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Abstract: The present review considers the design and introduction of new cosmeceuticals in the
market, based on natural polymers and active molecules extracted from biomass, in a biomimetic
strategy, starting with a consideration of the biochemical mechanisms, followed by natural preci-
sion biopolymer production. After introducing the contest of nanobiotechnology in relationship
with its applicability for skin contact products and classifying the currently available sustainable
polymers, some widely selected abundant biopolymers (chitin, chitosan, and lignin), showing spe-
cific functionalities (anti-microbial, anti-oxidant, anti-inflammatory, etc.), are described, especially
considering the possibility to combine them in nanostructured tissues, powders, and coatings for
producing new cosmeceuticals, but with potentialities in other sectors, such as biomedical, personal
care, and packaging sectors. After observing the general increase in market wellness and beauty
forecasts over the next few years, parallelisms between nano and macro scales have suggested that
nanobiotechnology application expresses the necessity to follow a better way of producing, selecting,
and consuming goods that will help to transform the actual linear economy in a circular economy,
based on redesigning, reducing, recycling, and reusing.

Keywords: biopolymers; cosmeceuticals; circular; nanobiotechnology; polysaccharides; polypeptides;
polynucleotides; chitin; chitosan; lignin; hyaluronic acid

1. Introduction

Natural polymers, also named biopolymers, are represented from a class of natural
substances which are both renewable and biodegradable. They are made up of long
chains or networks of smaller molecules called monomers, and they are built by following
precise sequences and specific structures of macromolecules with different shapes and
sizes. Biopolymers touch almost every aspect of our lives and can be seen to belong to
homopolymers, copolymers, or precision polymers (Figure 1) [1]. The latter group indicates
sequence-defined polymers that are very difficult to be obtained by chemical synthesis [2],
but are, on the contrary, very common in natural organisms, where they are obtained by
enzymatic pathways.

In microorganisms, fungi, plants, and animals, the biological system components
of these polymers are produced to maintain the integrity of organs, tissues, and cells,
defending them against the environment and pathogenic aggressions. In terms of chemical
structure, natural polymers include polysaccharides, polypeptides (present in proteins),
and polynucleotides (in nucleic acids) (Figure 2).

Proteins and polysaccharides are mainly present in structural materials typical of
plants, fungi, and animals (such as wood, bones, skin, and exoskeletons), where they
undergo nano-assembly in crystals and assume a fibrillar hierarchical structure, similar
to collagen, cellulose, and chitin. However, they can also be present as more specific
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macromolecule, such as an enzyme or transport macromolecule. Natural polymers include
cellulose, lignin, chitin, alginate, pullulan, collagen, hyaluronic acid, and other polymeric
compounds made of long chains of repeating units (which have unique properties, depend-
ing on their structures, when obtained from natural materials) [3]. Furthermore, as they are
all biodegradable, skin-friendly, and eco-friendly, these polymers may be used for multiple
medical, food, and cosmetic applications [4].
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It is important to remember that life is an ecological system, especially for a single
organism or a single species. No one may live alone so that, for their energetic necessities,
animals depend on the plant’s photosynthesis, while plants depend on carbon dioxide
produced by animals and from nitrogen fixed at their roots from bacteria. Thus, plants,
animals, and microorganisms regulate the entire biosphere by their genome, also maintain-
ing the condition for the life of humans. That said, all the living organisms are made from
cells which represent the basic element of the life, containing polymers such as deoxyri-
bonucleic acid (DNA) (which stores genetic information and is also responsible for cellular
auto-replication) and ribonucleic acid (RNA) (which reads them to build proteins). DNA
and RNA, made up of pentose, phosphates, and bases, consist of two strands arranged
in a double helix and a single helix, respectively (Figure 3) [5,6]. DNA is made up of four
chemical components (nucleotides), referred as T, C, A, and G, while RNA is made up of U,
C, A, and G (Figure 3).

