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Abstract: Predictive Maintenance, Prognostics and Reliability Centered Maintenance 

approach are becoming more and more important in the railway sector to reduce costs of 

operation and increase reliability and safety. In fact they are fundamental to optimize the 

maintenance process, defining new measures and algorithms to locate faults, monitor health 

conditions of subsystems and estimate residual life of components.  

However there is a tradeoff to identify: new measures and new algorithms imply new 

sensors and new processing devices, and these items have their own cost and their own 

reliability; this issue has to be taken into account to evaluate the global benefit. 

In some cases, however, it's possible to use existing sensors and existing processing 

hardware to extract new information from already available data. It's clear that this is usually 

the best option because the benefit can be achieved with little or not cost at all. This paper 

describes the result of a study performed with the aim of detecting arcing events without the 

need of additional equipment mounted on board the train. A set of data relative to voltage and 

current collected by trains in high-speed lines together with a set of measurements coming 

from photosensors are available. The data are processed by the use of an advanced 

classification technique, namely Support Vector Machines, with the aim of extracting 

important information such as the time coordinate related to anomalies in the overhead 

contact line and the status of the contact strip of the pantograph. 

 



1. Introduction 

Modern high speed trains need a great amount of power and the condition of current 

collection are critical. Furthermore a severe failure in the current collection system can 

provoke great damage on the line and serious traffic disruptions. This requires a great care to 

ensure the efficiency of the contact strips, and implies a continuous cost due to their 

replacement. In many cases the contact strips are replaced well before their maximum wear 

limit to avoid risks because there is no measure to evaluate the residual life and their 

operating conditions. The analysis of the pantograph/catenary subsystem has thereforebeen a 

hot topic for several years, and is still the object of great interest in the scientific community; 

furthermore its breakdown would imply a high impact in the economy management of a 

railway system, and the planned maintenance (usually performed by periodic inspections 

along the line by the use of an inspection vehicle equipped for catenary checking) is highly 

expensive. In [1] the importance of condition monitoring and predictive analysis is well 

described and a set of techniques for the monitoring of different components of the railway 

infrastructure are described. 

High quality current collection is characterized by a continuous contact between the 

pantograph and the overhead line while poor contact behavior produces arcing, wear. etc. 

Some approaches analyze the mechanical behavior (i.e. vibrations) of the catenary, 

measured by experimental setup located either on a train or in a fixed place over the contact 

line [2] - [5]. This approach is very accurate when macroscopic defects are present while not 

always small defects are evidenced. In [6] a very interesting system is proposed for the 

condition monitoring of the pantograph – catenary system, still based on the presence of 

accelerometers, to be mounted directly on a train and integrated in a general data acquisition 

platform. 

Other experimental techniques have been proposed, in which the train is equipped with 

either a phototube or a photodiode capable of detecting electric arcing through the ultraviolet 

emission. In general a couple of twin phototube sensors are physically placed on the top deck 

of the locomotive at the front and rear part of the pantograph. The results are positive but this 



technique is not convenient for a large scale application because of economical reasons [7] –

[10]. 

Recently some attempts to analyze the collected current have been made; in particular, 

the Fourier Transform (FT) is used for the analysis of the current. The method explained in 

[11] gives only partial results, since the FT hides the information regarding time (i.e. the 

information regarding the location of the defect) and is not always effective, as it will be 

shown later. 

A noteworthy contribution to the research has been given in the past by the authors  for a 

dc railway system. The data obtained by a phototube are compared to the current collected by 

the train; an advanced data analysis technique based on wavelet expansion, makes it possible 

to detect and locate with high accuracy the presence of the welding effect by simply 

analyzing the collected current [12]. This is clearly a great improvement on previous 

techniques since it avoids the need of a photosensitive device.  

The authors have applied the same wavelet based technique and the Hilbert-Huang 

transform to the AC signals in  [13], but the results have not beenas promising as in the DC 

case, probably due to the higher complexity of the arcing phenomena  in AC (i.e. the arc does 

not always ignite at the same voltage and a nonlinear behavior can appear). For this reason  

the authors have investigated, in this work, other approaches, namely  Support Vector 

Machines (SVM). SVM are capable of classifying events when they can be trained on a 

statistically significant data set, and can be useful for such analysis since no physical 

knowledge of the phenomenon is requested, which is important in an industrial environment 

where the only important aspect is the efficiency of the preventive maintenance. The main 

goal is to train the SVM by using voltage and/or current data and phototube data; in this way 

the SVM (once trained) should be able to detect the presence of an electric arc by only 

working on voltage and/or current, without the need of the phototube. In this way, by 

processing data regularly available for high speed trains, it would be possible to obtain useful 

information on the pantograph/catenary state without the need of additional equipment or 

inspections.  



