
Nonlinear Differ. Equ. Appl. (2024) 31:48
c© 2024 The Author(s)
1021-9722/24/040001-18
published online April 11, 2024
https://doi.org/10.1007/s00030-024-00933-8

Nonlinear Differential Equations
and Applications NoDEA

Global solutions to the Kirchhoff equation
with spectral gap data in the energy space
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Abstract. We prove that the classical hyperbolic Kirchhoff equation ad-
mits global-in-time solutions for some classes of initial data in the energy
space. We also show that there are enough such solutions so that every
initial datum in the energy space is the sum of two initial data for which
a global-in-time solution exists. The proof relies on the notion of spectral
gap data, namely initial data whose components vanish for large intervals
of frequencies. We do not pass through the linearized equation, because
it is not well-posed at this low level of regularity.
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1. Introduction

Let H be a real Hilbert space, where |u| stands for the norm of u, and 〈u, v〉
stands for the scalar product of u and v. Let A be a positive self-adjoint oper-
ator on H with dense domain D(A). In this paper we consider the evolution
equation

u′′(t) + m
(
|A1/2u(t)|2

)
Au(t) = 0 (1.1)

with initial data

u(0) = u0, u′(0) = u1, (1.2)

where m : [0,+∞) → [0,+∞) is a suitable nonlinearity. Equation (1.1) is an
abstract version of the hyperbolic partial differential equation

utt(t, x) − m

(∫

Ω

|∇u(t, x)|2 dx

)
Δu(t, x) = 0,
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with suitable boundary conditions in an open set Ω ⊆ R
d. When d = 1 or

d = 2, equations of this type are a possible model for small transversal vibra-
tions of elastic strings or membranes. In the case of strings the equation was
derived by G. Kirchhoff in the celebrated monograph [16, Sect. 29.7] after some
mathematical simplifications in the full system of local equations of nonlinear
elasticity.

Throughout this paper, with the notable exception of Remark 2.5, we
always assume that m satisfies the strict hyperbolicity assumption

m(σ) ≥ μ1 > 0 ∀σ ≥ 0. (1.3)

When this is the case, it is well-known that problem (1.1)–(1.2) admits
a unique local solution provided that the nonlinearity m is locally Lipschitz
continuous, and initial data (u0, u1) are in the space D(A3/4)×D(A1/4). This
result was substantially established by S. Bernstein in the pioneering paper
[3], and then refined by many authors (see [1] for a modern version). Existence
of global solutions is known in a multitude of different special cases, such as
analytic data [2,3,5,6], quasi-analytic data [10,20], special nonlinearities [21],
dispersive equations and small data [7,13,19,22], spectral gap data or spectral
gap operators [8,10,14,15,18]. Nevertheless, none of these results addresses
initial data below the regularity threshold of D(A3/4) × D(A1/4).

On the other hand, a formal calculation shows that all solutions to prob-
lem (1.1)–(1.2) satisfy the energy equality

|u′(t)|2 + M
(
|A1/2u(t)|2

)
= |u1|2 + M

(
|A1/2u0|2

)
, (1.4)

where

M(σ) :=
∫ σ

0

m(s) ds ∀σ ≥ 0. (1.5)

This conserved Hamiltonian is well-defined in the space D(A1/2) × H,
which for this reason is called the energy space. Therefore, it is reasonable to
look for solutions with initial data in this space. This challenge is one of the
open problems stated in the famous note that J.-L. Lions devoted to Kirch-
hoff equations (see [17, Remark 3.6, p. 314]), and it remained substantially
untouched so far.

The difference between the energy space (where nothing is known) and
the space D(A3/4) × D(A1/4) becomes clear when we consider the associated
linear equation.
Wave equations with time-dependent coefficients

Let us consider the linear wave equation

u′′(t) + c(t)Au(t) = 0, (1.6)

where c : [0,+∞) → [0,+∞) is a given function (the square of the propagation
speed).

This equation was investigated in the seminal paper [4] and in many
subsequent articles. The main result is that problem (1.6)–(1.2) is well-posed
in the energy space D(A1/2) × H, and more generally in all spaces of the
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form D(Aα+1/2) × D(Aα), provided that the coefficient c(t) satisfies the strict
hyperbolicity assumption

c(t) ≥ μ1 > 0 ∀t ≥ 0, (1.7)

and is (locally) Lipschitz continuous. If the coefficient c(t) is less regular, for
example Hölder continuous or just continuous, then much more regularity is
required on initial data, for example Gevrey or analytic regularity, otherwise
there are situations (and actually many of them, since counterexamples are
“residual”, as shown in [12]) where solutions do not exist, not even in the
sense of distributions.