To add further clarity, the human genome comprises all the chromosomes present in a
cell; the chromosome is made up of a long DNA molecule associated by some polymeric
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proteins divided in genes; the gene is part of the DNA that is utilized to produce a particular
protein, meaning that human genes codify about 100,000 proteins which compose the
human body [7].
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However, life is involved with, and depends on, cellular processes and interactions
that are strictly connected to the molecular mechanisms of polymers activity, regulated
from DNA and RNA functions [5–7]. The cell organization occurs based on specific paths,
as well as by continuously recycling and reusing different materials, such as the polymeric
polysaccharides and polypeptides at micro and nano sizes (because they are more accessible
in a biochemical reaction). Different metabolic processes may occur through continuous
fluxes of chemicals and energy from food and catalyzed by specific enzymes. Thus, life
is intrinsically characterized and regulated by the same macro-circularity principles that
should be necessary for producing and consuming food in modern times in order to elim-
inate the no-longer-sustainable waste and pollution that invades our planet. Therefore,
mounting evidence suggests the transition to the so-called green economy focuses on
improving human wellbeing, health, and wealth, based on biomimetic nanobiotechnology.
This innovative technology involves the use of local by-products, as well as green energy
and renewable resources, through a molecular self-organization mechanism in physiolog-
ical manufacturing sustainability conditions. So, with this, raw materials will be saved
and social inequity will be reduced over the long term by increasing investments in the
sustainable use of bio-waste materials and eco-services.

In conclusion, “enabling a green economy means creating a context in which economic
activity increases human wellbeing and social equity and significantly reduces environmen-
tal risks and ecological scarcities” [8]. The production and use of innovative biopolymers
via nanobiotechnological technologies both follow this direction, making, for example,
advanced cosmeceuticals.

This review reports on various examples of biopolymers that are available from
biomass by-products or waste valorized by their specific structures and functionalities.
Their use in combination with active molecules extracted from renewable sources can help
to propose cosmeceuticals of high effectiveness, especially thanks to a combination with
nanotechnology-based manufacturing methodologies.

2. Nanobiotechnology and Biopolymers

Nanobiotechnology, based on the convergence of engineering and molecular biology,
is a novel bottom-up technology that covers important topics on human health and envi-
ronmentally friendly products and processes that are essential for a cleaner and healthier
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planet [9]. This new branch of science brings new possibilities, offering new avenues to
make things through the control of matter structure based on the molecule-by-molecule
control of products and by-products using innovative processes, according to the vision
of Eric Drexler [9]. Therefore, nanobiotechnology, as an integration of physical science,
molecular engineering, biology, and chemistry, holds considerable promise in spurring
pharmaceutical and healthcare developments, as well as in food and cosmetic fields using
innovative diagnostic tools, electronic-based biosensors, innovative delivery systems, lipid-
or polymer-based nanoparticles, and specialized nano-polymers [10]. Therefore, advance-
ments in this new branch of science have the potential to profoundly change the current
economy and improve our standard of living, thus resulting in a new era of regenerative
medicine and innovative cosmetic dermatology [10,11]. Given the use of biotechnological
techniques, it has been possible to make new scaffolds, adopting a new class of polymers
and tissue-specific strategies to ameliorate, for example, the skin penetration, effectiveness,
and safeness of selected bio-ingredients. Cosmetic products, in fact, have to restore the
skin functions that regenerate skin layers and slow down the appearance of fine lines
and wrinkles, and drugs have to repair would healing, avoiding the formation of scars
and hypertrophic skin. Thus, most skin repair, regeneration, and rejuvenation attempts
have been mainly focused on promoting the barrier function by generating layers of ker-
atinocytes or fibroblasts [12]. Because of this, it is essential to use natural-derived and
selected materials to also avoid the risks of immune rejection. Consequently, it is necessary
to identify the ideal combination of ingredients such as specialized biopolymers which
can play a crucial role in the skin repair and regeneration processes, and can possess an
appropriate water uptake ratio, modulating the skin moisturizing activity or hydrating the
globular proteins to facilitate their biological functions [13,14]. In addition, these ingredi-
ents may have the capacity to make scaffolds similar to the natural extracellular matrix
(ECM), thus influencing the nature of cell interactions. It is important to remember that
the ECM is a three-dimensional network gel consisting of extracellular macromolecules
that are vital for cell and tissue development (Figure 4). Among the biomaterials that are
more frequently used, fish collagen and its derived-peptides exist, as well as hyaluronic
acid, polysaccharides, chitin, chitosan, lignin, and many other natural compounds that may
be used as bioactive ingredients to make selectively controlled and purified micro/nano-
structures, allowing the phenomena of allergy and the sensitization and/or transmission of
human diseases to be avoided [15–18]. Thus, for example, hyaluronic acid, as important
component of ECM, is essential in order to maintain cell viability by facilitating the prolifer-
ation and migration of fibroblasts, and also by modulating the regular collagen deposition
that acts in the same way of polysaccharides and chitin in its nanosized form (i.e., chitin
nanofibrils) [19,20].
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3. Sustainable Biopolymers

Natural sustainable biopolymers spontaneously assemble into nano- and micro-scaled
materials [21]. As an example, hair may be represented as a polymer made up of a self-
assembly of collagen and keratin molecules to form a complex hierarchical structure, involv-
ing hydrogen bonds, electrostatic interactions, as well as van der Waals and hydrophobic
forces [21].

