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We compute the domination monoid in the theoryDMT of dense meet-trees. In order to show that this monoid is
well-defined, we proveweak binarity ofDMT and, more generally, of certain expansions of it by binary relations
on sets of open cones, a special case being the theory DTR from [7]. We then describe the domination monoids
of such expansions in terms of those of the expanding relations.
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If asked what a tree is, a mathematician has a number of options to choose from. The graph theorist’s answer will
probably contain the words “acyclic” and “connected”, while the set theorist may have in mind certain sets of
sequences of natural numbers. In this paper we are instead concerned with lower semilinear orders: posets where
the set of predecessors of each element is linearly ordered.

More specifically, a meet-tree is a lower semilinear order < in which each pair of elements a, b has a greatest
common lower bound, theirmeet a � b. When viewed as {<,�}-structures, finite meet-trees form an amalgamation
class, hence have a Fraïssé limit, the universal homogeneous countable meet-tree. Its complete first-order theory
DMT is that of dense meet-trees: dense lower semilinear orders with meets and everywhere infinite ramification.

Such structures have received a certain amount of model-theoretic attention in the recent (and not so recent)
past. They appear in the classification of countable 2-homogeneous trees from [5], and have since been important
in the theory of permutation groups; cf., e.g., [1, 3, 4]. More recently, they were shown to be dp-minimal in
[17], and the automorphism group of the unique countable one was studied in [10], while the interest in similar
structures goes back at the very least to [14, 20], where they were used as a base to produce examples in the context
of Ehrenfeucht theories. Here we study DMT, and some of the expansions defined in [7], from the viewpoint of
domination, in the sense of [13].

One motivation for such a study comes from valuation theory. The nonzero points of a valued field K can
notoriously be identified with the branches of a meet-tree, that is, its maximal linearly ordered subsets. This
identification is used, for instance, to endow K with a C-relation; cf. [9, 11]. Viewing the residue field k of K
as a set of open valuation balls yields a correspondence between k and, for an arbitrary but fixed point g of the
underlying tree, the set of open cones above g: the equivalence classes of the relation E(x, y) := x � y > g defined
on the set of points above g. If k is pseudofinite, then it interprets a structure elementarily equivalent to the Random
Graph (cf. [2, 6]1); it is therefore interesting to study the theory of a densemeet-tree with a RandomGraph structure
on each set of open cones above a point. This theory was used in [7], where it was dubbed DTR, to show that
restrictions to nonforking bases need not preserve NIP.

Another motivation is rooted in the study of invariant types: types over a saturated model U of a first order
theory which are fixed, under the natural action of Aut(U) on the space S(U) of types, by the stabiliser of some
small set. The space of invariant types is a semigroup when equipped with the tensor product, and can be endowed
with the preorder of domination, where a type p(x) dominates a type q(y) iff q(y) is implied by the union of
p(x) with a small type r(x, y) consistent with p(x) ∪ q(y). The induced equivalence relation, called domination-
equivalence, may or may not be a congruence with respect to the tensor product, and some conditions ensuring
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this to be the case were isolated in [13]. One of the main results in the present work is a proof that one of them,
weak binarity (Definition 2.1), is satisfied by DMT, and by certain expansions of the latter by binary structures on
sets of open cones, a special case of which is DTR. Therefore the tensor product induces a well-defined operation
on the quotient, yielding the domination monoid Ĩnv(U), which we then calculate.

The paper is structured as follows. After briefly reviewing standard definitions and facts about dense meet-trees
and invariant types in § 1, we recall in § 2 the definition of weak binarity and prove that, despite not being binary,
DMT and all of its binary cone-expansions (Definition 2.5) are weakly binary. This is in particular the case for
DTR.

Theorem A (Theorem 2.8) The theory of dense meet-trees is weakly binary, and so is each of its binary cone-
expansions.

Hence the monoid Ĩnv(U) is well-defined in such theories, and we proceed to compute it. The case of pure dense
meet-trees is handled in § 3.

Theorem B (Theorem 3.14) If U is a monster model of the theory of dense meet-trees, then there is a set X
such that

Ĩnv(U) ∼= (Pfin(X ),∪) ×
⊕
g∈U

(N,+),

where (Pfin(X ),∪) is the upper semilattice of finite subsets of X.
In the same section, we take the opportunity to record an instance of a theory where domination differs from Fsκ -
isolation in the sense of Shelah, Example 3.4. Theorem 3.14 is generalised in § 4 to purely binary cone-expansions
(Definition 2.5), such as DTR.

Theorem C (Theorem 4.13) Let U be a monster model of a purely binary cone-expansion of DMT and, for
g ∈ U, denote by Og the structure on the set of open cones above g. Then there is a set X such that

Ĩnv(U) ∼= (Pfin(X ),∪) ×
⊕
g∈U

Ĩnv(Og).

1 Preliminaries

In what follows, lowercase Latin letters may denote finite tuples of variables or elements of a model. The length
of a tuple is denoted by | · |, and its coordinates will be denoted by subscripts, starting with 0; we may write, e.g.,
a = (a0, . . . , a|a|−1) ∈ M|a| or, with abuse of notation, simply a ∈ M. Concatenation is denoted by juxtaposition,
and elements of a sequence of tuples by superscripts. For instance, if we write a = a0a1 then a|a0| equals a10,
the first element of a1. Tuples may be treated as sets, in which case juxtaposition denotes union, as in Ab =
A ∪ {bi | i < |b|}. Type means “complete type in finitely many variables”.

Proofs regarding trees have a tendency to split in cases and subcases. As they become much easier to follow
if the objects in them are drawn as soon as they appear in the proof, the reader is encouraged to reach for writing
devices, preferably capable of producing different colours.

1.1 Invariant types

Fix a complete first-order theory T with infinite models, a sufficiently large cardinal κ , and a κ-saturated and
κ-strongly homogeneous U � T . Small means “of cardinality strictly less than κ”; if A is a small subset of U, we
denote this by A ⊂+ U, or A ≺+ U if additionally A ≺ U. Global type means “type over U”.

Definition 1.1 1. Let A ⊆ B. A type p(x) ∈ S(B) is A-invariant iff for all ϕ(x; y) ∈ L and a ≡A b in B|y| we
have p(x) � ϕ(x; a) ↔ ϕ(x; b). A global type p(x) ∈ S(U) is invariant iff it isA-invariant for someA ⊂+ U.
Such an A is called a base for p.
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2. If p(x) ∈ S(U) is A-invariant and ϕ(x; y) ∈ L(A), write

(dpϕ(x; y))(y) := {tpy(b/A) | ϕ(x; b) ∈ p, b ∈ U}.
The map ϕ → dpϕ is called the defining scheme of p over A.

3. We denote by Sinvx (U,A) the space of global A-invariant types in variables x, with A small, and by Sinvx (U)
the union of all Sinvx (U,A) as A ranges among small subsets of U. Denote by S(B) the union of all spaces
of types over B in finite tuples of variables; similarly for, say, Sinv(U).

If we say that a type p is invariant, and its domain is not specified and not clear from context, it is usually a safe
bet to assume that p ∈ S(U). Similarly if we say that a tuple has invariant type without specifying over which set.

