634W RET, respectively [47]. It causes antiproliferative
and antiangiogenic effects [48]. Its use has been approved by the FDA in the treatment of
renal cell and hepatocellular carcinoma, as well as of metastatic DTC. Administration is
performed orally (400 mg BID as maximum dosage), with a good patient tolerance.

Several studies have been conducted on sorafenib (Table 1).
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Table 1. In vivo studies on TC treated with different KIs.

Study Indication Main Results Reference

An open-label phase II study enrolled
55 metastatic RAI-refractory TC patients
(47% with PTC, 36% with FTC/Hürthle
Cell, 9% with PDTC/ATC, and 8% with

MTC) treated with sorafenib (400 mg
orally bid).

Metastatic
RAI-refractory TC

PFS was better in PTC/FTC patients with
V600EBRAF mutation than in wild type

(84 weeks vs. 54).
[49]

A phase II trial investigated sorafenib
(400 mg twice daily) to reinduce RAI

uptake in 31 patients treated for 26 weeks.
RAI-refractory DTC

The study reported partial response (PR)
(25%), stable disease (SD) (34%), clinical

response (59%), and progression-free
survival (PFS) (58 weeks). No reinduction

of RAI uptake was reported.

[50]

In a study, 13 patients with RAI-refractory
PTC or FTC received sorafenib.

RAI-refractory PTC or
FTC

The remission rate was 20%, with a
durable response rate in 66% and a
clinical benefit rate of 80%. Overall

survival (OS) was 67% at 2 years with a
PFS of 19 months.

[51]

In a UPCC 03305 phase II study,
55 patients with advanced TC (85% with
DTC/PDTC, 9% with ATC, and 6% with

MTC) were enrolled and treated with
sorafenib (400 mg bid).

Advanced TC (85%
with DTC/PDTC, 9%

with ATC, and 6%
with MTC)

DTC/PDTC patients had a higher PFS
with respect to the other TCs (96 vs.

93.6 weeks); in addition, 38% of them had
a PR, and 47% a SD.

[52]

In a phase II trial, 15 patients with
aggressive MTC and 19 with

RAI-refractory DTC were administered
with sorafenib (400 mg twice daily).

Aggressive MTC and
RAI-refractory DTC

The radiological response rate was 18%.
A patient with a mutated BRAF exon 15

had an important response after
3 months.

[53]

In a phase II study, 31 RAI-refractory
DTC patients received sorafenib

(400 mg bid).
RAI-refractory DTC

The 31% of patients achieved a PR and
42% had a SD, after a median follow-up

of 25 months. V600EBRAF did not
correlate with the progression of the

disease.

[54]

In a phase II trial, 20 ATC patients were
treated with sorafenib (400 mg bid). ATC

Patients reached a PR in 10% and SD in
25%. Only 20% of patients reached a

survival of 1-year, suggesting the
ineffectiveness of sorafenib in

ATC patients.

[55]

In a double-blinded randomized phase III
(DECISION) trial, 417 patients with
RAI-refractory, locally advanced or

metastatic DTC were enrolled, of which
207 received sorafenib and 210 received

a placebo.

RAI-refractory, locally
advanced or

metastatic DTC

PFS was higher in patients treated with
the drug than in those treated with
placebo (10.8 vs. 5.8 months). PFS
improved in all subgroups, with or
without mutations. AEs occurred in
98.6% of sorafenib-treated patients.

[56]

Outside of clinical trials, 62 patients were
treated with sorafenib (62%), sunitinib

(22%), and vandetanib (16%).

PTC, FTC, Hürthle
cell, PDTC, MTC

Among the 39 sorafenib and 12 sunitinib
treatments in DTC patients, partial

response rate was 15 and 8% respectively.
In the 11 MTC patients treated with

vandetanib, 36% had PR. Median PFS
was similar in second-line therapy

compared with first-line sorafenib or
sunitinib therapy (6.7 vs. 7.0 months) in
DTC patients, but there was no PR with
second- and third-line treatments. Bone

and pleural lesions were the most
refractory sites to treatment.

[57]

Off-label observational study. Sorafenib
400 mg twice daily was evaluated.

Therapy duration was 12 ± 3 months
(range 6–16 months).

Progressive
radioiodine resistant

metastatic TC

One patient showed a PR with tumor
regression of −35% six months after the
beginning of the treatment; five patients

exhibited SD, and two patients had
progressive disease (PD) and died.

[58]
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Table 1. Cont.

Study Indication Main Results Reference

A phase II trial investigated the effect of
sorafenib in patients with aggressive ATC

or MTC.

Aggressive ATC or
MTC

The study reported, (a) in ATC, a median
OS of 5.0 months and PFS of 2.8 months;

and (b) in MTC, an objective response
rate of 25% and disease control rate in

75%. It was concluded that sorafenib was
effective in MTC, but not in ATC.