Now it is immediate to see that Eq. (1.1) reduces to (1.6) when we set

c(t) := m(|A1/2u(t)|2). (1.8)

At this point the strict hyperbolicity (1.7) of the coefficient c(t) follows
from the strict hyperbolicity (1.3) of the nonlinearity, while the Lipschitz con-
tinuity of c(t) is related to the boundedness of its derivative

c′(t) = m′
(
|A1/2u(t)|2

)
〈A1/2u(t), A1/2u′(t)〉

= m′
(
|A1/2u(t)|2

)
〈A3/4u(t), A1/4u′(t)〉.

This is exactly the point where the space D(A3/4) × D(A1/4) comes into
play. It is the minimal space that guarantees the C1 regularity of the function
t 
→ |A1/2u(t)|2, even in the case of a wave equation with a constant coefficient.
We observe that this regularity is crucial also in order to provide a rigorous
justification of the calculation that leads to the energy equality (1.4).

This is also the reason why the space D(A3/4) × D(A1/4) has become
some sort of insurmountable barrier for Kirchhoff equations. No proof based
on a control of c(t) can go any further.

Our contribution In this paper we surmount the barrier for the first time, and
in Theorem 2.4 we extend the spectral gap theory of [8,14,18] from the “good”
space D(A3/4) × D(A1/4) up to the “minimal” energy space D(A1/2) × H. In
a nutshell, we prove that problem (1.1)–(1.2) admits global solutions for some
special initial data in the energy space (see Definition 2.2). On the one hand,
our initial data are special because their “Fourier series” has infinitely many
tails that are very small. On the other hand, these initial data are “numerous
enough” because any pair (u0, u1) in the energy space is the sum of two data
for which the global solution exists (see Proposition 2.3).

The novelty of this result is not so much that our solutions are global, but
rather that they do exist. Indeed, no nontrivial example of (even just local)
solution was known so far with initial datum in the energy space. Our solutions
exist beyond linearization, and actually despite linearization. What we mean is
that in our case the function t 
→ |A1/2u(t)|2 turns out to be just continuous,
and not Lipschitz continuous, and therefore if we take one of our solutions
u(t) to (1.1), and we consider the linear equation obtained by freezing the
coefficient according to (1.8), then there is no guarantee that the linearized
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equation (1.6) admits solutions with non-analytic data (but actually for some
mysterious reason it does, at least for the special pair (u0, u1) we started with).

Just for completeness, we recall that in [11] we proved global existence in
the energy space for equation (1.1) with a suitable strong damping. However,
the spirit of that result is completely different, because the linear equation
(1.6) with the same strong damping is well-posed in the energy space also
when the coefficient c(t) is less regular. In other words, in that context the
Kirchhoff result is a consequence of a linear result, while here it is a purely
nonlinear phenomenon.

Overview of the technique In the proof we exploit the usual ingredients, but
we cook them up in an unusual way because we know that linear arguments
can not work, so that the final result has a completely different flavor.

Many tools are not available in this setting with low regularity. We can
not use higher order energies, and more generally any quantity that contains
Aαu′(t) for some α > 0 or Aαu(t) for some α > 1/2. We can not use any of
the known fixed point arguments, both on the coefficient, and on the solution,
because again they rely heavily on linearization. At the end of the day, we can
use only the classical Hamiltonian.

What we do is considering the usual finite dimensional approximation
à la Galerkin, and showing that the resulting sequence {un(t)} is a Cauchy
sequence in the energy space. To this end, we write

un(t) = sn,k(t) + rn,k(t),

where sn,k(t) and rn,k(t) are the components of un(t) corresponding to frequen-
cies that are, respectively, smaller and larger than some threshold k. Then we
set

E+
n,k(t) := |r′

n,k(t)|2 + |A1/2rn,k(t)|2,
and we prove that on a fixed time interval it turns out that

E+
n,k(t) ≤ Ck · E+

n,k(0) (1.9)

for a suitable constant Ck that does not depend on n. This is the key nonlinear
point of the proof, for which we introduce an energy that can be thought as a
sort of “modified Hamiltonian restricted to high-frequency components”. We
refer to formula (3.15) for the details.

Now we take two approximated solutions un(t) and un(t), with n and n
larger than the threshold k, and with a finite dimensional analysis we show
that their low-frequency components sn,k(t) and sn,k(t) satisfy

|s′
n,k(t) − s′

n,k(t)|2 + |A1/2(sn,k(t) − sn,k(t))|2 ≤ Dk · (E+
n,k(0) + E+

n,k(0))

(1.10)

for a suitable constant Dk that does not depend on n and n. From (1.9) and
(1.10) we conclude that

|u′
n(t) − u′

n(t)|2 + |A1/2(un(t) − un(t))|2 ≤ (Dk + 2Ck) · (E+
n,k(0) + E+

n,k(0)).

(1.11)
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The good news is that E+
n,k(0) and E+

n,k(0) are uniformly small when k
is large enough. The bad news is that Ck and Dk grow rapidly with k. This is
the point where spectral gap data come into play, because we can define these
special data in such a way that the product in the right-hand side of (1.11)
tends to 0 on some sequence of k’s.