1.2 Dense meet-trees

A poset (M,<) is a lower semilinear order iff every pair of elements from each set of the form {x ∈ M | x < a} is
comparable. Let Lmt = {<,�}, where< is a binary relation symbol and � is a binary function symbol. Ameet-tree
is an Lmt-structureM such that (M,<) is a lower semilinear order where every pair of elements a, b has a greatest
common lower bound, their meet a � b. IfM is a meet-tree and g ∈ M, classes of the equivalence relation defined
on {x ∈ M | x > g} by E(x, y) := x � y > g are called open cones above g.

Finite meet-trees are well-known to form a Fraïssé class, hence have a Fraïssé limit, whose theory is complete
and eliminates quantifiers.2 A dense meet-tree is a model of the theory DMT of the Fraïssé limit of finite meet-
trees. The following fact is well-known, but I could not find a reference including a proof. It can be proven by an
easy back-and-forth argument.

Fact 1.2 The theory DMT of dense meet-trees is axiomatised by saying that

1. (M,<,�) is a meet-tree;
2. for every a ∈ M, the structure ({x ∈ M | x < a},<) is a dense linear order with no endpoints; and

3. for every g ∈ M, there are infinitely many open cones above g.

The following remark will be used throughout, sometimes tacitly.

Remark 1.3 The operation � is associative, idempotent, and commutative. Using this and quantifier elimina-
tion, and observing, e.g., that for every a, b the set defined by x � a = b is either empty or infinite, it is easy to see
that in DMT the definable closure dcl(A) of a set A coincides with its closure under meets. In particular, if A is
finite, then so is dcl(A): by the properties of � we just pointed out, its size cannot exceed that of the powerset of
A.3

When working in expansions of DMT, we will denote the closure of a set A under meets by dclLmt (A). This is
justified by the previous remark.

Definition 1.4 Define the cut Cp of a type p(x) ∈ S1(M) to be {c ∈ M | p � x ≥ c} and the cut in M of an
element b of some elementary extension of M to be CMb := Ctp(b/M). We say that Cp is bounded iff it is bounded
from above inM. A cut is the cut of some type.

Equivalently, a cut is a linearly ordered subset which is downward closed. This usage of the word “cut” is a bit
more general than the one traditionally used for linear orders: our cuts have no upper part, only a lower one.

It can be shown by standard techniques that DMT is NIP, in fact dp-minimal (cf. [17, Proposition 4.7]). This
makes it amenable to an analysis of invariant types using indiscernible sequences, and it turns out that invariant
1-types are necessarily of one of the six kinds below, as shown by using eventual types (cf. [19, § 2.2.3]). We refer
the reader to [17] and [19, § 2.3.1]. Alternatively, it is possible to prove this directly via quantifier elimination
by considering, for a fixed p(x) ∈ Sinv1 (U), what are the possible values of each dpϕ, as ϕ(x; y) ranges among
L-formulas.

2 For basic Fraïssé theory, cf., e.g., [8, Ch. 7].
3 While sufficient for our purposes, this upper bound is very far from optimal: one can show that | dcl(A)| ≤ 2|A|. Cf. [7, Remark 4.6].
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Figure 1 The point a is in the same open cone above g as the point b, while c is in a different open cone above
g.

•x (Ib)
•z (IIIb)

•y (II)

Figure 2 Some nonrealised B-invariant types, where points of B are denoted by triangles. In this picture, the
set of triangles below x has no maximum, solid lines lie in U, and dotted lines lie in a bigger U1

+� U. The type
of x is of kind (Ib), that of y of kind (II), and that of z of kind (IIIb).

Definition 1.5 Let U � DMT and p(x) ∈ S1(U). We say that p is of kind

(0) iff p is realised by some a ∈ U;

(Ia) iff there is a small (nonempty) linearly ordered set A ⊂+ U such that p(x) � {x < a | a ∈ A} ∪
{x > b | b ∈ U, b < A};

(Ib) iff there is a small linearly ordered set A ⊂+ U with no maximum such that p(x) �
{x > a | a ∈ A} ∪ {x < b | b ∈ U, b > A}, or there are a and c in U such that p(x) � {a < x < c} ∪
{x < b | b ∈ U, a < b < c};

(II) iff there is g ∈ U such that p(x) � {x > g} ∪ {x � b = g | b ∈ U, b > g};
(IIIa) iff p(x) � {x � b | b ∈ U} and there is d ∈ U such that, for e � p, the type tp(e � d/U) is of kind (Ia);

(IIIb) iff p(x) � {x �≤ b | b ∈ U} and there is d ∈ U such that, for e � p, the type tp(e � d/U) is of kind (Ib).

Fact 1.6 If p ∈ Sinv1 (U), then p is of one of the six kinds above. Let A′ witness that p is of one of these kinds.4 Then
p is A′-invariant, and is uniquely determined by its kind and the data in the corresponding part of Definition 1.5.

So types of kind (0), (Ia), or (Ib) correspond to cuts in a linearly ordered subset of the tree, where in kind (Ib),
if the cut of p has a maximum a, we are specifying an existing open cone above a. Kinds (II), (IIIa), and (IIIb) are
the corresponding “branching” versions. Types of kind (II) are the types of elements in a new open cone above an
existing point. Cf. Figure 2.

We conclude this section by recording some easy observations for later use.

Lemma 1.7 1. Let b0, b1 ∈ N � M. If CMb0 ⊆ CMb1 then C
M
b0�b1 = CMb0 . If none of C

M
b0
and CMb1 is included in the

other, then b0 � b1 ∈ M.

2. For all b0, . . . , bn ∈ N � M, and every e ∈ dcl(Mb0, . . . , bn), either e ∈ M or there is i such that e ≤ bi
and CMe = CMbi .

3. If p ∈ Sinv1 (U) then Cp is bounded.

P r o o f . The first part is clear from the definitions of cut and meet, the second one follows by induction and
Remark 1.3, and the last one follows from Fact 1.6. �

4 In the notation of Definition 1.5, we can take as A′ either a, A, Ac, ac, g, Ad, or Acd, where, for kinds (IIIa)/(IIIb), A, Ac, or ac is a
witness that, for e � p, tp(e � d/U) is of kind (Ia)/(Ib).
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2 Weak binarity

The main result of this section, Theorem 2.8, states that certain expansions of DMT are weakly binary. It applies
for instance to the theory DTR from [7], obtained by equipping every set of open cones above a point with a
structure elementarily equivalent to the Random Graph.

Recall that a theory T is binary iff every formula is equivalent modulo T to a Boolean combination of formulas
with at most two free variables. Equivalently, for every set of parameters B and tuples a, b,

tp(a/B) ∪ tp(b/B) ∪ tp(ab/∅) � tp(ab/B).

Natural examples of such theories are those which eliminate quantifiers in a binary relational language. On the
other hand, binary function symbols are usually an obstruction to binarity, as they can be used to write atomic
formulas with an arbitrary number of free variables.

This is for instance the case for DMT, whose language contains the binary function symbol �: it is easy to see
that DMT is not binary, nor is any of its expansions by constants. Even though DMT is known to be ternary (cf.
[17, Corollary 4.6]), this is not sufficient for our purposes: the theory from [13, Proposition 2.3] where Ĩnv(U) is
not well-defined is ternary as well.