Thus, they are generally used as assembled fibers because of their different advantages,
including robustness, degradation facility, and the ability to mimic ECM architecture in
three dimensions.

However, biopolymers may be divided into natural, artificial, and synthetic polymers.
The more commonly used compounds of the first group are collagen, cellulose, starch,
lignin, hyaluronic acid, chitin, and chitosan. Artificial polymers, historically considered the
first developed polymeric materials in the nineteenth century (before the use of petrol as
main chemical source in the 1930s), are obtained from natural polymers using chemical
or physical treatments, inducing the partial modification of biopolymers with repeating
units (for example, the production of cellulose acetate from cellulose or chitosan from
deacetylation of chitin). Among the man-made polymers, obtained by the polymerization
of biobased monomers, the most common are biopolyesters such as poly(lactide) (PLA),
poly(butylenesuccinate) (PBS), and polyglycolide (PGA). Polyhydroxyalcanoates (PHAs)
are also bio-polyesters obtained using biotechnology [21], because they are produced
by microorganisms. All these bio-polyesters, including PHAs, are both bio-based and
biodegradable, and are characterized by the ability to detect monomers (e.g., to obtain spe-
cific copolymers) and design macromolecular structures based on synthesis and processing
conditions (as well as the type and availability of selected additives) [22]. Generally, natural,
artificial, and synthetic biopolymers are selected for biomedical and biotechnological appli-
cations, depending on their degradation time, non-toxicity, easily sterilization possibility,
biocompatibility, and skin agreeability and environmental friendliness; all biopolymer
classes may be used to make non-woven tissue using electrospinning technology, allow-
ing tissues with a similar architecture and porosity to the natural ECM (Figure 5) to be
produced, providing a physiological microenvironment for the cells.
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The high surface-to-volume ratio and porosity obtainable by this technology help
to fasten the wound healing process, as well as the regeneration of precociously aged
skin. Nanofibers, made up of nanocomposite biopolymers, can also be functionalized,
modifying the plasma treatment of the tissue surface or incorporating bioactive ingredients
throughout the processed spun nanofibers [23]. Unlike synthetic biopolymers, natural ones
have the inherent ability to more easily bind to cells, favoring their adhesion, viability,
growth, proliferation, and differentiation. However, synthetic polymers are, on the one
hand, less bioactive than natural ones, and, on the other hand, are easily manufactured on
a large production scale and are characterized by a longer durability and easily tailored
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to specific applications [24]. However, it is fundamental for all biopolymers to have a
micro/nano size that, in order to mimic biological systems, can selectively bind to their
molecules [25]. Thus, the obtained scaffolds may be used as biological substitutes which
replace, restore, maintain, or improve damaged tissues, rejuvenating, for example, prema-
turely aged skin. It has been shown that biopolymers and fibers rightly oriented at the level
of nano-topographic scaffolds can modify cell geometry, in turn influencing their migration
speed [25]. Moreover, the organized scaffold structure, influencing cell–fiber interaction,
establishes cell–cell communication and provides mechanical signals and biochemical
events by stimulating secondary messengers [26]. This is why biomaterial scaffolds, based
on the right geometry and porosity levels with fibers at the micro/nano scale, receive great
attention in tissue engineering applications [23,25]. As previously reported, chitin, chitosan,
and lignin are among the most commonly used biopolymers to make physiological scaffolds
for biodegradable tissues, because of their bio- and eco-compatibility and the possibility to
obtain them using organic waste at low costs. Thus, they will be discussed in the following
sections. However, it is necessary to demonstrate that many other biopolymers are widely
used in cosmetic applications, such as hyaluronic acid [26], alginate [27], carrageenan [28],
pullulan [29], microbial cellulose [30], proteins [31], etc.

4. Chitin and Chitosan

Chitin and chitosan are natural biopolymers (Figure 6) consisting of linear monomeric
units of N-acetyl glucosamine and glucosamine. Chitin is present in the shell of crabs,
shrimps, and insects, as well as in cell wall of fungi and algae [32]. It is partially crystalline
and with a fibrous hierarchical structure (Figure 7a).
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Figure 6. Cellulose, Chitin and Chitosan compared.