Conclusions What does this result tell us? For sure, it dispels the reasonable
belief that “when the linear goes wrong, then also Kirchhoff goes wrong”. Now
we know that Kirchhoff equation can admit solutions when its linearization is
not well-posed.

The main open problem for Kirchhoff equations (existence of global solu-
tion for Sobolev data) remains open. It might happen that problem (1.1)–(1.2)
has a global solution for all initial data in the energy space, or there might
exist solutions, even with initial data in D(A∞), that blow up in a finite time.
We do not lean on either side, but we observe that any counterexample would
involve a solution that remains bounded in the energy space and blows up in
some higher order norm. This is possible only if the energy “migrates” from
low frequencies to high frequencies. Spectral gap data show that the migration
is not possible if there are “large enough holes” in the spectrum of initial data.
The counter-positive is that energy can migrate only between frequencies that
are close enough, and this complicates a lot the search of a counterexample.

Structure of the paper This paper is organized as follows. In Sect. 2 we fix the
functional setting, we recall the notion of weak solutions for (1.1), we introduce
spectral gap data, and we state our global existence result. In Sect. 3 prove the
main result. Finally, in Sect. 4 we comment on some natural questions that
remain open concerning weak solutions.

2. Statements

Let H be a real Hilbert space, and let A be a self-adjoint operator on H
with domain D(A). For the sake of simplicity we assume that there exist an
orthonormal basis {ei}i≥1 of H, and a nondecreasing sequence λi → +∞ of
positive real numbers such that

Aei = λ2
i ei ∀i ≥ 1.

In Remark 2.7 we discuss a more general setting where the same theory
can be developed. Here we just recall that for any such operator the power Aαv
is defined for every real number α, provided that v lies in a suitable subspace
D(Aα).

We are interested in global weak solutions to Eq. (1.1) with initial data
(1.2) in the energy space D(A1/2) × H. At this level of regularity we can not
expect (1.1) to be satisfied in the classical sense, not even in the case where m
is constant, and therefore we have to rely on the usual notion of weak solution,
that we recall below.
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Definition 2.1. (Global weak solutions) A global weak solution to problem (1.1)–
(1.2) is any function

u ∈ C0
(
[0,+∞),D(A1/2)

)
∩ C1 ([0,+∞),H)) (2.1)

that satisfies (1.2) and in addition
∫ T

0

〈u′(t), ϕ′(t)〉 dt =
∫ T

0

m
(
|A1/2u(t)|2

)
〈A1/2u(t), A1/2ϕ(t)〉 dt

for every T > 0 and for every test function ϕ ∈ C0
(
[0, T ],D(A1/2)

)∩C1 ([0, T ],
H)) such that ϕ(0) = ϕ(T ) = 0.

The notion of weak solution can also be defined in terms of the com-
ponents of u with respect to the orthonormal basis {ei}, as follows. Let us
consider a function u with the regularity (2.1), let us define the continuous
function c(t) according to (1.8), and let us consider the components

vi(t) := 〈u(t), ei〉.
Then u is a global weak solution to problem (1.1)–(1.2) if and only if for

every i ≥ 1 it turns out that vi ∈ C2([0,+∞),R) is the solution to the linear
ordinary differential equation

v′′
i (t) + c(t)λ2

i vi(t) = 0 (2.2)

with initial data

vi(0) = 〈u0, ei〉, v′
i(0) = 〈u1, ei〉. (2.3)

Now we introduce a special subset of D(A1/2) × H, consisting of the so-
called spectral gap data or lacunary data. Analogous spaces are considered in
[8,14,18].

Definition 2.2. (Lacunary data) For every (u0, u1) ∈ D(A1/2) × H, and every
positive integer k, let us set

Rk(u0, u1) :=
∞∑

i=k+1

(〈u1, ei〉2 + λ2
i 〈u0, ei〉2

)
. (2.4)

We call SG(A) the set of all pairs (u0, u1) ∈ D(A1/2) × H such that

Rk(u0, u1) · k2 exp(kλk) ≤ 1 for infinitelymany integers k. (2.5)

We stress that (2.5) is required to be true only for infinitely many values
of k, and not for every k or eventually, and that the set of integers k for which
(2.5) holds true does depend on (u0, u1). For this reason SG(A) is neither a
vector space, nor a closed subset of the energy space. Nevertheless, SG(A) has
the following property, which at a first glance looks counterintuitive.

Proposition 2.3. (Sum property) For every pair (u0, u1) ∈ D(A1/2) × H there
exist two pairs (v0, v1) and (w0, w1) in SG(A) such that u0 = v0 + w0 and
u1 = v1 + w1.
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The proof of Proposition 2.3 is an exercise on numerical series that we
leave to the interested reader (analogous results are proved in [18, Theorem 2]
and [8, Proposition 3.2]).

We are now ready to state the main result of this paper.