Definition 2.1 A theory isweakly binary iff, for all monster modelsU and all a, b such that tp(a/U) and tp(b/U)
are invariant, there is A ⊂+ U such that

tp(a/U) ∪ tp(b/U) ∪ tp(a, b/A) � tp(a, b/U). (†)

Weak binarity was introduced in [13] as a sufficient condition for well-definedness of the domination monoid.5

The class of weakly binary theories clearly contains any theory which happens to have an expansion by constants
which is binary. Examples with no binary expansion by constants include the theory of a generic equivalence
relation where every equivalence class carries a circular order (cf. [12, Example 2.2.13]) and, as we will shortly
see, DMT.

It follows immediately from the definitions that, in every theory, if p ∈ S(U) is invariant then each of its 1-
subtypes, that is, each of the restrictions of p to one of its variables, is invariant as well. It is easily seen, say by
using [13, Lemma 1.27] and induction, that if T is weakly binary then the converse holds as well. We record this
here for later reference.

Remark 2.2 Let T be weakly binary and p ∈ S(U). Then p is invariant if and only if every 1-subtype of p
is invariant.

Before returning to trees, note that this converse is in general false. For example, in the theory of Divisible
Ordered Abelian Groups, let p(x0, x1) be a 2-type prescribing x0, x1 to be larger than U, and such that both the
cofinality of {d ∈ U | p � x0 − x1 > d} and the coinitiality of its complement are not small. Then p is not invariant,
even if both of its 1-subtypes are.

Notation 2.3 We write x ‖ y to mean that x � y and y � x.

Lemma 2.4 Let M � DMT and let b be a finite tuple. There is a finite tuple d such that Mbd is closed under
meets. Moreover, d can be chosen such that additionally, if we let c := M ∩ d, then bd = dcl(bc), and for every
e ∈ bd \M such that CMe is bounded, the following happens.

1. There is ae ∈ c such that ae > CMe .

2. If CMe has a maximum g and e is in an existing open cone above g, then this is the open cone of ae.

P r o o f . Define a tuple a as follows. If CMbi is not bounded, choose ai to be an arbitrary point of M (or, if the
reader prefers, leave ai undefined). IfCMbi has a maximum g and bi is in an open cone above gwhich intersectsM,
let ai ∈ M be such that ai � bi > g (cf. first half of Figure 3); otherwise (second half of the same figure), choose any
ai > CMbi . Note that the closure dcl(ba) of ba under meets is finite by Remark 1.3, and let d be a tuple enumerating
dcl(ba) \ b. Recall that we defined c := M ∩ d, and note that, by construction, bd = dcl(bc).

5 The quantification on U is not explicit in [13].
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Figure 3 How to choose ai in the proof of Lemma 2.4. In the first three pictures,CM
bi
has a maximum, g, denoted

by a triangle. In the last picture it does not have one. Solid lines lie inM, and dotted lines lie in a biggerM1 � M.

We now prove the “moreover” part, and then show how closure under meets of Mbd follows. Let e ∈ bd \M
have bounded cut. By Lemma 1.7, construction, and the fact that e /∈ M, there is i < |b| such that e ≤ bi and
CMe = CMbi .

(1) Let i be as above. Since CMe = CMbi , we have ae := ai > CMe .
(2) Let i and ae be as above. By choice of ai = ae, we have ai � bi > g. By construction and the fact that e /∈ M,

we have g< e ≤ bi, so e � bi = e > g and e and bi are in the same open cone above g, which is that of ai. This
completes the proof of (2), hence of the “moreover” part.

We are left to prove thatMbd is closed under meets. As bothM and bd are, and � is commutative, all we need
to show is that if e ∈ bd \M and f ∈ M then f � e ∈ Mbd. If e and f and comparable there is nothing to prove,
so assume they are not, i.e., that e ‖ f . IfCMe is unbounded, neither ofCMe andCMf is included in the other, because
f ∈ M and e ‖ f . Hence, by the first point of Lemma 1.7, we have e � f ∈ M. Assume now that CMe is bounded.

Claim To conclude, it is enough to show that f � e ≤ f � ae.
P r o o f o f C l a i m . By assumption, commutativity, and idempotency of � we have f � e = ( f � e) � ( f �

ae) = ( f � ae) � (ae � e). Since f � ae and ae � e are both predecessors of ae they are comparable, so their meet
is one of them. But ae � e ∈ bd and f � ae ∈ M, so f � e ∈ Mbd. �

We prove that f � e ≤ f � ae by cases. Note that, since f � ae and f � e are both predecessors of f , they are
comparable.

1. If f > CMe then CMf�e = CMe . Suppose additionally that f � ae > CMe = CMf�e. Since f � ae ∈ M, having f �
ae ≤ f � e would contradict f � ae > CMf�e, and therefore f � e < f � ae.

2. If f > CMe and we are not in the previous case, then Ce has a maximum g and f � ae = g, i.e., f and ae are
in different open cones above g. Now, e can be either in the same open cone as ae, or in a new one, but in
both cases f � e = g= f � ae.

3. If f ≯ CMe then there is h ∈ CMe such that f ≯ h, and then f � h = f � (h � e) = f � e. As ae > CMe in
particular ae > h, hence by definition of meet we must have f � ae = f � h = f � e. �

We introduce the following notion, motivated by [7, § 4.3].

Definition 2.5 A binary cone-expansion ofDMT is a theory T in a language L = Lmt ∪ {Rj,Pj′ | j ∈ J, j′ ∈ J′}
satisfying the following properties.

1. Every Pj′ is a unary relation symbol; every Rj is a binary relation symbol.

2. T is a completion of DMT and eliminates quantifiers in L.

3. Every Rj is on open cones, in the sense that

(a) Rj(x, y) → x ‖ y, and
(b) if x ‖ y and x′, y′ are such that x � x′ > x � y and y � y′ > x � y then Rj(x, y) ↔ Rj(x′, y′).

If additionally J′ = ∅ we say that T is a purely binary cone-expansion of DMT.

Example 2.6 One example of a purely binary cone-expansion ofDMT isDTR, axiomatised by taking J = {R},
J′ = ∅, and saying that, for all g, the structure induced by R on the (imaginary sort of) open cones above g is
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elementarily equivalent to the Random Graph. Cf. [7] for DTR, and for a more general analysis of theories of
trees with relations on sets of open cones.

Example 2.7 Another theory examined in [7], called DTE2, is defined similarly to DTR, but instead of the
Random Graph it uses the Fraïssé limit of all finite structures with two equivalence relations. More generally,
one can define DTEn in an analogous fashion. The results of this paper apply to these theories as well even if,
strictly speaking, they do not satisfy Definition 2.5, since the latter requires the Rj to be irreflexive. This can
easily be circumvented by observing that, if E is an equivalence relation and � is the diagonal, then E and E \ �

are interdefinable.

Theorem 2.8 Let T be a binary cone-expansion of DMT and M � T . For all tuples b0, b1 there is a finite tuple
c from M such that

tp(b0/M) ∪ tp(b1/M) ∪ tp(b0b1/c) � tp(b0b1/M).

In particular, every binary cone-expansion of DMT is weakly binary.

In the following proof, as well as later in the paper, we abuse the notation as follows. If, for instance, e ∈
dcl(Mb), as witnessed by an M-definable function h such that e = h(b), then we may write, e.g., that tp(b/M)
entails tp(e/M) to mean that, for every L(M)-formula ϕ satisfied by e, we have tp(b/M) � ϕ(h(x)). Similarly if
we say, e.g., that a partial type implies CMe = CMbi .