[59]

In a phase II study, sorafenib was
administered to 36 patients with

metastatic TC (i.e., PTC, Hürthle cell,
FTC, or ATC) (200 mg twice daily per os.,
combined with intravenous temsirolimus

(25 mg weekly)).

Metastatic TC (i.e.,
PTC, Hürthle cell,

FTC, or ATC)
The study reported: 22% PR, 58% SD, and

3% PD. [60]

A meta-analysis investigated the safety
and efficacy of sorafenib in

RAI-refractory DTC patients.
RAI-refractory DTC Sorafenib improved PFS in comparison

to placebo. [61]

A study compared sorafenib or sunitinib
in 28 RAI-refractory metastatic DTC
patients (26 treated with sorafenib as
first-line therapy (8 patients switched

successively to sunitinib), and
2 with sunitinib).

RAI-refractory
metastatic DTC

PR rate and mean PFS were 30.7% and
10.8 months, respectively, for sorafenib,

and 37.5% and 6 months for sunitinib, as
a second-line therapy.

[62]

In a phase I study, 184 terminal patients
with inoperable solid tumors (carrying

the V600EBRAF mutation) received
dabrafenib (300 mg daily orally).

PTC

A total of 14/184 patients had PTC, and
nine of these survived for all the duration
of the study, showing PR in 33% of cases.

However, as reported by many other
clinical studies, BRAF-positive tumors

exhibited resistance to dabrafenib in 6 to
7 months.

[63]

In a case report, two patients with
V600EBRAF-positive ATC were
administered with dabrafenib.

V600EBRAF ATC
BRAF inhibitor monotherapy appears to

obtain only temporary clinical
improvement in ATC.

[64]

A woman with an ATC with V600EBRAF
mutation (treated with EBRT, and then
with pazopanib when the metastatic

disease progressed to the neck and lung,
with no benefits) was treated with

dabrafenib (150 mg bid) and trametinib
(2 mg/day).

V600EBRAF ATC
The treatment led to a PR in 2 weeks.
Then the disease progressed, and the

patient died upon 6 months.
[65]

In a phase II open-label trial, patients
with BRAF V600E-mutated ATC received

dabrafenib 150 mg twice daily and
trametinib 2 mg once daily until

unacceptable toxicity, disease
progression, or death.

V600EBRAF ATC
Good clinical effect and a good tolerance;

overall response rate of 69% (95% CI,
41–89%), with 7 ongoing responses.

[66]

Real-World Experience: ten patients
(eight BRAF wild type and two

V600EBRAF mutant tumors) were started
on lenvatinib, and six with

V600EBRAF-mutated tumors received a
combination of dabrafenib

plus trametinib.

ATC

In the entire cohort, 6/16 (38%) had a PR,
6/16 (38%) had SD, and 2/16 (12%) had

PD. Median follow-up time was
11.8 months. Median progression-free
survival was 3.7 months (CI 1.8–7.6) in

the entire cohort, 2.7 months for
lenvatinib, and 5.2 months for dabrafenib

plus trametinib. Median OS was
6.3 months (CI 1.8–7.6) for the entire

cohort, 3.9 months for lenvatinib, and
9.3 months for dabrafenib

plus trametinib.

[67]

In a phase II Rare Oncology Agnostic
Research (ROAR) basket study, thirty-six
patients with ATC received dabrafenib
(150 mg twice daily + trametinib 2 mg

once) until disease progression,
unacceptable toxicity, or death.

V600EBRAF ATC

The overall RR was 56%, including
3 complete responses; the 12-month

duration of response rate was 50%. OS
was 14.5 months, while PFS was 6.7. The

OS at 12 months was 43.2%, and at
24 months, it was 31.5%.

[68]
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An open-label phase II study enrolled 55 metastatic RAI-refractory TC patients
(47% with PTC, 36% with FTC/Hürthle Cell, 9% with PDTC/ATC, and 8% with MTC).
Progression-free survival (PFS) was better in PTC/FTC patients with the V600EBRAF muta-
tion than in the wild type (84 weeks vs. 54) [49].

A phase II trial investigated sorafenib (400 mg twice daily) to reinduce RAI uptake
in 31 patients treated for 26 weeks. It reported partial response (PR) (25%), stable disease
(SD) (34%), clinical response (59%), and PFS (58 weeks). No reinduction of RAI uptake was
reported [50].

In another study, 13 patients with RAI-refractory PTC or FTC received sorafenib [41].
The remission rate was 20%, with a durable response rate in 66%, and a clinical benefit rate
of 80%. Overall survival (OS) was 67% at 2 years, with a PFS of 19 months [51].