Theorem 2.4. (Global existence for spectral gap data in the energy space) Let
H be a Hilbert space, and let A be an operator with the properties stated at the
beginning of this section. Let (u0, u1) ∈ SG(A) be a pair of lacunary initial data
according to Definition 2.2. Let m : [0,+∞) → [0,+∞) be a locally Lipschitz
continuous function such that

inf{m(σ) : σ ≥ 0} > 0. (2.6)

Then problem (1.1)–(1.2) admits at least one global weak solution in the
sense of Definition 2.1, and this solution satisfies the energy equality (1.4) for
every t ≥ 0.

In the previous statement we were quite generous with the assumptions,
because in that framework we can present a clear proof that conveys the key
ideas without unnecessary technicalities. Now we discuss some possible exten-
sions.

Remark 2.5. (Assumptions on the nonlinearity) The assumptions on the non-
linearity m can be relaxed a little with standard changes in the proof. More
precisely, the strict hyperbolicity assumption (2.6) can be weakened by just
asking that m(σ) > 0 for every σ ≥ 0 and

∫ +∞

0

m(σ) dσ = +∞.

Remark 2.6. (Variants of lacunary data) In the definition of SG(A) we can
replace the weight k2 exp(kλk) by αk exp(βkλk), where {αk} and {βk} are two
sequences of real numbers such that αk → +∞ and βk → +∞ (these two
sequences might also depend on (u0, u1)). We can also replace the 1 in the
right-hand side of (2.5) with a constant C, that is also allowed to depend on
(u0, u1). Note that in this way the set SG(A) becomes invariant by homothety.

We also observe that, if the eigenvalues of A grow fast enough, for example
λk+1 ≥ exp(k2λk) for infinitely many k’s, then D(Aα+1/2) × D(Aα) ⊆ SG(A)
for every α > 0.

Remark 2.7. (Assumptions on the operator) Concerning H and A, we do not
need the operator to be positive, but just nonnegative, and we do not need
its spectrum to be discrete. We just need that H is a real Hilbert space,
and A is unitary equivalent to a multiplication operator on some L2 space.
More precisely, this means that there exist a measure space (M, μ), a linear
bijective isometry F : H → L2(M, μ), and a nonnegative measurable function
λ : M → [0,+∞) such that

v ∈ D(A) ⇐⇒ λ(ξ)2 · [F (v)](ξ) ∈ L2(M, μ),

and such that for every v ∈ D(A) it turns out that

[F (Av)](ξ) = λ(ξ)2 · [F (v)](ξ) forμ-almost every ξ ∈ M.
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In other words, we can identify H with L2(M, μ) through F , which plays
the role of a generalized Fourier transform, and under this identification the
operator A becomes the multiplication operator by λ(ξ)2.

In this context we say that (u0, u1) ∈ SG(A) if and only if there exists a
sequence of real numbers �n → +∞ such that

n2 exp(n�n) ·
∫

{ξ∈M: λ(ξ)>�n}

(
û1(ξ)2 + λ(ξ)2û0(ξ)2

)
dμ(ξ) ≤ 1,

where as usual we set û0 := F (u0) and û1 := F (u1).

3. Proof of Theorem 2.4

We follow a usual Galerkin approximation scheme. To this end, for every pos-
itive integer n we consider the solution un(t) to Eq. (1.1) with initial data

un(0) =
n∑

i=1

〈u0, ei〉ei, u′
n(0) =

n∑
i=1

〈u1, ei〉ei. (3.1)

We observe that the initial data of un(t) are the projections of the initial
data (1.2) onto the n-dimensional subspace of H generated by e1, . . . , en.
Since this finite dimensional subspace of H is A-invariant, Eq. (1.1) reduces
to a system of finitely many ordinary differential equations, and therefore
problem (1.1)–(3.1) admits exactly one solution un(t). This solution, defined
for every positive time, is actually a strong solution, and even better it satisfies
un ∈ C2,1([0,+∞),D(Aα)) for every real number α (the only obstruction to
further time regularity of un(t) is the regularity of m(σ)). As a consequence,
un(t) satisfies also the energy equality

|u′
n(t)|2 + M

(
|A1/2un(t)|2

)
= |u′

n(0)|2 + M
(
|A1/2un(0)|2

)
∀t ≥ 0.

(3.2)

The key claim is that {un(t)} is a Cauchy sequence in the space

C0([0, T ],D(A1/2)) ∩ C1([0, T ],H)

for every T > 0.
If this is true, then there exists u ∈ C0([0,+∞),D(A1/2))∩C1([0,+∞),H)

such that

lim
n→+∞ sup

t∈[0,T ]

(
|u′(t) − u′

n(t)|2 + |A1/2(u(t) − un(t))|2
)

= 0 ∀T > 0.