P r o o f . By quantifier elimination it is enough to find a finite tuple c ∈ M such that tpx(b
0/M) ∪ tpy(b

1/M) ∪
tpxy(b

0b1/c) decides all the atomic relations in L between points of b0, b1, M, and their meets. Apply Lemma 2.4
toM and b := b0b1, let d be the resulting tuple and set c := M ∩ d. We want to show that

π := tp(b0/M) ∪ tp(b1/M) ∪ tp(b/c) � tp(b/M).

If e and f are both in bd then e, f ∈ dclLmt (bc), hence tp(b/c) entails tp(e f /∅), and in particular decides all formulas
of the forms Rj(e, f ) and Pj′ (e).

Claim We have π � tpLmt (b/M).

P r o o f o f C l a i m . Since Mbd is closed under meets we only need to show that the position of all the
e ∈ d \Mb with respect to M is determined. By Lemma 1.7 and the fact that e ∈ dclLmt (bc) \Mb there is i < |b|
such that e < bi and CMe = CMbi ; note that this information is deduced by π , because e is a meet of points in bc.
If CMe is unbounded, we are done. Otherwise, if ae ∈ c is as in Lemma 2.4, all we need to decide is whether e is
below or incomparable to {h ∈ M | h > ae � e} (because every point ofM below [resp. incomparable to] ae � e is
automatically below [resp. incomparable to] e). This is decided by whether ae > e or not, and this information is
in tp(b/c). �

We then need to take care of formulas of the formRj(e, f ) for e ∈ d \Mb and f ∈ M; the argument for formulas
of the form Rj( f , e) is identical mutatis mutandis. If e ≤ f or f ≤ e, by hypothesis we must have ¬Rj(e, f ), so
we may assume that e ‖ f . We distinguish three cases; the fact that, by the Claim, π implies the position of e with
respect toM will be used tacitly.

1. Assume first e � f > CMe . Some subcases of this case are depicted in Figure 4. By assumptionCMe is bounded
and, if ae ∈ c is as in Lemma 2.4, we have ae � f > CMe = CMe� f . Since ae � f and e � f must be comparable,
and ae � f ∈ M, this implies ae � f > e � f , so ae and f are in the same open cone above e � f . Since Rj

is on open cones, Rj(e, f ) ↔ Rj(e, ae), but ae ∈ c and e ∈ dclLmt (bc), so since π � tp(b/c) we are done.

2. Assume now that e � f ≯ CMe and there is h ∈ M such that e � h > e � f . Then e is in the same open cone
above e � f as h, hence Rj(e, f ) ↔ Rj(h, f ). Since f , h ∈ M we are done.

3. If e � f ≯ CMe but there is no h as in the previous point, then CMe must have a maximum g, which needs to
equal e � f , and since e ‖ f we need to have f > g. If e is in an existing open cone above g, since the Rj are
on open cones, we are done, so assume it is in a new one. Since e ∈ dclLmt (bc), by Lemma 1.7 this can only
happen if there is i < |b| such that e ≤ bi, hence e shares the same open cone above g as bi. Again, since
the Rj are on open cones, we are done. �
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Figure 4 Two subcases of case (1) in the proof of Theorem 2.8, where e � f > CM
e . In the first picture, CM

e
does not have a maximum. In the second picture it has one, denoted by a triangle. Solid lines lie inM, and dotted
lines lie in a bigger M1 � M. Other subcases are similar, and correspond to different arrangements of ae and f ,
e.g., ae > f .

3 The domination monoid: pure trees

We now compute the domination monoid in DMT. We first recall briefly its definition and some of its basic
properties for the reader’s convenience, and otherwise refer to [13]. Cf. also [12] for a more extensive treatment.

Below, when considering p(x), q(y), say, we assume x and y to be disjoint.
It is well-known that, if A ⊂+ U ⊆ B and p ∈ Sinvx (U,A), then there is a unique p | B extending p to an A-

invariant type over B, given by requiring, for each ϕ(x; y) ∈ L(A) and b ∈ B,

ϕ(x; b) ∈ p | B def⇐⇒ tp(b/A) ∈ (dpϕ(x; y))(y).
This allows to define the tensor product of p ∈ Sinvx (U,A) with any q ∈ Sy(U) as follows. Fix b � q; for each
ϕ(x, y) ∈ L(U), define

ϕ(x, y) ∈ p(x) ⊗ q(y)
def⇐⇒ ϕ(x, b) ∈ p | Ub.

Some authors denote by q(y) ⊗ p(x) what we denote by p(x) ⊗ q(y).
It is an easy exercise to show that the product ⊗ does not depend on b � q, nor on the choice of a base of

invariance for p, that it is associative, and that if p, q are both A-invariant then so is p⊗ q.

Notation 3.1 For p(x), q(y) types over B ⊇ A, we denote

Spq(A) := {r ∈ Sxy(A) | r ⊇ (p � A) ∪ (q � A)}.
Definition 3.2 Let p ∈ Sx(U) and q ∈ Sy(U). We say that p dominates q, and write p ≥D q, iff there are some

small A and some r ∈ Sxy(A) such that

1. r ∈ Spq(A), and

2. p(x) ∪ r(x, y) � q(y).

In this case, we say that r is a witness to, or witnesses p ≥D q. We say that p and q are domination-equivalent, and
write p ∼D q, iff p ≥D q and q ≥D p.

Example 3.3 Suppose that q(y) is the pushforward of p(x) under the A-definable function f , namely q(y) :=
{ϕ(y) | p(x) � ϕ( f (x))}. In this case, and in the more general one where |y| > 1 and f is a tuple of definable
functions, we have p ≥D q, witnessed by any completion of (p(x) � A) ∪ (q(y) � A) ∪ {y = f (x)}.

In Definition 3.2 we are not requiring p∪ r to be a complete global type in variables xy; in other words, domi-
nation is “small-type semi-isolation”, as opposed to “small-type isolation”, i.e., Fsκ -isolation in the notation of [16,
Ch. IV]. While it is easy to see that Fsκ -isolation is the same as domination in every weakly binary theory, the two
relations are in general distinct. This can be seen in the theory below; the reader who dislikes random digraphs
may feel free to replace them with generic equivalence relations.
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Example 3.4 Work in a 2-sorted language, with sorts O (“objects”) and D (“digraphs”). Let L :=
{E (O2 ),P(O),R(O2×D)}, a relational language with arities indicated as superscripts. Consider the following universal
axioms.

1. E is an equivalence relation.

2. R(x, y,w) → E(x, y).

3. R(x, y,w) → ¬R(y, x,w).

The finite structures satisfying these axioms form a Fraïssé class; let T be the theory of its limit. In a model of T ,
the equivalence relation E partitions the sortO into infinitely many classes. On each class a/E the predicate P is in-
finite and coinfinite, and each point ofD induces a random digraph on each a/E. Different random digraphs, on the
same a/E or on different ones, interact generically with P and with each other, but no digraph has an edge across
different classes. Let x be a variable of sort O, define π (x) := {¬E(x, d) | d ∈ U}, and let p(x) := π (x) ∪ {P(x)}
and q(y) := π (y) ∪ {¬P(y)}. By quantifier elimination and the lack of edges across different classes, p and q
are complete global types, in fact ∅-invariant ones. If ρ(x, y) := E(x, y) ∧ P(x) ∧ ¬P(y), then p∪ {ρ} � q and
q ∪ {ρ} � p, hence if r ∈ Spq(∅) contains ρ then it witnesses simultaneously that p ≥D q and that q ≥D p. Note
that the predicate P forbids r from containing x = y. Let A be a small set and let r ∈ Spq(A). If r � ¬E(x, y), then
p(x) ∪ r(x, y) does not imply {¬E(y, c) | c ∈ O(U)}, therefore r cannot witness domination, let alone Fsκ -isolation.
If instead r � E(x, y) then, by genericity, p∪ r cannot decide, for all d ∈ U, whether R(x, y, d) holds. Since sim-
ilar arguments hold for q ∪ r, we have shown that, for all a � p and b � q, neither tp(a/Ub) nor tp(b/Ua) is
Fsκ -isolated.