In the UPCC 03305 phase II study, 55 patients with advanced TC (85% with DTC/PDTC,
9% with ATC, and 6% with MTC) were enrolled. DTC/PDTC patients had a higher PFS
with respect to the other TCs (96 vs. 93.6 weeks); in addition, 38% of them had a PR, and
47% a SD. DTC/PDTC patients (66%) had at least one mutation (in particular, 11% RET,
45% BRAF, 9% PIK3CA, and 19% RAS mutations), whereas 17% of patients had multiple
mutations (60% in ATC) [52].

In another phase II trial, 15 patients with aggressive MTC and 19 with RAI-refractory
DTC were administered with sorafenib (400 mg twice daily). The radiological response
rate was 18%. A patient with a mutated BRAF exon 15 had an important response after
3 months [53].

In a phase II study, 31 RAI-refractory DTC patients received sorafenib (400 mg bid).
The 31% of patients achieved a PR and 42% had a SD, after a median follow-up of 25 months.
V600EBRAF did not correlate with the progression of the disease [54].

In a phase II trial, 20 ATC patients were treated with sorafenib (400 mg bid), reaching
a PR in 10%, and SD in 25%. Only 20% of patients reached a survival of 1-year, suggesting
the ineffectiveness of sorafenib in ATC patients [55].

In the double-blinded randomized phase III (DECISION) trial, 417 patients with
RAI-refractory, locally advanced, or metastatic DTC were enrolled, of which 207 received
sorafenib and 210 received the placebo. PFS was higher in patients treated with the drug
than in those treated with the placebo (10.8 vs. 5.8 months). PFS improved in all subgroups,
with or without mutations. AEs occurred in 98.6% of sorafenib-treated patients [56].

Further studies have confirmed the results obtained with sorafenib in metastatic and
progressive DTC [57,58].

Another phase II trial investigated the effect of sorafenib in patients with aggressive
ATC or MTC, reporting the following: (a) in ATC, a median OS of 5.0 months and PFS of
2.8 months; and (b) in MTC, an objective RR of 25% and disease control rate in 75%. It was
concluded that sorafenib was effective in MTC, but not in ATC [59].

In a phase II study, sorafenib was administered to 36 patients with metastatic TC
(i.e., PTC, Hürthle cell, FTC, or ATC) (200 mg twice daily per os., combined with intra-
venous temsirolimus (25 mg weekly)), with a 22% PR, 58% SD, and 3% progressive disease
(PD) [60].

A meta-analysis investigated the safety and efficacy of sorafenib in RAI-refractory
DTC patients, showing that sorafenib improved PFS in comparison to the placebo [61].

A study compared sorafenib or sunitinib in 28 RAI-refractory metastatic DTC pa-
tients (26 treated with sorafenib as first-line therapy (eight patients switched succes-
sively to sunitinib), and two with sunitinib). The PR rate and mean PFS were 30.7%
and 10.8 months, respectively, for sorafenib, and 37.5% and 6 months for sunitinib, as a
second-line therapy [62].

3.3. Dabrafenib and Trametinib

Dabrafenib (GSK2118436) is a BRAF kinase inhibitor [63], whose antiproliferative effect
has been shown in vitro in V600EBRAF melanoma and in human colon tumor xenografts [69].
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Trametinib (trade name Mekinist) is a MEK inhibitor drug with anticancer activity. It
inhibits MEK1 and MEK2. Trametinib showed encouraging results for metastatic melanoma
carrying the V600EBRAF mutation in a phase III clinical trial.

In 2018, the combination of dabrafenib and trametinib was approved by the FDA for
the treatment of locally advanced, unresectable, and metastatic V600EBRAF-mutated ATC,
with no possibility of loco-regional treatment.

Trametinib and dabrafenib activity was demonstrated by several studies (Table 1).
In a phase I study, 184 terminal patients with inoperable solid tumors (carrying the

V600EBRAF mutation) received dabrafenib (300 mg daily orally). A total of 14/184 patients
had PTC, and nine of these survived for all the duration of the study, showing PR in 33%
of cases [63]. However, as reported by many other clinical studies, BRAF-positive tumors
exhibited resistance to dabrafenib in 6 to 7 months. To circumvent this problem, dabrafenib
was used in combination with trametinib [70], a combination that was approved by the
FDA in 2014 for the treatment of metastatic melanoma BRAF-V600E/K-positive [71].

Two patients with V600EBRAF-positive ATC were administered with dabrafenib, and it
was concluded that BRAF inhibitor monotherapy appears to obtain only temporary clinical
improvement in ATC [64].

In a woman with an ATC with V600EBRAF mutation (treated with EBRT, and then
with pazopanib when the metastatic disease progressed to the neck and lung, with no
benefits) the treatment with dabrafenib (150 mg bid) and trametinib (2 mg/day) led to a PR
in 2 weeks. Then the disease progressed, and the patient died upon 6 months [65].