This uniform convergence on bounded intervals is enough to pass to the
limit both in the notion of weak solution, from which we deduce that u(t) is a
global weak solution to problem (1.1)–(1.2) in the sense of Definition 2.1, and
in the energy equality (3.2), from which we obtain (1.4).

In order to prove that {un(t)} is a Cauchy sequence it is enough to show
that, for every T > 0 and every ε > 0, there exists a positive integer k such
that
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sup
t∈[0,T ]

(
|u′

n(t) − u′
n(t)|2 + |A1/2(un(t) − un(t))|2

)
≤ ε ∀n > k, ∀n > k.

(3.3)

The rest of the proof is devoted to the proof of this claim. To this end,
we introduce some notation.
Notation and basic uniform estimates

Let us set

H0 := |u1|2 + M(|A1/2u0|2). (3.4)

We observe that the right-hand side of (3.2) is less than or equal to H0,
and therefore

|u′
n(t)|2 + M

(
|A1/2un(t)|2

)
≤ H0 ∀t ≥ 0, ∀n ≥ 1. (3.5)

If μ1 denotes the infimum in (2.6), then from (1.5) we obtain that M(σ) ≥
μ1σ for every σ ≥ 0, and therefore from (3.5) we deduce that there exists a
constant H1 such that

|A1/2un(t)|2 ≤ H1 ∀t ≥ 0, ∀n ≥ 1.

Due to this bound, in the sequel we can assume, without loss of generality,
that m(σ) is also bounded from above and Lipschitz continuous, and more
precisely that

0 < μ1 ≤ m(σ) ≤ μ2 ∀σ ≥ 0 (3.6)

and

|m(σ2) − m(σ1)| ≤ L|σ2 − σ1| ∀(σ1, σ2) ∈ [0,+∞)2 (3.7)

for suitable positive real numbers μ1, μ2 and L.
For every pair of positive integers n > k, we write un(t) as

un(t) = sn,k(t) + rn,k(t),

where

sn,k(t) :=
k∑

i=1

〈un(t), ei〉ei

is the component of un(t) with respect to the subspace Hk of H generated by
e1, . . . , ek (the small frequencies), and

rn,k(t) :=
n∑

i=k+1

〈un(t), ei〉ei

is the remainder, corresponding to the component of un(t) with respect to the
subspace of H generated by ek+1, . . . , en (the high frequencies).

It is easy to check that sn,k(t) solves equation

s′′
n,k(t) + m

(
|A1/2sn,k(t)|2 + |A1/2rn,k(t)|2

)
Asn,k(t) = 0
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with initial data

sn,k(0) =
k∑

i=1

〈u0, ei〉ei,

s′
n,k(0) =

k∑
i=1

〈u1, ei〉ei,

while rn,k(t) solves equation

r′′
n,k(t) + m

(
|A1/2sn,k(t)|2 + |A1/2rn,k(t)|2

)
Arn,k(t) = 0 (3.8)

with initial data

rn,k(0) =
n∑

i=k+1

〈u0, ei〉ei,

r′
n,k(0) =

n∑
i=k+1

〈u1, ei〉ei,

We observe also that

|Av| ≤ λk|A1/2v| ∀v ∈ Hk. (3.9)

For the sake of shortness we introduce the function

ϕn,k(t) := |A1/2sn,k(t)|2. (3.10)

and the constants

ν1 := min{1, μ1}, ν2 := max{1, μ2}.

Uniform bound on low-frequency components
We show that for every pair of positive integers n > k it turns out that

|s′
n,k(t)|2 + |A1/2sn,k(t)|2 ≤ H0

ν1
∀t ≥ 0 (3.11)

and

|ϕ′
n,k(t)| ≤ H0

ν1
· λk ∀t ≥ 0. (3.12)

To this end, since sn,k(t) is a projection of un(t) onto a subspace, from
the energy inequality (3.5) we deduce that

|s′
n,k(t)|2 + M

(
|A1/2sn,k(t)|2

)
≤ |u′

n(t)|2 + M
(
|A1/2un(t)|2

)
≤ H0.

Recalling that M(σ) ≥ μ1σ for every σ ≥ 0, we immediately obtain
(3.11). Now we observe that

ϕ′
n,k(t) = 2〈Asn,k(t), s′

n,k(t)〉 ∀t ≥ 0.

Since sn,k(t) belongs to the subspace Hk, from (3.9) we conclude that
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|ϕ′
n,k(t)| ≤ 2|Asn,k(t)| · |s′

n,k(t)|
≤ λk · 2|A1/2sn,k(t)| · |s′

n,k(t)|
≤ λk

(
|s′

n,k(t)|2 + |A1/2sn,k(t)|2
)

.