It can be shown that≥D is a preorder, hence∼D is an equivalence relation. Let Ĩnv(U) be the quotient of Sinv(U)
by ∼D. The partial order induced by ≥D on Ĩnv(U) will, with abuse of notation, still be denoted by ≥D, and we
call (Ĩnv(U),≥D) the domination poset. This poset has a minimum, the (unique) class of realised types, i.e., global
types realised in U, denoted by �0�.

If T is such that (Sinv(U),⊗,≥D) is a preordered semigroup, we say that ⊗ respects ≥D. In particular, then ∼D

is a congruence with respect to ⊗, and induces a well-defined operation on Ĩnv(U), still denoted by ⊗, easily seen
to have neutral element �0�. Call the structure (Ĩnv(U),⊗, �0�,≥D) the domination monoid. We usually denote it
simply by Ĩnv(U), and say that Ĩnv(U) is well-defined to mean that ⊗ respects ≥D; this should cause no confusion
since Ĩnv(U) is always well-defined as a poset.

As shown in [13], Ĩnv(U) need not be well-defined in general, but it is in certain classes of theories, such as
stable ones. More relevantly to the present endeavour, we recall the following.

Fact 3.5 ([13, Corollary 1.30]) In every weakly binary theory, the partially ordered monoid (Ĩnv(U),⊗, �0�,
≥D) is well-defined.

Recall that two types p(x), q(y) ∈ S(B) are weakly orthogonal, denoted by p ⊥w q, iff p(x) ∪ q(y) is a complete
type in Sxy(B). In particular, if p, q ∈ Sinv(U) are weakly orthogonal, then p(x) ⊗ q(y) = q(y) ⊗ p(x), since both
products extend p(x) ∪ q(y). We will also need the following two facts.

Fact 3.6 ([18, Corollary 4.7]) Assume T is NIP and let {pi | i ∈ I} be a family of types pi(xi) ∈ Sinv(U) such
that if i �= j then pi ⊥w p j. Then

⋃
i∈I pi(x

i) is complete.

Fact 3.7 ([13, Proposition 3.13 & Corollary 3.14]) Let p0, p1 ∈ Sinv(U), q ∈ S(U), and assume that p0 ≥D p1.
If p0 ⊥w q, then p1 ⊥w q. If p0 ≥D q and p0 ⊥w q, then q is realised.

In particular we may endow Ĩnv(U) with an additional relation, induced by⊥w and denoted by the same symbol.

Remark 3.8 In what follows, if r ∈ Spq(A) witnesses p ≥D q, by passing to a suitable extension of r there is
no harm in enlarging A, provided it stays small, which we may do tacitly; if p, q are invariant, we will furthermore
assume A to be large enough so that p, q ∈ Sinv(U,A). Sometimes, we say that r(x, y) witnesses domination even
if it is not complete, but merely consistent with (p(x) ∪ q(y)) � A. In that case, we mean that any of its completions
to a type in Spq(A) does. Similarly, we sometimes just write, e.g., “put in r the formula ϕ(x, y)”.

For the next proposition, recall the notion of kind of an invariant type from Definition 1.5.
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Figure 5 Proof of Proposition 3.9, how to show that q(y) ≥D p(x). Points of A are denoted by a triangle. Solid
lines lie in U, and dotted lines lie in a bigger U1 � U.

Proposition 3.9 The following statements hold in DMT.

1. Suppose all 1-subtypes of p ∈ S(U) have the same cut C0, all 1-subtypes of q ∈ S(U) have the same cut C1,
and C0 �= C1. Then p ⊥w q.

2. LetC be a cut with maximum g. Suppose that all 1-subtypes of p are of kind (Ib) with cutC and all 1-subtypes
of q are of kind (II) with cut C, or that all 1-subtypes of p, q are of kind (Ib) with cut C, but no open cone
above g contains both a coordinate of p and one of q. Then p ⊥w q.

3. Every 1-type of kind (IIIa) is domination-equivalent to the unique 1-type of kind (Ia) with the same cut.
Every 1-type of kind (IIIb) is domination-equivalent to the unique 1-type of kind (Ib) with the same cut and,
if this cut has a maximum g, the same open cone above g.

In particular, if p, q ∈ Sinv1 (U), then either p ⊥w q or p ∼D q.

P r o o f . (1) By quantifier elimination and the first two points of Lemma 1.7.
(2) This does not follow from the previous point because such types have the same cut, but it is still easy from

quantifier elimination and the fact that the open cones in which types of kind (II) concentrate are new, while those
of types of kind (Ib) are realised.

(3) We give a proof for kind (IIIa) which may be easily modified to yield one for kind (IIIb). By definition of
kind (IIIa) there are d ∈ U and A ⊂+ U such that

p(x) � {x � b | b ∈ U} ∪ {x � d < a | a ∈ A} ∪ {x � d > b | b ∈ U, b < A}.
Let q be the pushforward of p under the definable function x → x � d. By this very description p(x) ≥D q(y)
(cf. Example 3.3) and, clearly, q is of kind (Ia) and Cq = Cp. To prove q(y) ≥D p(x), let A be as in the definition
of kind (Ia), let d > Cq, and use some r ∈ Spq(Ad) containing x � d > y; since r contains p(x) � A, which, for all
a ∈ A, proves x � a and a > x � d, we are done. Cf. Figure 5.

The “in particular” statement follows by considering the different possibilities for p, q and applying what we
just proved. �

In Proposition 3.9, it is important to work with ∼D, as opposed to the finer relation ≡D of equidominance,
obtained by requiring that domination of q by p and of p by q can be witnessed by the same r.

Definition 3.10 Let p ∈ Sx(U) and q ∈ Sy(U). We say that p is equidominant to q, and write p ≡D q, iff there
are a small A and r ∈ Sxy(A) such that

1. r ∈ Spq(A),

2. p(x) ∪ r(x, y) � q(y), and

3. q(x) ∪ r(x, y) � p(y).

In this case, we say that r is a witness to, or witnesses p ≡D q.

While using some r containing6 x � d = ywould still work to show that every type of kind (IIIa) is equidominant
to one of type (Ia), this would not work for kind (IIIb), as shown below.

6 Here, the domain A of r has to be large enough for p, q to be A-invariant. Using q(y) ∪ {x � d = y} alone is not enough to show x �= d,
and if {a ∈ U | p � x � d < a} does not have a minimum then no single formula is enough to show q ≥D p.
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Remark 3.11 Let p(x) and q(y) be the types respectively of kind (IIIb) and (Ib) with cut ∅ (so, q is the type of
an infinitely small element). Then p �≡D q.