Moreover, another study reported a good clinical effect and a good tolerance in ATC
patients with V600EBRAF mutation, showing an overall response rate of 69% (95% CI,
41–89%), with seven ongoing responses [66].

Among 16 ATC patients (10 treated with lenvatinib, and 6 BRAF mutated patients
with dabrafenib/trametinib), survival improved in the latter group of patients vs. those
treated with lenvatinib [67].

Another study reported the efficacy and safety of dabrafenib plus trametinib in the
ATC cohort of the phase II Rare Oncology Agnostic Research (ROAR) basket study. Thirty-
six patients with ATC received dabrafenib (150 mg twice daily + trametinib 2 mg once)
until disease progression, unacceptable toxicity, or death. The overall response rate was
56%, including three complete responses; the 12-month duration of response rate was 50%.
The OS was 14.5 months, while the PFS was 6.7. The OS at 12 months was 43.2%, and at
24 months, it was 31.5% [68].

4. Immune Checkpoint Blockade

The goal of cancer immunotherapy is to improve the immune system ability to destroy
cancer cells. The first protocol used involved the use of interleukin 2 (IL-2) for the treatment
of metastatic melanoma [72]. IL-2 was able to enhance T-cell activation in a nonspecific
way [73]. A high dosage of IL-2 is now not widely used as monotherapy, due to severe
toxicity and low response rates [74]; on the contrary, IL-2 has been shown to be more
effective when administered at a low dosage together with other treatments (e.g., adoptive
cell transfer) [75].

Immune checkpoints, whose main role is to reduce the immune cell activation in
order to keep the homeostasis of the immune system and inhibit the autoimmune process,
represent an area for which new therapeutic strategies are emerging. Inside the tumor
microenvironment, cancer cells upregulate the molecules of immune checkpoint in order
to suppress the antitumor immune system response [76]. Specific monoclonal antibodies
(mAbs) against immune checkpoints could be used as a strategy to invert the suppression of
cancer-specific immune cells, such as T cells and natural killer (NK) cells [77,78]. Recently,
Ribas et al. have demonstrated the efficacy of mAbs against immune checkpoint receptors,
such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death
1 (PD-1), and programmed cell death protein ligand (PD-L1) to treat multiple advanced
cancers, such as NSCLC, melanoma, bladder, and head and neck cancers [79].
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5. Immunotherapy and Targeted Therapy Combination in other Solid Cancers

Many cancers are able to evade cell death through the suppression of the immune
system. One mechanism is the activation of the expression of PD-L1 by cytokines (e.g., IFN-
gamma) released inside tumor-infiltrating lymphocytes (TILs). BRAF inhibitor-resistant
melanoma cell lines, in which an increased expression of PD-L1 occurs, have shown the
ability to evade the host’s immune system [80]. However, during the initial treatment
stages, MAPK and BRAF inhibitors could boost the immune response against cancers,
unless the patient develops resistance.

Intratumoral infiltration of T cells can be improved by BRAF and MEK inhibitors.
Many studies have demonstrated an increase of T cells in BRAF-mutated melanomas after
MAPK-pathway-inhibitors treatment, even if there is a loss of this increase with the pro-
gression of the therapy. CD8-effector T cells may be protected against death via stimulation
of chronic T-cell receptor by MAPK-pathway inhibitors. The immune-stimulatory effects
of MEK inhibitors include the increase of the expression of melanocyte-derived antigen,
the increase of T-cell infiltration, and the reduction of the interaction among tumor cells
and M2-like macrophages. Increased levels of cancer antigen could enhance antitumoral
T-cell responses [80]. Nevertheless, MEK inhibitors can adversely affect the proliferation
and viability of naive T cells and the secretion of IFN-gamma.

MAPK inhibitors can stimulate transient responses. It was demonstrated that melanoma
patients with BRAF mutation show some short-term advantage after targeted treatments
(e.g., MAPK inhibitors). On the contrary, it was suggested that immunotherapies such as
immune checkpoint blockades are able to stimulate longer-term responses in about 1/3 of
patients [81]. In addition, it was shown that tumor immune infiltration and control could
be improved by short-term blockage of MEK and BRAF, together with anti-PD-1/L1 Abs,
in a CD8-T cells-dependent way. Monotherapies-related limitations could be bypassed
through the combination of MAPK inhibitors and ICIs.

The combination of ICIs (especially anti-PD-1/L1) with MEK and/or BRAF inhibitors
are now under evaluation through several clinical trials. The toxicity of each single agent,
if used as combined therapy, can only be evaluated with long-term studies. Atkins et al.
conducted a phase I study on melanoma, both BRAF-mutated melanoma and BRAF wild
type, which showed a tolerable safety profile for an anti-PD-L1 antibody when used
together with trametinib and dabrafenib [82]. A phase II study on advanced melanoma
patients (NCT02625337) investigated the combination of pembrolizumab with dabrafenib
and trametinib, given intermittently or continuously [83,84].