Chitosan, present especially in fungi, is produced industrially from chitin by a deacety-
lation process (with the moles of acetyl units ranging from 70% to 95% and a degree of
crystallinity depending on the adopted method) [33]. On the other hand, chitin, obtained by
a patented technology at its nano size, such as chitin nanofibrils (CNs) (Figure 7b), presents
a deacetylation rate from 50% to 60% [34]. CNs represent the crystalline part of chitin.
However, CNs are organized as fibers that possess exceptional chemical and biological
properties, such as biocompatibility, biodegradability, non-toxicity, and adsorption proper-
ties. Furthermore, when at their pure state, they can be used in pharmaceutical, biomedical,
food, and cosmetic sectors to make scaffolds for tissue engineering and interesting inno-
vative carriers. For this purpose, from many years, several research groups have worked
on the production and use of chitin nanofibrils, specifically in the pharmaceutical and cos-
metic fields as smart carriers and innovative active ingredients, as well as components of
biodegradable packaging [35,36]. Chitin nanofibrils and chitosan have been widely used to
modify cellulosic [37,38] and biopolymeric surfaces [39,40] by depositing specific coatings
on them [41]. These findings, considering chitin and chitosan from different sources, such
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as shrimps, fungi, and insects [42,43], can open several applications for these biopolymers
in consumer goods in contact with food, human skin [44], and the body [45].
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Unfortunately, until today, both chitin and chitosan are underutilized. Moreover, if
they are proven to be of great utility in order to make interesting biological products that
are both skin- and environment-friendly, they may help to improve human health, reducing
the impact of products on the environment [46].

Because of this, it is useful to show some of the physicochemical and biological
characteristics of chitin at its nanosize. The biopolymer has a semicrystalline structure and
is made up of nanosized fibrils that become linked by many hydrogen bonds, including–
CO and -NH bonds (Figures 6 and 7b). Each CN crystal, composed of 20 molecular line
chains of biopolymers, has an average dimension of 240 × 7 × 5 nm with a needle-like
structure (Figure 7b) [47]. All the crystals, obtained by a patented technology in a 2%
water acidic suspension containing around 300 trillions of CN micro/nano crystals per
ml, are characterized by a positively charged surface which stabilizes the suspension of
needles differently to the cellulose ones which tend to aggregate themselves in larger
bundles [47]. Consequently, the positively charged primary amino-groups react easily
with other negatively charged polymers, such as hyaluronic acid and lignin, forming
micrometric nanostructured complexes in the water solution when ionic gelation technology
is used (Figure 8). These nano-structured systems, capable of entrapping different active
ingredients, may be bound to polymeric fibers during electrospinning to form the designed
cosmeceutical tissues.
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5. Lignin

Lignin is a phenolic biopolymer made up of three propanoid units (sinapyl alcohol,
coniferyl alcohol, and p-coumaryl alcohol), linked together by different bonds to form
a macromolecule structure (Figure 9) that differs and is dependent on the type of plant
and the extraction method used [48]. This polymer, a by-product of biorefinery and the
chemical pulping industry, has also shown interest in the cosmetic field, because of its
antioxidant, anti-inflammatory, UVA-UVB screening, and DNA repair activity, due to
the macromolecular structure of numerous phenolic and chromophoric groups [49]. For
all these activities, lignin has been selected from our research group for identifying the
polymeric nanostructured microparticles that are made with chitin nanofibrils (CN-LG)
using the ionic gelation method [50]. The various nanostructured systems, entrapping
different active ingredients, have been controlled to determine the size distribution, zeta
potential, and morphology using zetasizer, SEM, and FTIR spectra, respectively, while
the relative cytotoxicity was evaluated by the MTT reduction method on the human cell
cultures of fibroblasts [51]. However, the effectiveness and safeness of chitin nanofibrils and
nanolignin, as well as the CN-LG complex, depend on the raw material source and on their
physicochemical characteristics, purity, and size. In fact, the nano-scaled size is one of the
more important criteria governing the biophysical, biochemical, and biological behaviors
of final products, as previously discussed. Chitin has shown its anti-inflammatory effec-
tiveness at the <40 millimicrons size, stimulating IL-10 activity, whereas 40–70 millimicrons
have inflammatory effects, activating both TNF and IL-17 [52].
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6. Cosmeceuticals