P r o o f . Suppose that r(x, y) witnesses equidominance. If r(x, y) � x � y < y, then p(x) ∪ r(x, y) � q(y),
since by quantifier elimination and compactness it cannot prove all formulas y < d, for d ∈ U. If r(x, y) � x � y =
y, then q(y) ∪ r(x, y) � p(x), since it cannot prove all formulas x � d. �

Proposition 3.12 In the theory of dense meet-trees the following hold.

1. Types of kind (Ia) and (Ib) are idempotent modulo equidominance.

2. If p is of kind (II) and m < n ∈ ω then p(m) �D p(n).

P r o o f . (1) Let A be such that p is A-invariant. It follows easily from quantifier elimination that in order to
show p(x1) ⊗ p(x0) ≡D p(y) it is enough to put in r ∈ Sp(2)p(A) the formula x0 = y.

(2) For notational simplicity we show the case m = 1, n = 2, the general case being analogous. Suppose that p
is the type of an element in a new open cone above g, i.e., p(y) � {y > g} ∪ {y � b = g | b ∈ U, b > g}. Towards a
contradiction, let r ∈ Sp,p(2) (A) be such that p(y) ∪ r(y, x0, x1) � p(x1) ⊗ p(x0). We may assume that g ∈ A. Since
p(2) � {g} proves x0 � x1 = g, i.e., that the cones of x0 and x1 are distinct, there is i < 2 such that r � y � xi = g.
Since r is small there is d > g in U such that p(y) ∪ r � xi � d = g; in other words it is not possible, with a small
type, to say that xi is in a new open cone, unless it is the same cone as y, but y cannot be in the open cones of x0
and x1 simultaneously. �

Since by Theorem 2.8 dense meet-trees are weakly binary, Ĩnv(U) is well-defined by Fact 3.5. By Proposi-
tion 3.12 and Proposition 3.9, (domination-equivalence classes of) 1-types of kind (II) generate a copy of N, while
all other (classes of) 1-types are idempotent. We have also seen in Proposition 3.9 that if p, q are nonrealised 1-
types, then either p ⊥w q or p ∼D q. In particular, all pairs of 1-types commute modulo domination-equivalence.
To complete our study we need one last ingredient.

Proposition 3.13 In DMT, every invariant type is domination-equivalent to a product of invariant 1-types.

P r o o f . By Fact 3.6 and Proposition 3.9we reduce to showing the conclusion for types p(x) whose 1-subtypes
all have the same cut Cp. We may furthermore assume that no 1-subtype of p is realised.

Assume first thatCp does not have a maximum, let c � p(x) and let d ∈ U be such that d > Cp, which exists by
the last point of Lemma 1.7. LetH = {h0(c), . . . , hn(c)} be the (finite, by Remark 1.3) set of points in dcl(cd) such
that d > hi(c), where each hi(x) is a {d}-definable function. By semilinearity H is linearly ordered; suppose, by
reindexing, that h0(c) = minH and hn(c) = maxH. We have two subcases. If Cp has small cofinality, let q(y) be
of kind (Ib) withCq = Cp. We show that p ∼D q. Let A be such that p, q ∈ Sinv(U,A) and A contains a set cofinal
in Cp. By density, the formula hn(x) < y is consistent with (p(x) ∪ q(y)) � Ad. Let r(x, y) ∈ Spq(Ad) contain the
formula hn(x) < y, and note that q(y) ∪ r(x, y) implies the type over U of each point of dcl(cd), i.e., of the closure
of cd under meets.7 It follows from quantifier elimination that q ∪ r � p. To prove p∪ r � q, use instead some
r containing, for an arbitrary i ≤ n, the formula y < hi(x). In the other subcase, {e ∈ U | Cp < e < d} has small
coinitiality. The argument is analogous, except we take q of kind (Ia), use an r containing h0(x) > y to show
q ∪ r � p, and an r containing hi(x) < y to show p∪ r � q.

Suppose now that Cp has maximum g. Assume without loss of generality that c0, . . . , ck−1 are the points of
c such that there is di ∈ U with di � ci > g. In other words, these are the points in existing open cones above
g, and ck, . . . , c|c|−1 are in new open cones. Again by quantifier elimination, we have tp(c0, . . . , ck−1/U) ⊥w

tp(ck, . . . , c|c|−1/U), so we can deal with the two subtypes separately. Similarly, by Proposition 3.9 we may split
c<k further, and we may assume that for i < �, say, all ci are in the same open cone, say that of the point d ∈ U. It
is now enough to proceed as in the previous case, by taking q(y) to be the type of kind (Ib) with the same cut and
open cone above g. As for ck, . . . , c|c|−1, let H be the set of minimal elements of dcl(ck, . . . , c|c|−1) \ U. Let q(y)
be the type of kind (II) above g. To conclude, let r identify elements of H with the coordinates of a realisation of
q(|H|). �

7 Here we use the same abuse of notation as in the proof of Theorem 2.8.
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The previous results yield the following characterisation of Ĩnv(U) inDMT. Before stating it, recall that
⊕

i∈I Ai
denotes the submonoid of

∏
i∈I Ai consisting of I-sequences with finite support. The order is the product order,

that is, (ai)i∈I ≤ (bi)i∈I iff ai ≤ bi for all i ∈ I.

Theorem 3.14 In dense meet-trees there is an isomorphism of partially ordered monoids

Ĩnv(U) ∼= (Pfin(X ),∪) ×
⊕
g∈U

(N,+).

Generators of copies of N correspond to types of elements in a new open cone above a point g ∈ U, i.e., to types
of kind (II), while each point of X corresponds to, either:

1. a linearly ordered subset of U with small coinitiality, modulo mutual coinitiality; this corresponds to types
of kind (Ia)/(IIIa);

2. a cut with no maximum, but with small cofinality; this corresponds to some types of kind (Ib)/(IIIb);

3. an existing open cone above an existing point; this corresponds to the rest of the types of kind (Ib)/(IIIb).

4 The domination monoid: expansions

In this section we generalise Theorem 3.14 to purely binary cone-expansions of DMT, such as DTR, by replacing
the direct summands isomorphic toNwith the dominationmonoids of the structures induced on sets of open cones.
In DMT these are pure sets, which are easily seen to have domination monoid isomorphic to N and generated by
the ∼D-class of the unique nonrealised 1-type.

In this section we will have to take reducts of monster models of binary cone-expansions ofDMT to Lmt. While
saturation is preserved by taking reducts, in general a reduct of a κ-strongly homogeneous U need not still be such.
Therefore, in this section we work on a monster model U such that its reducts are still strongly κ-homogeneous.
Models with such properties always exist: for instance, we may take U to be κ-special (cf. [8, § 10.4]).

Assumption 4.1 In this section, T is a a binary cone-expansion of DMT, and U is a monster model of T such
that U � Lmt is a monster model of DMT.

Before restricting our attention to purely binary cone-expansions, we observe a phenomenon which can arise
in the presence of unary predicates. Suppose for instance that L = Lmt ∪ {P}, where P is a unary predicate symbol
interpreted as a branch of U, i.e., a maximal linearly ordered subset. In this case, there is an ∅-invariant type p
with cut Cp = P(U), and by the last point of Lemma 1.7 p � Lmt is not invariant. Another binary cone-expansion
of DMT where there is an invariant type p such that p � Lmt is not invariant can be obtained by taking as P(U) a
bounded linearly ordered subset with no supremum. However, using unary predicates is the only way to obtain
such behaviour in a binary cone-expansion of DMT, as we are about to show. We refer the reader interested in
preservation of invariance under reducts to [15].