It is worth to note that at the author's knowledge, little or no previous works may be 

found in the literature reporting the use of supervised classification techniques to detect arcs 

in pantograph catenary systems directly from the currents and voltages measurements readily 

available on the train. In this regard, this work represents a first research step in this direction. 

In section II the basic principles of SVM classifications are outlined, then in section III 

the description of the results obtained by the analysis is given. In section IV a comparison 

between the proposed SVM approach and RBF networks is shown. 

 

2. Classification of time domain signals 

2.1 Data pre-processing 

Classification algorithms of time series in general do not use the raw data signals in the 

time domain, but require a reduced dimensional input vector that represents each time series. 

To obtain an input dataset, a feature extraction has been performed on the time domain 

signals, which is based on the calculation of the periodogram. Given a generic time series 

, at times , the periodogram  at frequencies  is defined as  

    (1) 

Periodogram analysis gives good results in supervised and unsupervised classification of 

time series data [10], and it is also very easy to compute using an FFT algorithm. In general a 

reduced number of samples of the periodogram gives a good representation of the time series, 

in particular a metric based on truncated periodogram in logarithmic scale is proposed in [14]. 

The time position of a number of arc events  is detected by using the 

photosensor signal, and for each occurrence we compute the periodogram of the 2m samples 

time window  of the voltage or current signal. These frequency domain 

signals are used to identify the arc events. A number of  N periodogram signals that are not 

correlated with arc events are also computed to represent the signal in the case that the arc is 

not present. The total number of input data signals is then  2N. 
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The logarithmic periodogram signals  are truncated to their first p 

components, to form the input vectors , , while the target vector components 

 indicates if the input  is related to an arc event or not, correspondingly 

. 

 

2.2 Support Vector Machine based classification 

The Support Vector Machine is a supervised classification technique [15]. The 

formulation of the SVM classifier used in this work is the soft margin nonlinear classification 

[15],[16], which is based on the following optimization problem (primal problem): 

   (2) 

where the nonlinear transform  maps  into a higher dimensional feature space, and 

 is the regularization parameter. The vector  denotes the normal vector to the optimal 

separation hyperplane in the transformed space, whereas slack variables  measure the 

degree of misclassification of the vectors . The decision function is then given by 

     (3) 

The solution of the constrained problem in (2) is obtained by the method of Lagrange 

multipliers, in particular by solving the dual problem which is in the form: 

     (4) 

where  is the vector of the Lagrange multipliers, and  Q is a positive semidefinite 2N 

by 2N  matrix , where k is the kernel function that represents the dot product 

in the transformed high dimensional space.  
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The advantages of using the dual form are that the calculation of the transform  is 

not needed, as only the calculation of kernel function is required (kernel trick), and that the 

slack variables  vanish, with the constant C  appearing only as an additional constraint on 

the Lagrange multipliers.  

After problem (4) is solved, only a few  will be greater than zero, and the 

corresponding  are the support vectors. Using the primal - dual relationships 

theoptimal is obtained as: 

     (5) 

The bias b is calculated as 

   (6) 

where  is the set of the support vectors indices, and  is the number of 

support vectors. 

The dot product  needed for calculating the bias and also decision function (3) is 

calculated using the kernel trick 

   (7) 

In this way the direct calculation of  is never required and the classification 

function (3) becomes 

    (8) 

The solution of the problem (4) is performed by means of Sequential Minimal 

Optimization (SMO) [17]. 

The SVM method presented requires the selection of the kernel, and the parameter C . In 

this work we use the Gaussian kernel, or radial basis function RBF,  
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   (9) 

which requires the choice of the parameter . 