Optimizing the sequence in which ICIs and targeted therapies are given could have
potential benefits, as it could reduce the toxicity and costs related to simultaneous treatment
strategies used for long periods. Targeted therapies/immunotherapies integration can be
useful to overcome the limitations of the single therapeutic approach and to potentiate the
response to monotherapy.

Here, we discuss clinical trials conducted in patients with not TC cancers, such as
melanoma, NSCLC, and CRC (Table 2).

Table 2. Clinical trials conducted in patients with melanoma, NSCLC, and CRC.

National Clinical Trial
(NCT) Number Indication Drugs Phase Reference

NCT01400451 Melanoma Vemurafenib and ipilimumab I The study is
terminated [83,85–87]

NCT01673854 Melanoma Vemurafenib, followed by ipilimumab II The study is
completed [83,88]

NCT03235245 Melanoma
Ipilimumab and nivolumab preceded or

not by a targeted therapy with
encorafenib and binimetinib

II The study is in
recruiting phase [83]
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Table 2. Cont.

National Clinical Trial
(NCT) Number Indication Drugs Phase Reference

NCT02967692 Melanoma Spartalizumab/trametinib/dabrafenib III
The study is active,

not recruiting
[83,89,90]

NCT02902042 Melanoma Encorafenib/binimetinib/pembrolizumab I/II The study is
completed [83,91]

NCT02858921 Melanoma
Trametinib, dabrafenib and/or

pembrolizumab, administered before
surgery

II The study is active,
not recruiting [83]

NCT03991819 NSCLC Binimetinib and pembrolizumab I/Ib The study is in
recruiting phase [83]

NCT03600701 NSCLC Atezolizumab and cobimetinib II The study is in
recruiting phase [83]

NCT03581487 NSCLC Selumetinib, durvalumab, and
tremelimumab I/II The study is in

recruiting phase [83]

NCT03299088 NSCLC Pembrolizumab and trametinib Ib The study is active,
not recruiting [83]

NCT03225664 NSCLC Trametinib and pembrolizumab Ib/II The study is active,
not recruiting [83]

NCT04044430 CRC Binimetinib, encorafenib, and nivolumab I/II The study is active,
not recruiting [83]

NCT03428126 CRC Durvalumab and trametinib II The study is active,
not recruiting [83]

NCT03374254 CRC

Pembrolizumab and binimetinib, with
respect to the combination of

chemotherapy and pembrolizumab,
with/without binimetinib

Ib The study is active,
not recruiting [83]

5.1. Melanoma

Surgery is the primary therapeutic strategy used to treat patients with early stage
melanoma, but not in the case of advanced melanoma (because of the high rate of metasta-
sis). Patients with late-stage melanoma are usually treated with conventional chemotherapy,
even if the response rate is very poor (~5%) [92,93]. Recently, the strategy of combination
therapy (targeted therapies plus immunotherapies) allowed to improve the prognosis of
melanoma.

More than 50% of patients with melanoma carry the V600BRAF mutation, which causes
constitutive activation of the MAPK signaling [94]. In 2011 the FDA approved the use of
vemurafenib, a BRAF inhibitor, for patients with advanced melanoma, as a result of which
rates of OS and PFS improved significantly [95]. In 2013, the FDA approved dabrafenib as
another BRAF inhibitor; it has an efficacy similar to vemurafenib but with a lower frequency
of side effects. Other drugs combination, such as dabrafenib plus trametinib, are expected
to be associated with a higher response rate than dabrafenib monotherapy [96]. However,
these drugs allow to obtain remarkable clinical responses in the short-term, but only rarely
in long-term, due to the acquired resistance [97].

In addition to BRAF inhibitors, MEK inhibitors have been developed, including
trametinib. Trametinib was the first FDA-approved MEK inhibitor for the treatment of
advanced melanoma. In particular, it inhibits MEK1/2 [98]. For this kind of tumor, recently
the FDA also approved the combination of encorafenib (a BRAF inhibitor) and binimetinib
(a MEK inhibitor), and this combination is able to improve PFS and OS in patients with
BRAF-mutated melanoma [99]. A limitation of these treatments is that, after several months
of treatment, the rate of clinical responses tends to decrease [100].