Denote by Gg the closed cone above g, namely {b ∈ U | b ≥ g}.
Definition 4.2 Let T be an expansion ofDMT. We call a formula ϕ(x) with |x| = 1 tame iff it has the following

property: there is a finite set D ⊆ U such that, for every a ∈ ϕ(U), either there is d ∈ D such that a ≤ d, or Ga ⊆
ϕ(U).

Proposition 4.3 If T is a purely binary cone-expansion of DMT, then every formula in one free variable
is tame.

P r o o f . It is routine to verify that every atomic and negated atomic ϕ(x) ∈ Lmt(U) is tame. Fix a point c,
and consider ϕ(x) := Rj(x, c); if a ∈ ϕ(U), since Rj is on open cones we also have ϕ(b) for every b > a, hence
Ga ⊆ ϕ(U). Consider now ϕ(x) := ¬Rj(x, c), and letD = {c}. Suppose that a � c. If a ‖ c and ϕ(a) holds, we can
argue as above, so assume that a > c. For any b ≥ a we have in particular b > c, hence ϕ(b) holds by assumption
and Ga ⊆ ϕ(U); therefore ¬Rj(x, c) is tame. The formulas Rj(x, x � c) and Rj(x � c0, x � c1) are always false,
hence they are tame, together with their negations. Since the same arguments apply to Rj(c, x), Rj(x � c, x), and
their negations, we conclude that all atomic and negated atomic formulas are tame.
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Tame formulas in the variable x are easily seen to be closed under conjunctions and disjunctions: if Dϕ and
Dψ witness tameness of ϕ(x) and ψ (x) respectively, then Dϕ ∪ Dψ witnesses tameness of both ϕ(x) ∧ ψ (x) and
ϕ(x) ∨ ψ (x). By quantifier elimination, we have the conclusion. �

Corollary 4.4 If T is a purely binary cone-expansion of DMT and p ∈ Sinv(U), then (p � Lmt) ∈ Sinv(U � Lmt).

P r o o f . By Remark 2.2 & Theorem 2.8, it is enough to show that if p(x) ∈ Sinv(U,A) and q(y) is a 1-subtype
of p, then q � Lmt is invariant. We may assume that no 1-subtype of p is realised.

Similarly to the final step in the previous proof, we see by taking unions of witnesses that, if 
(y) is a small
disjunction of types over a fixed small set A, then it satisfies the analogue of tameness where we allow D to have
size |
| + |A| + |T |. By saturation, if 
(U) is linearly ordered, it must be bounded.

By invariance, the linearly ordered set Cq is the set of realisations of a disjunction of 1-types over A. By the
previous paragraph, Cq is bounded. By observing that, if a small intersection of open cones is nonempty, then it
cannot be linearly ordered, we see that Cq can be defined by a disjunction of small Lmt-types.

Assume now that there is c ∈ U such that q(y) � y < c, and let ϕ(y;w) := y < w. Again by invariance, dqϕ
is a disjunction of small types over A, which by assumption is nonempty. By quantifier elimination, the fact
that the Rj are on open cones, and the fact that if y is below two distinct open cones above g then necessarily
y ≤ g, we see that dqϕ is equivalent to a disjunction of small Lmt-types over A, and it follows that q � Lmt is an
invariant type of kind (Ia) or (Ib). If instead, for every c ∈ U, we have q(y) � y ≮ c, let c ∈ U be greater than Cq;
in particular, q(y) � y � c < c. Assume, up to enlarging A, that c ∈ A. By an analogous argument with the formula
ϕ(y;w) := y < (w � c), we see that q � Lmt is an A-invariant type of kind (II), (IIIa), or (IIIb). �

Remark 4.5 The conclusion of Corollary 4.4 fails if we only assume that T is a binary cone-expansion ofDMT
where all formulas are tame. In fact, if P is a predicate for a bounded linearly ordered subset with no supremum,
then the formula P(x) is easily seen to be tame.

Assumption 4.6 From now on, unless we say that T is arbitrary, we work in a purely binary cone-expansion
T of DMT, in a language L = Lmt ∪ {Rj | j ∈ J}.

We saw in Theorem 3.14 that, in DMT, domination-equivalence classes of invariant 1-types correspond to
either new open cones above existing points, or to certain cuts in linearly ordered subsets of U. In what follows,
restrictions of invariant 1-types to Lmt, which are still invariant by Corollary 4.4, will play a special role; we
therefore introduce some terminology for these cones and cuts.

Definition 4.7 Let p, q ∈ Sinv1 (U) be nonrealised, and suppose that (p � Lmt) ∼D (q � Lmt) in DMT. If these
restrictions are of kind (II), in a new open cone above the same g ∈ U, we say that p, q have the same sprout, and
that each of them sprouts from g. If the restrictions are of another kind, we say that p, q have the same graft.

So, in Theorem 3.14, X corresponds to the set of grafts, and there is a copy of N for each sprout. The reason
behind the choice of terminology should be clear from Figure 2.

Lemma 4.8 Let p(x), q(y) ∈ Sinv(U). Denote by q � i the restriction of q to the variable yi, and similarly for p.
If, for all i < |y| and i′ < |x|, the types q � i and p � i′ have the same graft, then p ∼D q.

P r o o f . As the roles of p and q are symmetric, it is enough to prove p ≥D q. By assumption and Theo-
rem 3.14, (p � Lmt) ≥D (q � Lmt), witnessed by some r′ over a small set A, and all 1-subtypes of p and q have the
same cut C. Recall that C must be bounded by Corollary 4.4 and the last point of Lemma 1.7. Up to enlarging A,
b and q, we may assume that (cf. Lemma 2.4), if b � q,

1. there is a ∈ A such that a > C and, if C has a maximum g, such that a is in the same open cone above g of
each coordinate of p and q; and

2. Ub is closed under meets and dclLmt (Ub) \ U = b.

By the second point of Lemma 1.7, this enlargement does not break the hypothesis that all q � i have the same
graft. Fix any r ∈ Spq(A) extending r′, and recall that p∪ r � (q � Lmt) ∪ (q � A). By quantifier elimination and
our assumptions on y, we are only left to deal with the formulas Rj(yi, f ) and Rj( f , yi), where f ∈ U and i < |y|.
We have three possibilities for yi � f . If q(y) � yi � f = yi, then q(y) � yi ≤ f . If instead there is h ∈ U such that
q(y) � yi � f = h, then there must be a point of U in the same open cone as bi above bi � f , because otherwise
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(q � i) � Lmt would be of kind (II). In the only other possible case, which can only arise if (q � i) � Lmt is of kind
(IIIa) or (IIIb), it is easy to see that f must be in the same open cone above bi � f as a. In each case, since the Rj

are on open cones, a ∈ A, and r ∈ Spq(A), the partial type p∪ r decides whether Rj(yi, f ) and Rj( f , yi) hold, and
we are done. �

Remark 4.9 The set of grafts of types in Sinv1 (U) can be identified with that of grafts of types in Sinv1 (U � Lmt).