 

3. Data Analysis 

3.1 Data description and pre processing 

The data available for the analysis are relative to 7 test runs of 25 kV a.c. high speed 

trains, operated on regular passengers railway tracks. The trains are equipped with voltage 

and current recording instruments (which are always present on high speed trains), and two 

phototubes revealing  the presence of the electric arcs. In particular, for one out of seven test 

runs (named run #1) voltage and current are sampled at 5 kHz, while for the other 6 runs 

(named runs #2 to #7) they are sampled at 20 kHz. The authors will take into account this 

difference in the results section, since it would be important that the proposed technique can 

be implemented economically, hence a lower sampling rate for voltage and current would 

mean cheaper and less complex recording instruments. 

In particular, for each test run the data available are: 

• Voltage. 

• Two currents (due to the fact that there are two parallel circuits feeding the 4 

electrical engines). 

• Two phototubes (looking at the same pantograph from both directions). 

In each test run the above described quantities have been recorded for approximately 25 

minutes. 

In Figure 1 the signal of the phototube in presence of an arc is shown, while in Figures 2 

and 3 the corresponding voltage and current are shown. It is evident, comparing Figures 1 to 

3, that a direct analysis of current or voltage would not lead to any significant conclusion. 

Figure 4 shows the logarithmic periodogram of four current signals where p=11 and 

m=50; Two signals correspond to strong arc events and two signals correspond to time 

intervals where no arc effect is present in the phototube output. It can be observed from 

kRBF xi,x j( ) = exp −γ xi − x j
2( )

γ



Figure 4 that cases 1 and 2 are very similar, yet they are related to opposite events while case 

3 presents significant differences to the other three cases. In general it is not trivial to relate a 

frequency pattern to the presence of an arc, this is why a straightforward use of the Fourier 

Transform does not often gives the desired answers for this particular problem. Therefore a 

classification procedure is necessary and would give potentially better results. 

Commonly, electric arcs whose durations are shorter than 5ms (according to the 

phototube measurement) are neglected when the data are used for the catenary status 

assessment. In this proposal we do not make this distinction, since the presence of shorter 

duration events might indicate performance degradation of the pantograph contact strip due to 

excessive wear; therefore each arc collected by a phototube is considered an important event 

to be identified and classified. 

Consequently a variable threshold is used to identify the arcs and the threshold is 

obtained by means of biasing a moving average of the photosensor signal, as shown in Figure 

5. Arcs (and its time coordinate) are identified when the signal of one of the two photosensors 

exceeds the threshold.  

 

3.2  Determining the most informative input signals  

In the first case study the photosensor, currents and voltage signals are sampled at 5 kHz 

and a total number of around 7�106 points are recorded for each signal; Figure 6 shows the 

complete signal relative to one phototube. As a first step the photosensors signals are 

analyzed in order to identify the arc events using the variable threshold method described 

above, where the moving average window is set to 6000 points, and the bias is selected in 

order to avoid the background noise. As a result a total number of arcs are 

identified using both phototubes, hence only the 0.3% of the recorded signal is affected by the 

presence of electric arcs. For each identified arc  we save its time position index ; 

in addition, a number  of time positions  for  where the arc is not present 

are randomly selected from the signal. Therefore the SVM for classification will be trained 

N = 22039

i =1…N ki

N ki i = N +1…2N



using  points, with two balanced classes. 

The scope of the classification is to detect the arc presence from the currents and voltage 

signals: once the SVM is trained with known data, it is able to assign an input time series 

(voltage and/or current) to one of the two classes (arc present or not present) without the need 

of the photosensor. 

Due to the big amount of data available from direct measurements (one voltage signal  

and two currents signals ) we need to determine which signals are more correlated to the 

arc occurrences; therefore as a preliminary analysis we train a SVM using different 

combinations of the input signals, in order to determine which combination gives higher 

accuracy results. 

As described in section 2.1 we associate each occurrence to the correspondent 

time series of  samples of the currents and voltage signals around the time positions . 

For each time series we calculate its logarithmic periodogram, and we truncate it to the first p 

components in order to obtain the SVM inputs. For this preliminary analysis we use  

and . Note that with this choice each time series has a length of , which 

corresponds to one period of the main signal. In this analysis we use base parameters for the 

SVM, with a Gaussian kernel, in particular , . 

To evaluate the accuracy of a SVM classification we use the n-fold cross validation (CV), 

which is defined as the ratio between the number of correctly identified points and the total 

number of points in test data, and averaging over n-folds. 