Several clinical trials have investigated the combination of targeted therapies and
immunotherapies, specifically ICIs, in order to improve the clinical response (Table 2) [83].
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5.2. NSCLC

Lung cancer has a high frequency and is related to mortality regardless of gender.
Early stage (stages I, II, and IIIA) NSCLC is usually treated with surgical resection [101],
but in 80% of cases, lung cancers are diagnosed when they are already in an advanced
stage, and surgery is no longer indicated. Furthermore, tumor relapse may occur a few
years after surgical resection [102]. In patients with advanced NSCLC, chemotherapy is,
thus, the first-line therapy used [101].

For the treatment of NSCLC patients, immunotherapies have been developed. Several
clinical trials have demonstrated the efficacy of anti-PD-1/PD-L1 antibodies, with signifi-
cant responses and low toxicities [103]. Chemotherapy, which increases the expression of
PD-L1 on tumor cells and the number of TILs, has been demonstrated to have few effects
in patients characterized by elevated levels of PD-L1 and low levels of causative muta-
tions [104]; thus, the combination between ICIs and chemotherapy could have promising
clinical results [105,106].

In recent decades, therapeutic strategies targeting epidermal growth factor receptor
(EGFR) and anaplastic lymphoma kinase (ALK) mutations have made it possible to achieve
substantial advances in the treatment of NSCLC patients [107]. Most EGFR mutations,
including exon 21 L858R and exon 19 deletions mutations, cause the constitutive activation
of downstream pathways, such as MAPK, signal transducer and activator of transcription
(STAT), and PI3K [108].

Several clinical trials investigated the combining of MAPK inhibitors and ICIs (Table 2) [83].

5.3. CRC

CRC is the third most common cancer in the world [109]. The OS of metastatic CRC
patients is low. Surgery and subsequent adjuvant chemotherapy represent the standard
treatment [110,111]. Mutations on BRAF, KRAS, SMAD4, and p53 genes represent the
most common mutations, which have an important relevance in the development of CRC
metastasis [110].

ICIs which have shown to be effective in many types of cancer (anti-PD-1 mAb (pem-
brolizumab and nivolumab), anti-PD-L1 Ab (avelumab, durvalumab, and atezolizumab),
and anti-CTLA-4 Ab (tremelimumab and ipilimumab)), are not equally effective in treating
CRC [111]. Nevertheless, if they are used in combination with MAPK-pathway-targeted
therapy, they result in being more efficacious, as demonstrated by several clinical trials
(Table 2) [83].

6. Immunotherapy in DTC

As the tumor microenvironment is the primary scenario involved in tumor progres-
sion and treatment response, new therapeutic strategies target the TC immune panorama.
Immune checkpoints, such as PD-1 and its ligand PD-L1, and CTLA-4 inhibitors work
by altering the interaction immune system/cancer cells [112]. Several studies have inves-
tigated the PD-1/PD-L1 expression in TC for prognostic and diagnostic purposes [113].
Aghajani et al. have demonstrated the association of PD-L1 in TC with tumor relapse
and poor survival [114]. According to the TCGA database analyses, lymph node metas-
tasis, extrathyroid invasion, and shorter disease-specific survival are linked to increased
PD-L1 mRNA expression [115], as supported by two studies [116,117]. However, since
DTC has few mutations, it is poorly immunogenic. Indeed, it has been demonstrated that
TC responds poorly to immunotherapy with checkpoint inhibitors [118,119]. The efficacy
of immunotherapy could be improved by combined treatments, as evaluated in several
clinical studies conducted on solid tumors, such as TC [56,66,116,118,120–149].

7. Immunotherapy and Targeted Therapy in Aggressive TC

ATC is the rarest TC, but the most aggressive one, causing ~50% of the deaths due
to TCs. Median survival from the diagnosis is usually about 6 months, because of its
aggressiveness and the absence of an efficacious therapy [150].
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The standard treatment of ATC includes surgical debulking, accelerated hyperfrac-
tionated EBRT, and chemotherapy, which permit patients to reach about 10 months of
median survival. It is still challenging to predict the ATC patient clinical therapy respon-
siveness [150].

ATC shows a high frequency of V600EBRAF mutations, and it is associated with an
immunosuppressive microenvironment [151].

Combination therapy is particularly effective in de-differentiated tumors, such as
widely invasive Hürthle cell TC and ATC, in which there are a large number of mutations
that introduce immunogenicity [152,153], as suggested by some studies described below.