P r o o f . The natural map from the former to the latter, well-defined by Corollary 4.4, is injective by definition
of graft, and is surjective because, since T is a purely binary cone-expansion of DMT, if p ∈ Sinv1 (U � Lmt) is of
kind (Ia) or (Ib), then p implies a unique type in S1(U), easily seen to be invariant. �

Lemma 4.10 Let p0, . . . , pn ∈ Sinv(U) be such that 
 := ⋃
i≤n(pi(x

i) � Lmt) is a complete type in DMT. Then⋃
i≤n pi(x

i) is a complete type in T .

P r o o f . Let bi � pi. In order for 
 to be complete in DMT, given i < i′ ≤ n, no 1-subtype of pi can have the
same graft as a 1-subtype of pi′ : if this was the case for the types of bi0 and b

i′
0, say, then there would be a ∈ U such

that 
 does not decide whether xi0 � a = xi
′
0 � a holds. Similarly, no 1-subtype of pi, say that of bi0 again, can have

the same sprout as a 1-subtype of pi′ , say that of bi
′
0, otherwise 
 does not decide whether xi0 = xi

′
0 holds. It follows

from this observation and Lemma 1.7 that dclLmt (Ub0, . . . , bn) = ⋃
i≤n dcl

Lmt (Ubi). Therefore, we only need to
show that, for each i < i′ ≤ n and each pair of {�}-terms (with parameters) hi, h′

i with hi(b
i) ∈ dclLmt (Ubi) \ U and

hi′ (bi
′
) ∈ dclLmt (Ubi

′
) \ U, we have that every formula of the form Rj(hi(xi), hi′ (xi

′
)) is decided by pi(xi) ∪ pi′ (xi

′
).

Since the Rj are on open cones, it is enough to show that at least one between hi(bi) and hi′ (bi
′
) must be in the

same open cone above hi(bi) � hi′ (bi′ ) as a point of U. Again because 
 is complete, the types of hi(bi) and hi′ (bi
′
)

cannot have the same graft, nor the same sprout.
We have two cases. Suppose first that 
 � hi(xi) � hi′ (xi′ ) = g for some g ∈ U. This happens, e.g., if

tp(hi(bi)/U) sprouts from g and the graft of tp(hi′ (bi
′
)/U) is in an existing open cone above g, or if none of CU

hi(bi )

and CU
hi′ (bi

′ ) is included in the other. Then, at least one between hi(bi) and hi′ (bi
′
) must be in an open cone above g

represented in U, because otherwise both would be sprouting from g, contradicting completeness of 
.
If instead for all d ∈ U we have 
 � hi(xi) � hi′ (xi′ ) �= d then, up to swapping i and i′, we must have 
 �

“CU
hi′ (xi

′ ) � CU
hi(xi )

”, because otherwise the types of hi(bi) and hi′ (bi
′
) have the same graft. Let a ∈ CU

hi(bi )
\CU

hi′ (bi
′ ).

Then 
 � hi(xi) > a > hi(xi) � hi′ (xi′ ), and in particular hi(bi) is in the same open cone above hi(bi) � hi′ (bi′ ) as
a. �

Remark 4.11 Suppose that, for each given i, all the 1-subtypes of pi have the same graft or the same sprout
and, for i �= i′, no 1-subtype of pi has the same sprout, nor the same graft, as a 1-subtype of pi′ . Then, by quan-
tifier elimination in DMT and easy observations such as those in Lemma 1.7, the assumptions of Lemma 4.10
are satisfied.

Recall that a sort Y of a multi-sorted U is said to be stably embedded iff, whenever D ⊆ Um is definable, then
D ∩ Ym is definable with parameters from Y , in the sense that it is definable with parameters when we view Y as
a structure on its own, the atomic relations being the traces on Y of ∅-definable relations of U. It is easy to obtain
a proof of the following fact; the reader may find one in [12, Proposition 2.3.31].

Fact 4.12 (T arbitrary) LetY be a stably embedded sort ofU. There is an embedding of posets Ĩnv(Y ) ↪→ Ĩnv(U).
This embedding is a ⊥w-homomorphism, a �⊥w-homomorphism, and, if ⊗ respects ≥D, an embedding of monoids.

For g ∈ U, denote by Og the set of open cones above g equipped with the {Rj | j ∈ J}-structure induced by U.
This may be regarded as an imaginary sort of the expansion of U obtained by naming the point g. While it is not
knownwhether well-definedness of the dominationmonoid is preserved by adding imaginaries, in our case this can
be circumvented by using the following observation. Each type p ∈ Sn(Og) may be seen as the pushforward under
the projection map of a suitable q ∈ Sn(U) with all non-realised 1-subtypes sprouting from g. Since T eliminates
quantifiers, q is axiomatised by its quantifier-free part. It follows easily that the same is true of p, and therefore
Th(Og) eliminates quantifiers in a binary language, hence is (weakly) binary. By Fact 3.5, Ig := Ĩnv(Og) is well-
defined. Note that we are not claiming well-definedness of the domination monoid for U with the sort Og added,
but only for the sort Og in isolation.
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Theorem 4.13 Let T be a purely binary cone-expansion of DMT, and let X be the set of grafts of types in
Sinv1 (U). Then there is an isomorphism of partially ordered monoids

Ĩnv(U) ∼= (Pfin(X ),∪) ×
⊕
g∈U

Ig.

P r o o f . Recall that by Theorem 2.8 Ĩnv(U) is well-defined, and that by Corollary 4.4 taking restrictions to Lmt

preserves invariance. ByRemark 4.11&Lemma 4.10, Ĩnv(U) is generated by the∼D-classes of those types pwhere
all 1-subtypes of p have all the same graft, or have all the same sprout. If all 1-subtypes of p have the same graft,
by Lemma 4.8 p is domination-equivalent to any 1-type with such a graft, and by using Lemma 4.10 a second time
we see that (Pfin(X ),∪) embeds in Ĩnv(U). A third use of Lemma 4.10 yields Ĩnv(U) = (Pfin(X ),∪) × ⊕

g∈U Ĩg,
where Ĩg is the monoid of ∼D-classes of types whose every 1-subtype sprouts from g.

We are only left to show that Ĩg ∼= Ig. Fix g ∈ U. Since Ĩnv(U) does not change after naming a small number
of constants, we may add to L a constant symbol to be interpreted as g. For the time being, we also adjoin to
the language a sort for Og and its natural projection map πg. Call the resulting structure Ug. Clearly U is stably
embedded in Ug, so by Fact 4.12 we have an embedding of posets8 Ĩnv(U) ↪→ Ĩnv(Ug). Similarly, Og is stably
embedded, hence Ĩnv(Og) = Ig embeds as a poset in Ĩnv(Ug). Let p be a type with all 1-subtypes sprouting from
g (different coordinates might be in different open cones), and let q be the pushforward of p along πg. Clearly
p ≥D q. Moreover, that q ≥D p is easily seen to be witnessed by any r containing all the formulas yi = πg(xi) for
i < |x|: the only information lost when taking the projection concerns points in the same new open cone, but this
information is in r. For instance, if x0 � x1 > g, we need to recover whether Rj(x0, x1) holds, and whether any
inequality holds between x0 and x1. More generally, the information we need to recover is implied by p � ∅, which
is included in r by Definition 3.2. Therefore, we obtain an injective embedding of Ĩnv(Og) into Ĩnv(U) with image
Ĩg. By Fact 4.12, this is an embedding of monoids, and we are done. �
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