Table I shows the results of the 3-fold cross-validation using different input signals. From 

row #1 to row #4 the input vector is the truncated logarithmic periodogram of 2m samples of 

the indicated quantity; the sum of the two currents  is the signal which gives more 

accurate results. Rows #5 to row #8 show the results of the analysis performed by 

concatenating two different signals; in this case the input vector is the concatenation of the 
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logarithmic truncated periodograms of the signals, and in this case . The use of the 

combination of voltage and the sum of the currents gives the best result in our analysis (more 

than 86% of the events are correctly evidenced). 

In the last column we use the concatenation of the three signals (voltage and the two 

currents) obtaining the higher dimension of input vector (3p) leading to a value of .  

Table I 

Preliminary analysis 

Signal  3-fold CV 

 79.4236% 

 79.7276% 

 78.8723% 

 80.3061% 

 85.3925% 

 86.0368% 

 86.2614% 

 83.6865% 

 84.3671% 

 

3.3 Analysis of test run #1 

Following the previous results we search for the best SVM parameters using the best 

input configuration . 

As performance index we use now a 5-fold CV, and we perform a grid-search approach 

[18] to obtain the best pattern for different choices of the following parameters: 

• temporal window m = 50, 100,150,200 

• logarithmic periodogram truncation (frequency window): p = 6, 12 
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2p

γ = 1
3p

V1

I1

I2

I1 + I2

[V1, I1]

[V1, I2 ]

[V1, I1 + I2 ]

[I1, I2 ]

[V1, I1, I2 ]

[V1, I1 + I2 ]

C,γ( )



• kernel type: RBF, as in (9) or sigmoidal, namely  

Table II 

grid search for best accuracy 

Kernel Frequency 
window p 

Time 
window m 

5-fold 
CV 

RBF 6 50 87.3025 
RBF 6 100 90.0481 
RBF 6 150 90.8196 
RBF 6 200 88.4597 
RBF 12 50 87.6882 
RBF 12 100 90.5473 
RBF 12 150 92.6576 
RBF 12 200 88.9589 
SIG 6 50 83.7400 
SIG 6 100 88.2328 
SIG 6 150 89.3220 
SIG 6 200 85.3283 
SIG 12 50 85.8956 
SIG 12 100 89.7304 
SIG 12 150 90.5019 
SIG 12 200 85.8049 

 

Various approaches have been proposed in literature to determine the SVM parameters, 

and some analytical procedures exist in particular for SVM regression methods [19]. For 

classification problems the selection of the parameter pair is  a hard task, which has 

been approached also using evolutionary optimization methods [20]. One of the most robust, 

efficient and well accepted techniques is the two step grid search approach described in [18], 

which consists in calculating the CV accuracy first in  a coarse grid of exponentially growing 

values of , and then, a second grid search is performed on a finer grid in the region 

where the better results have been found in the first step. In the following of this work all the 

reported SVM results are obtained using the two step grid search approach, which for 

instance can be easily parallelized. 

Table II shows the 5-fold CV obtained in the different cases described above; we can 

observe that the RBF kernel in general outperforms the sigmoidal kernel, and that the 5-fold 

CV increases for increasing  from 50 to 150 but it decreases at 200, hence the best time 

window is of points, corresponding to three mains periods. Increasing the 

frequency window p from 6 to 12 gives in general a small improvement of the 5-fold CV. The 

ksig xi,x j( ) = tanh γ xi
T ⋅x j( )

C,γ( )

C,γ( )

m

2m = 300



best configuration is highlighted in Table II. For this choice the input of the SVM has 

dimension , and it is worth to note that in general the SVM algorithm is not 

significantly affected by the course of dimensionality, with respect to the input dimension. So 

choosing  gives slightly better accuracy without significantly increasing the 

computational costs with respect to the smaller frequency window.  For the best configuration 

highlighted in the table the  SVM parameters found by using grid search are the following : 

, . It is important to note that, with a sampling frequency of 5kHz  

and a window of 300 points, the frequency resolution of the periodogram is 16.67 Hz . So the 

third harmonic is the mains period of 50Hz, and with 12 points of the periodogram we look 

up to 183.3 Hz. 