7.1. PLX4720

Gunda et al. have assessed the combined treatment of PLX4720 (V600EBRAF inhibitor)
and an anti-PD-1/PD-L1 Ab in an immunocompetent murine model of orthotopic ATC.
They conducted an immune profiling of myeloid and lymphoid lineage cells at the moment
of the maximum response to treatment and tumor regrowth. They demonstrated that the
combined treatment results in a significant increase in the mouse survival. At the moment of
maximal cancer reduction, a decrease of Ki67 proliferative index, an increase of tumor CD8+
cytotoxic T cells, FoxP3+ Tregs, and NK cells, as well as an increase of granzyme B staining
and IFN-gamma production, occur, confirming the increasing of cytotoxicity. However,
no complete responses were observed, and tumor regrowth emerged after 2–3 weeks of
combination therapy, rapidly causing the mouse to die. Cancer regrowth was associated
with decreases in CD8 + T cells and NK cells and loss of granzyme B and IFN-gamma
production, confirming the attenuation of inflammation. At the time of maximum tumor
shrinkage, there was an increased number and cytotoxicity of CD8 + T cells and NK
cells, an increased number of M1 polarized tumor-related macrophages (TAMs) and a
decreased number of myeloid-derived suppressor-like cells. On the contrary, at the time of
tumor regrowth, there was a decrease in TAMs and an increase in M2 polarization. Hence,
the combined treatment drastically decreased tumor volume, prolonging survival and
improving the anticancer immune profile in a mouse ATC model, but tumor regrowth was
inevitable [151].

7.2. Pembrolizumab

Kinase inhibitors (KIs) have demonstrated a good effectiveness in the ATC treatment;
nevertheless, these cancers eventually acquire KI resistance, and patients succumb to their
own disease.

KIs targeting BRAF, MEK, and VEGFR have shown promise in managing ATC in
a clinical study and in the real world [66,67,116,154]. Although these therapies manage
to improve the median OS of ATC patients, the tumors eventually show resistance, with
subsequent disease progression and death [12,42]. It is therefore a priority to identify rescue
treatments for cancers that progress despite KI treatment.

ATC tumors express the PD-L1 on the tumor surface; there is a diffuse infiltration of
the tumor with T-lymphocytes bearing the PD-1 receptor. Pembrolizumab, a mAb against
the PD-1 receptor, represents a safe and effective salvage therapy to be added to KI therapy
at the time of progression, since the immune microenvironment could be less permissive at
the time of progression on KI therapy [155].

Cabanillas et al. reported the case of an unresectable/end-stage/locally advanced ATC
patient who was treated at first with trametinib and dabrafenib, and subsequently with
pembrolizumab. A PR was reached, allowing surgical resection and chemoradiation [156].

Iyer et al. have explored the effectiveness of pembrolizumab when added to KIs at the
moment of ATC progression in patients of MD Anderson Cancer Center between August
2016 and August 2017. BOR was evaluated through the RECIST v1.1 criteria: 42% of
patients (5/12) with PR, 33% (4/12) with SD, and 25% (3/12) with PD. Then it was assessed
the PFS from the beginning of pembrolizumab, as well as median OS from the beginning
of KIs, and from the addition of pembrolizumab: from the start of KIs, the median OS
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was 10.43 months; after the addition of pembrolizumab, the PFS and median OS were
2.96 months and 6.93 months, respectively. These results suggest that pembrolizumab may
represent an effective rescue treatment to add to KIs as cancers progress. Furthermore,
the addition of pembrolizumab could occur at any time during KI treatment in order
to maximize benefit from the combination treatment. Nevertheless, better therapeutic
strategies that include immunotherapy should be investigated for the treatment of patients
with ATC [155].

A recent study described six consecutive BRAF-mutated ATC patients with loco-
regional advanced disease who received dabrafenib and trametinib, surgical treatment, and
adjuvant chemoradiation. Among them, three were also administered with pembrolizumab.
At 6 months, the OS was 100%, and it was 83% at 1 year [157].

Sukari et al. [158] recently reported two cases of ATC in order to underline the impor-
tance of histopathological diagnosis of tissues, the role of molecular tests, and the potential
role of ICIs:

— Case 1: A 49-year-old man with ATC (diagnosed after a re-review of the histological
examination) was treated with concurrent chemotherapy and radiation therapy after
surgical resection. A post-treatment PET-CT scan did not highlight residual FDG
uptake. The patient was monitored for 14 months, when he suddenly experienced
pain in his left arm that later turned out to be a humerus metastasis with a pathological
fracture. The histological investigation of metastasis during surgical fixation detected
the presence of poorly differentiated malignant cells in line with ATC, so the patient
was treated with pembrolizumab (three cycles). Nevertheless, diffuse bone metastases
and a new liver injury were later individuated.

— Case 2: A 61-year-old woman was diagnosed with ATC with extrathyroid expansion
and metastasis in lymph nodes and lungs. She was treated with concurrent chemother-
apy plus radiation therapy. A post-treatment PET-CT scan highlighted residual FDG
uptake in the pulmonary nodules. Lenvatinib was then initiated until the V600EBRAF
mutation was identified in the tumor. After that, she was treated with dabrafenib
150 mg PO BID and trametinib 2 mg PO daily. A reduction of the size of the left lung
lesion was observed at nine months. Two months later, for the appearance of the
metastasis in the right lung, the patient initiated carboplatin, paclitaxel, and pem-
brolizumab; after four cycles of this therapy, she continued dabrafenib plus trametinib,
showing a stability of the disease for 10 months.