At this point (3.12) follows from (3.11).
Uniform smallness of high-frequency components

We show that for every pair of positive integers n > k it turns out that

|r′
n,k(t)|2 + |A1/2rn,k(t)|2 ≤ Rk(u0, u1) · L+

k (t) ∀t ≥ 0, (3.13)

where Rk(u0, u1) is defined by (2.4) and

L+
k (t) :=

ν2

ν1
· exp

(
LH0λkt

ν2
1

)
. (3.14)

To this end, we consider the function ϕn,k(t) defined by (3.10), and we
introduce the energy

F (t) := |r′
n,k(t)|2 + M

(
ϕn,k(t) + |A1/2rn,k(t)|2

)
− M (ϕn,k(t)) . (3.15)

From the bounds in (3.6) we deduce that

μ1|A1/2rn,k(t)|2 ≤ M
(
ϕn,k(t) + |A1/2rn,k(t)|2

)
− M (ϕn,k(t))

≤ μ2|A1/2rn,k(t)|2,
and therefore

ν1

(
|r′

n,k(t)|2 + |A1/2rn,k(t)|2
)

≤ F (t)

≤ ν2

(
|r′

n,k(t)|2 + |A1/2rn,k(t)|2
)

. (3.16)

Due to the time regularity of un(t), and hence also of rn,k(t), the function
F (t) is of class C1, and its time-derivative is equal to

F ′(t) = 2〈r′
n,k(t), r′′

n,k(t)〉
+m

(
ϕn,k(t) + |A1/2rn,k(t)|2

)
· (

ϕ′
n,k(t) + 2〈Arn,k(t), r′

n,k(t)〉)

−m (ϕn,k(t)) ϕ′
n,k(t),

which, taking (3.8) and (3.10) into account, can be rewritten as

F ′(t) = ϕ′
n,k(t)

{
m

(
ϕn,k(t) + |A1/2rn,k(t)|2

)

−m (ϕn,k(t))} .

Thus from (3.12) and the Lipschitz continuity of m we deduce that

F ′(t) ≤ H0λk

ν1
· L|A1/2rn,k(t)|2 ≤ LH0λk

ν2
1

F (t).

Integrating this differential inequality we obtain that

F (t) ≤ F (0) exp
(

LH0λkt

ν2
1

)
∀t ≥ 0. (3.17)

Finally, we recall that
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F (0) ≤ ν2

(
|r′

n,k(0)|2 + |A1/2rn,k(0)|2
)

= ν2

n∑
i=k+1

(〈u1, ei〉2 + λ2
i 〈u0, ei〉2

)

≤ ν2Rk(u0, u1) (3.18)

At this point (3.13) follows from (3.17), (3.18), and the estimate from
below in (3.16).
Smallness of differences between low-frequency components

We show that for every triple of positive integers (n, n, k), with n > k
and n > k, it turns out that

|s′
n,k(t) − s′

n,k(t)|2 +
∣∣∣A1/2(sn,k(t) − sn,k(t))

∣∣∣
2

≤ Rk(u0, u1)2 · L−
k (t) ∀t ≥ 0, (3.19)

where

L−
k (t) := 2L

(
ν2

ν1

)2

exp
((

1 + μ2 +
4LH0

ν2
1

)
λkt

)
. (3.20)

To this end, we introduce the difference

ρn,n,k(t) := sn,k(t) − sn,k(t),

and we observe that it is a solution to equation

ρ′′
n,n,k(t) + Aρn,n,k(t) = ψn,k(t) − ψn,k(t) (3.21)

with initial data

ρn,n,k(0) = 0, ρ′
n,n,k(0) = 0,

where

ψn,k(t) :=
{

1 − m
(
|A1/2un(t)|2

)}
Asn,k(t),

ψn,k(t) :=
{

1 − m
(
|A1/2un(t)|2

)}
Asn,k(t).

Now we introduce the energy

G(t) := |ρ′
n,n,k(t)|2 + |A1/2ρn,n,k(t)|2.

Due to the time regularity of un(t) and un(t), and hence also of ρn,n,k(t),
the function G(t) is of class C1, and its time-derivative is equal to

G′(t) = 2〈ρ′
n,n,k(t), ρ′′

n,n,k(t)〉 + 2〈Aρn,n,k(t), ρ′
n,n,k(t)〉.

Taking (3.21) into account, we obtain that

G′(t) = 2〈ψn,k(t) − ψn,k(t), ρ′
n,n,k(t)〉 ≤ 2|ψn,k(t) − ψn,k(t)| · |ρ′

n,n,k(t)|.
In order to estimate the first factor, we set for simplicity

L1 :=
H0

ν1
,

and we observe that



NoDEA Global solutions to the Kirchhoff equation Page 13 of 18 48

ψn,k(t) − ψn,k(t) =
{

1 − m
(
|A1/2un(t)|2

)}
Aρn,n,k(t)

+
{

m
(
|A1/2un(t)|2

)
− m

(
|A1/2un(t)|2

)}
Asn,k(t).