The obtained accuracy of around 92% means that the SVM, once properly trained with 

the voltage and current input and phototube results, is capable of correctly classifying  the 

92% of time windows, detecting the presence or absence of an arc from the analysis of 

voltage and currents. The remaining 8% is related to false positives and false negatives. This 

percentage is an extremely good result from an industrial point of view, making the proposed 

method a potentially powerful instrument. 

 

3.4 Analysis of test runs #2 to #7 

In this section other six datasets  (runs #2 to #7)  are analyzed, in which signals are 

sampled at . For these runs we only have one photosensor signal, other than the 

voltage signal and the two currents signals. Arcs are identified as previously described, using 

a variable threshold, andwe use the input signal combination  that has proved to be 

the best performing one. 

As a first step we look for a common configuration of the time and frequency windows 

 and , that gives good results for all the datasets. Thus, for each dataset, we train a SVM 

for different configurations of  and , and we find the one that gives the highest 5-fold 

CV. The grid-search approach is used to determine the SVM parameters, i.e.  and , with 
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an RBF kernel. Then we look for a fixed configuration of  and  that gives a 5-fold CV in 

all datasets that has the minimum mean squared error, MSE, with respect to the best CV 

values found previously. The tested values for the windows are  and 

, different from the respective values in section 3.2 because of the different 

sampling time. 

Table III 

Dataset# m / p relative 
to max CV 

Max CV(%) CV (%) for 
m=1200 and p=48 

2 800 /30 91.0682 90.6705 
3 800 /42 92.1136 90.5795 
4 400/36 92.2045 95.3295 
5 1200/48 94.1932 94.1932 
6 400/30 89.7273 87.4318 
7 800/42 90.2159 89.4432 

 

The second column of Table II shows the values of m and p that give the max 5-fold CV 

(shown in the third column) for each test case, while the last column shows the CV for 

m=1200 and p=48, which is the case with minimum MSE with respect to the second column. 

From this result we can give the suggestion that using the largest windows, both in time and 

frequency, gives the best average results among several different runs.  

This last result can be given as a guideline for the implementation of an SVM dedicated 

to the classification of such kind of signals. In addition, the accuracy obtained for the first 

run, are confirmed also for these additional runs, showing that the SVM based approach is 

suitable for this application. 

 

3.5 Generalization of the SVM performances 

All the results described in the previous subsections are relative to SVMs trained and 

tested on data coming from the same run. For the method to be useful in practice, we have to 

verify its robustness in terms of applicability when trained with data coming from a run and 

tested with data coming from a different run (possibly relative to different trains running on 

different tracks). In addition, there are 6 test runs sampled at a higher frequency than the first 

one; for this reason we have decided to consider the first run as the reference one.  

m p

m = [400,800,1200]

p = [30,36,42,48]



According to what described above, the first experiment is related to the classification 

using down-sampled signals form 20 kHz to 5 kHz.  To this purpose all the signals of runs #2 

to #7 have been down-sampled to 5 kHz and for each case an SVM has been trained using the 

pre-processing parameters determined in the first case study: , .  

Table IV 

Dataset# CV (%) 
2 88.7045 
3 89.2841 
4 95.6928 
5 90.1250 
6 85.1705 
7 88.3068 

 

The 5-fold CV are shown in table IV: the selected time windows from the first case study 

give acceptable results also on the other six cases, using down- sampling. This is a good result 

under two point of views: 

• downsampling the signals does not significantly affect accuracy  

• The pre-processing parameters determined for a test run (train and track) perform 

very well also with different data without the need of repeating the parameters 

setup. 

As an additional comment on the required sampling frequency, we can say that the arc 

influence on voltage and current, in the frequency domain, is significant in the lower 

frequencies up to hundred of Hz, so the use of higher sampling frequencies is not necessary.  

The last numerical experiment investigates the use of an SVM model, trained with one 

dataset, to classify the arcs of other datasets, without retraining. The model trained in the first 

case study which gives the best CV value is here used to classify the datasets #2 to #7, that 

are used as test data in their entirety, after down-sampling to 5 kHz.  

Table V 

Dataset# Accuracy (%) on the whole 
set down-sampled at 5kHz 

1 84.6295 
2 74.7682 
3 78.2414 
4 83.4477 
5 76.1932 

m =150 p = 12



6 84.5523 
 

Table V shows the results of the accuracy on the whole sets. These results show that a 

well trained SVM is able to generalize the arc classification capability also to signals from 

different trains in different trips and conditions.  