Sukari et al. have finally affirmed that ATC immunotherapy with single agent could
not be as efficacious (case 1) as in combination (case 2), while other case reports have
reported the success of ICIs as single agent [158,159].

Kulkarni et al. reported a case of a 71-year-old ATC man with aggressive metastasis
of the lung and V600EBRAF mutation, who initiated dabrafenib 150 mg PO (twice) and
trametinib 2 mg PO. After 6 weeks, he presented with fever, and, for this reason, the therapy
was stopped and restarted 10 days after with reduced dose of dabrafenib 100 mg PO BID
and trametinib 1.5 mg PO that were continued for 6 weeks until the appearance of side
effects (recurrent fevers, hearing loss, and uveitis). Since his tumor had a PD-L1 expression
of 90%, pembrolizumab was given, but after five cycles, a recurrence of ATC was observed
in the right lung and mediastinal lymph nodes [160].

7.3. Spartalizumab

Capdevila et al. conducted a phase I/II study on patients with ATC who were treated
with spartalizumab. They enrolled 42 patients with locally advanced and/or metastatic
ATC. Patients received 400 mg of spartalizumab intravenously once every 4 weeks. The
overall RR was obtained according to RECIST v1.1 criteria.

The overall RR was 19%, with a complete response in three patients and a PR in
5 patients. The RR were higher in PD-L1–positive (8/28; 29%) vs. PD-L1–negative (0/12;
0%) patients. Responses were observed in patients with or without BRAF mutation, with a
1-year survival of 52.1% in patients PD-L1–positive.
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Side effects of spartalizumab were similar to those of other PD-1-targeting mAbs [161–163].
This was the first clinical trial to show the responsiveness of ATC to PD-1 blockade [164].

7.4. Oncolytic Herpes Simplex Virus

About 30–60% of PDTCs and ATCs show mutations in the BRAF gene; however,
specific inhibitors that target oncogenic BRAF have shown a short-lasting therapeutical
benefit as single agents. This underlines the necessity for improved treatment strategies,
such as new combinations.

Using a V600EBRAF-driven mouse model of ATC, Crespo-Rodriguez et al. assessed
the therapeutic effectiveness of combining BRAF inhibition/oncolytic herpes simplex
virus (oHSV).

Samples from tumor-bearing mice were analyzed in order to immunologically charac-
terize the effects of various treatments.

The authors characterized the immune landscape in vivo after treatment with BRAF
inhibitor and found only few immune modifications. For this reason, they added on-
colytic virotherapy to BRAF inhibition in TC to obtain a more favorable tumor immune
microenvironment, as well as increase the inflammatory status of cancers and ameliorate
BRAF inhibitor therapy. In advance, they demonstrated that TC cells were susceptible
to oHSV infection and that this condition was related to the activation of the immune
cancer microenvironment in vivo. Subsequently, they demonstrated enhanced therapeutic
responses following the combination BRAF inhibition/oHSV in vivo, even if without syn-
ergistic effects in vitro, and confirmed that the dominant effect of oHSV in this setting was
immune-mediated.

The detected gene and protein expression data increased T-cell and NK-cell activation
in the cancer after combined treatment. However, the success of this association was
nullified after T cells or NK cells were depleted in vivo. Moreover, an upregulation of
PD-L1 and CTLA-4 after combined treatment and an improvement of combination therapy
by the blockade of the PD-1/PD-L1 axis or CTLA-4 have been demonstrated [165].

8. Conclusions

TC is the most common type of endocrine-system tumor [1], accounting for 70% of
endocrine-cancer deaths [2].

Recent discoveries have been performed in the knowledge of the molecular/genetic
basis of TC progression. New drugs, such as TKIs, have been described as emerging new
therapies for progressive, aggressive, and refractory tumors, since they are able to block
the oncogenic kinases or to block the signaling kinases associated with cell growth [33–36].

The high-throughput genomics have recently identified pathways/molecular targets
involved in survival and tumor progression.

Separately, targeted therapies and immunotherapies have many limitations. Clinical
responses to targeted therapy are generally transient and often lead to cancer relapse after
initial treatment; and immunotherapy has a low response rate.

These individual limitations can be overcome by combining them. Indeed, com-
bination therapies target signal transduction cascades required for tumor cell survival
and maintenance.

Since a lot of different mutations make tumors resistant to treatments, knowing that
the patient’s individual tumor mutation burden is important in selecting the optimal
personalized combination regimen. This can be an effective strategy to overcome the
problem of resistance to therapy and to develop new combination therapies.
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