(3.22)

Now we estimate the two terms separately. For the first term, we exploit
the bound from above in (3.6), and the fact that ρn,n,k(t) lies in the subspace
Hk generated by e1, . . . , ek where (3.9) holds true. We obtain that∣∣∣1 − m

(
|A1/2un(t)|2

)∣∣∣ · |Aρn,n,k(t)| ≤ (1 + μ2)λk|A1/2ρn,n,k(t)|. (3.23)

For the second term, we observe that also sn,k(t) lies in the subspace Hk

where (3.9) holds true, and therefore from (3.11) with n instead of n we obtain
that

|Asn,k(t)| ≤ λk|A1/2sn,k(t)| ≤ λkL
1/2
1 . (3.24)

Now we observe that

|A1/2un(t)|2 − |A1/2un(t)|2
= |A1/2sn,k(t)|2 − |A1/2sn,k(t)|2 + |A1/2rn,k(t)|2 − |A1/2rn,k(t)|2
= 〈A1/2ρn,n,k(t), A1/2(sn,k(t) + sn,k(t))〉 + |A1/2rn,k(t)|2 − |A1/2rn,k(t)|2,

so that∣∣∣|A1/2un(t)|2 − |A1/2un(t)|2
∣∣∣ ≤ |A1/2ρn,n,k(t)|

(
|A1/2sn,k(t)| + |A1/2sn,k(t)|

)

+ |A1/2rn,k(t)|2 + |A1/2rn,k(t)|2,
and therefore from (3.11) and (3.13) we obtain that∣∣∣|A1/2un(t)|2 − |A1/2un(t)|2

∣∣∣ ≤ 2L
1/2
1 |A1/2ρn,n,k(t)| + 2Rk(u0, u1)L+

k (t).

(3.25)

From (3.7), (3.24), and (3.25) we deduce that∣∣∣m
(
|A1/2un(t)|2

)
− m

(
|A1/2un(t)|2

)∣∣∣ · |Asn,k(t)|
≤ 2LL1λk|A1/2ρn,n,k(t)| + 2LL

1/2
1 λkL+

k (t)Rk(u0, u1). (3.26)

Plugging (3.23) and (3.26) into (3.22) we obtain that

|ψn,k(t) − ψn,k(t)| ≤ λk (1 + μ2 + 2LL1) |A1/2ρn,n,k(t)|
+ 2LL

1/2
1 λkL+

k (t)Rk(u0, u1),

and therefore

G′(t) ≤ 2|ψn,k(t) − ψn,k(t)| · |ρ′
n,n,k(t)|

≤ 2λk (1 + μ2 + 2LL1) |A1/2ρn,n,k(t)| · |ρ′
n,n,k(t)|

+ 4LL
1/2
1 λkL+

k (t)Rk(u0, u1)|ρ′
n,n,k(t)|

≤ λk (1 + μ2 + 2LL1)
(
|ρ′

n,n,k(t)|2 + |A1/2ρn,n,k(t)|2
)

+ 2LL1λk|ρ′
n,n,k(t)|2 + 2LλkL+

k (t)2Rk(u0, u1)2
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≤ λk (1 + μ2 + 4LL1) G(t) + 2LλkL+
k (t)2Rk(u0, u1)2

≤ λk

(
1 + μ2 +

4LL1

ν1

)
G(t) + 2LλkL+

k (t)2Rk(u0, u1)2.

Now let us set for simplicity

ak :=
(

1 + μ2 +
4LL1

ν1

)
λk =

(
1 + μ2 +

4LH0

ν2
1

)
λk. (3.27)

Since G(0) = 0, and G(t) satisfies the differential inequality

G′(t) ≤ akG(t) + 2LλkL+
k (t)2Rk(u0, u1)2 ∀t ≥ 0,

we deduce that

G(t) ≤ 2LλkRk(u0, u1)2 exp(akt)
∫ t

0

L+
k (s)2 exp(−aks) ds ∀t ≥ 0.

On the other hand, from (3.14) and (3.27) we obtain that

L+
k (s)2 exp(−aks)

=
(

ν2

ν1

)2

exp
(

2LH0λks

ν2
1

− (1 + μ2)λks − 4LH0λks

ν2
1

)

≤
(

ν2

ν1

)2

exp(−(1 + μ2)λks),

and therefore

G(t) ≤ 2LλkRk(u0, u1)2 exp(akt)
(

ν2

ν1

)2 ∫ t

0

exp(−(1 + μ2)λks) ds

≤ Rk(u0, u1)2 · 2L

(
ν2

ν1

)2

exp(akt),

which implies (3.19).

Conclusion Given initial data (u0, u1) ∈ SG(A), and given real numbers T > 0
and ε > 0, we consider the constants H0, μ1, μ2, L that appear in (3.4), (3.6)
and (3.7), and we choose a positive integer k for which (2.5) holds true, and
such that

max

{
2L

(
ν2

ν1

)2

,
ν2

ν1
,

(
1 + μ2 +

4LH0

ν2
1

)
T

}
≤ k, ε ≥ 5

k
.