 

4. Classification with radial basis function networks 

Other supervised classification techniques may be used instead of SVM, for instance 

Radial Basis Function networks (RBF), also a classifier ensemble may be considered, by 

using some classifier fusion technique. The choice of SVM has been made by the authors as 

they represent one of the best performing classifiers, and with the aim of determining the 

classification accuracy achievable with a well known method for this industrial application. 

For the sake of completeness in this section the authors report the results obtained using an 

RBF classification approach [21].  

RBF networks have typically three layers: an input layer, a hidden layer with a non-linear 

activation function and a linear output layer. Given an input , , the scalar 

output of the network is a given by the classification function:  

     (10) 

where   is the number of neurons in the hidden layer,  is the center vector for 

neuron , b is the width of the Gaussian radial basis function,  is the weight of the neuron 

k in the linear output layer and  represents the Euclidean distance. The training is typically 

performed in two phases, first fixing the width and centers and then determining the weights. 

In the first unsupervised step, the center vectors  are chosen, and this step can be 

performed in several ways: centers can be randomly sampled as a subset of given points , 

or obtained by Orthogonal Least Square Learning Algorithm, or found by clustering the input 

samples and using the cluster centers. In this work we use the k-means clustering algorithm 
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for determining the centers . The width  is usually fixed for all neurons to a value which 

is inversely proportional to the maximum distance  between the chosen centers. In this 

work we use , where  is an integer constant to be determined. Given the 

center vectors and the width, the weights of the output layer  are 

computed by a pseudoinverse solution: 

       (11) 

where , ,  ,and  represents the 

known target vector with labels for training. In fact equation (10) may be written as  

and (11) represents the unique minimizing solution of the training error function .  

The hyper-parameters to be determined are the number of centers  and the constant 

 that determines the width. These are determined using an exhaustive search approach and 

5-fold cross validation.  

The test case used for comparison with SVM is the test run #1 analyzed in section 3.3. 

The same preprocessing parameters are used as in the case of SVM, (300 samples for time 

window and 12 samples for frequency window). In the RBF networks, as  grows the 

performance of the network always improves, so we use the following approach. The network 

is trained increasing  up to a value where 5-fold CV does not improve more than 0.01% 

(demonstrate a plateau). This is repeated for the following values of  . As a 

result we have found the following best RBF parameters: , , obtaining a 5-

fold CV of 85%. The best 5-fold CV obtained with SVM, which is shown in table II, for the 

considered preprocessing parameters, is 92.66%, where SVM parameters have been 

determined using the two step grid search approach described above. From this comparison 

we may conclude that the SVM approach reveals to be superior to RBF for this particular 

application in the case considered.  

A more detailed study of RBF and other classifiers, also in the optic of creating an 
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ensemble of classifiers, is considered a topic for future work and is out of the scope of this 

paper.  

5. Conclusion 

In this paper the authors propose a SVM based technique for classifying a set of 

experimental data recorded on a run of a high speed train.  

The recorded data are voltage, current and the output of a phototube, showing when an 

arc event is detected. The classification algorithm tries to determine the presence of the arc by 

analyzing the voltages and currents, while a direct look to the data would not allow the 

location of the electric arc. The procedure gives good results, which means an accuracy of 

around 90% in the arc location; this value might seem too high if compared to the results in 

Table V, however, looking at a practical implementation of the procedure, the available data 

are relative to 7 test runs (electrical quantities and phototube), and it would make sense to use 

all of them to train a generalized SVM, leading to results similar to table IV. 

After these first encouraging results, the research will be carried on to define the 

requirements of the signal acquisition and processing system and their compatibility with the 

equipment already installed on board. Subsequently more extensive test will be performed in 

order to define the condition based maintenance strategies. 
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Fig. 1. Phototube output (run #1) 



 

 

Fig. 2. Recorded voltage (run #1) 



 

 

Fig. 3. Recorded current(run #1) 



 
 

 

Fig. 4. Current periodogram (run #1) 



 
 

 

Fig. 5. Variable threshold on photosensor signal. 



 

 

Fig. 6. Complete signal of one photosensor 

 