(3.28)

For every pair of positive integers (n, n), with n > k and n > k, we write
un(t) and un(t) as the sum of low-frequency and high-frequency components,
and we obtain that

|u′
n(t) − u′

n(t)|2 + |A1/2(un(t) − un(t))|2
= |s′

n,k(t) − s′
n,k(t)|2 + |A1/2(sn,k(t) − sn,k(t))|2

+ |r′
n,k(t) − r′

n,k(t)|2 + |A1/2(rn,k(t) − rn,k(t))|2. (3.29)



NoDEA Global solutions to the Kirchhoff equation Page 15 of 18 48

In the low-frequency regime we apply (3.19). The first inequality in (3.28)
implies that

L−
k (t) ≤ k exp(kλk) ∀t ∈ [0, T ].

and therefore for every t ∈ [0, T ] it turns out that

|s′
n,k(t) − s′

n,k(t)|2 +
∣∣∣A1/2(sn,k(t) − sn,k(t))

∣∣∣
2

≤ Rk(u0, u1)2 · k exp(kλk)

≤ Rk(u0, u1) · k exp(kλk),
(3.30)

where the last inequality is true because (2.5) implies in particular that
Rk(u0, u1) ≤ 1.

In the high-frequency regime we estimate the norm of the difference with
the sum of the norms, and from (3.13) we obtain that

|r′
n,k(t) − r′

n,k(t)|2 +
∣∣∣A1/2(rn,k(t) − rn,k(t))

∣∣∣
2

≤ 2
(
|r′

n,k(t)|2 + |A1/2rn,k(t)|2
)

+ 2
(
|r′

n,k(t)|2 + |A1/2rn,k(t)|2
)

≤ 4Rk(u0, u1) · L+
k (t).

The first inequality in (3.28) implies that

L+
k (t) ≤ k exp(kλk) ∀t ∈ [0, T ],

and therefore for every t ∈ [0, T ] it turns out that

|r′
n,k(t) − r′

n,k(t)|2 +
∣∣∣A1/2(rn,k(t) − rn,k(t))

∣∣∣
2

≤ Rk(u0, u1) · 4k exp(kλk).

(3.31)

Plugging (3.30) and (3.31) into (3.29) we conclude that for every t ∈ [0, T ]
it turns out that

|u′
n(t) − u′

n(t)|2 + |A1/2(un(t) − un(t))|2 ≤ Rk(u0, u1) · 5k exp(kλk) ≤ 5
k

≤ ε,

where in the second inequality we exploited again that (2.5) is true for this
value of k.

This completes the proof of the key claim (3.3). �

4. Final comments

Uniqueness Uniqueness of weak solutions is known only in the trivial case in
which initial data have only a finite number of components. In this case indeed
it is enough to consider the linear scalar problem (2.2)–(2.3) satisfied by the
components of u(t), and deduce that components with zero initial data remain
identically equal to zero for all positive times. What remains is a system of
finitely many ordinary differential equations, for which uniqueness is a stan-
dard issue (if the nonlinearity m(σ) is locally Lipschitz continuous, of course).

When initial data have infinitely many components different from zero,
things are rather obscure. In particular, for regular initial data it is well-known
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that there exists a (local) strong solution, and this solution is unique in the
class of strong solutions (strong-strong uniqueness, see for example [1] or the
more recent [9]), but we are not able to exclude the existence of a different
weak solution, or even of infinitely many weak solutions, with the same initial
condition. In other words, not only weak-weak uniqueness is an open problem,
but also weak-strong uniqueness.

Energy equality We do not know whether all weak solutions to (1.1) satisfy
the energy equality (1.4). For sure it is true when the functions t 
→ |u′(t)|2
and t 
→ |A1/2u(t)|2 are of class C1, but this leads us once again to the space
D(A3/4) × D(A1/4). Our solutions satisfy (1.4) for a different reason, namely
because they are uniform limits, with respect to the norm of the energy space,
of strong solutions. On the other hand, nothing seems to prevent the existence
of weak solutions, even with the same initial data, that do not satisfy the
energy equality.

Continuous dependence on initial data The limit of weak solutions (with re-
spect to the norm of the energy space), if it exists, is again a weak solution.
On the other hand, if a sequence of initial data {(u0,n, u1,n)} converges in the
energy space to some limit (u0,∞, u1,∞), we do not know whether the corre-
sponding sequence of weak solutions has a limit in the energy space, even up
to subsequences.

The only case in which we have a positive answer is when (u0,n, u1,n) ∈
SG(A) and for every n ≥ 1 the set of indices k for which (2.5) is true is the
same (of course here we are considering “our” solutions, but we observed before
that a priori different solutions might exist with the same initial data).
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Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4, 17–26 (1940)

[4] Colombini, F., De Giorgi, E., Spagnolo, S.: Sur les équations hyperboliques avec
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