The term cosmeceuticals is used to recognize and emphasize the functional aspects of
cosmetics and toiletries which, when penetrating through the skin barrier, positively affect
the skin structure and function [53]. The skin, through the function of stratum corneum, acts
as a rate-controlling membrane, constituting the limit step for the penetration of lipophilic
water-insoluble compounds. Thus, a new generation of cosmetic products that can truly
prevent or reverse signs of aging is appearing on the market. They are formulated by the
use of innovative carriers, such as liposomes, niosomes, polypeptides, and non-woven
tissues, as previously described, which should contribute to the overall effectiveness of
cosmetics by loading and delivering antioxidants, free radical scavengers, vitamins, and
other active ingredients. Moreover, the encapsulation of active ingredients plays a further
role in the final formulation of cosmeceuticals, giving them protection from interior and
exterior aggressions. In addition, the encapsulation process determines a better time release
with long-lasting effects, due to the progressive opening of capsules determined by the
body enzymes. Consequently, these subclasses of cosmetics could be characterized as
products which, by showing significant interesting effects on normal or near-normal skin,
are affected by minor disorders or mild skin abnormalities, and are controlled by in vitro
and in vivo methods to verify their effectiveness and safeness [48–52]. Consequently, every
single raw material that is used to formulate products which have to come into contact
with the human skin or mucous membranes must be subjected to advanced health tests
and assessments, also considering their eco-sustainability.

However, the previously reported and proposed cosmeceutical tissues seem to repre-
sent innovative safe carriers that can load and release active cosmetic ingredients at the
skin level. It is possible to characterize the tissues based on the function they have to
fulfill. Thus, they may act as smart active carriers and, since they have the capacity to
load and release antioxidants, vitamins, and other cosmetic active ingredients, they may be
defined as cosmeceutical tissues [32,54–58]. The CN-LG micro/nanocapsules not only act
as vehicles but also as active ingredients hydrolyzed by skin enzymes and transformed into
units of glucosamine, acetyl glucosamine, and polyphenols, and are utilized by human cells
to make glycosaminoglycans or act as antioxidant defensive compounds. Thus, by using
CN-LG particles, loaded with active molecules and bound to polymeric biodegradable
tissues, Morganti et al. realized an advanced medication that has shown to repair burned
skin more quickly and without the formation of scars or skin hypertrophic phenomena,
in comparison to commercial products [55,56]. In the same way, a gel made up of CN
and chitosan has shown to repair serious skin wounds without the use of antibiotics [57].
Moreover, the same CN-LG complex, loaded with vitamins C and E, nicotinamide, and
other active ingredients, has been used to make biodegradable tissue that can rejuvenate
precociously aged skin [32,58–60] as well as repair hair damaged by excessive brushing
and decolorizing agents [61,62].

7. Discussion

The use of biopolymers, valorized by their peculiar structures and functionalities, and
integrated by proper active compounds, represents an interesting opportunity of innova-
tion for the formulation of cosmetic products. These particular ingredients, given their
increased effectiveness, improved the knowledge of structure–property relationships and
the exploitation of nanotechnology with healthier and environmentally friendly activities,
based on the use of biomass waste and by-products. The effectiveness of products is the
main objective for consumers. Personal appearance is considered a necessity for every-day
life and people dream of eternal youth, a radiant appearance, as well as mental and physical
wellbeing. The topic of wellness is a mega-trend and a metaphor for the extra that we expect
from life in a modern society, combining the desire for self-respect and our personal needs.
However, people have begun to realize that physical and mental wellbeing can be fostered
by personal behavior, such as preventive health care, body care, hair care, and fitness.
Thus, “the wellness idea has been in updating all spheres of life, from health and sports
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to the home environment”. As a consequence, the entire economic sector, represented by
personal care and beauty, physical activity, wellness tourism, healthy eating and nutrition,
preventive medicine, traditional complementary medicine, and mental wellness, has devel-
oped a market worth USD 4,4 trillion as of 2020 (Figure 10) [63]. “Personal care & beauty”
represents the major sector (USD 955 billion), followed by healthy eating/nutrition/weight
loss products (USD 946 billion) and physical activity (USD 738 billion).
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Based on the forecast of the Precedence Research Company, wellness economy, which
represents 5.1% of the global economy, could be worth USD 7.65 trillion by 2030, with
a CAGR of 5.5% from 2021, dominated by personal, beauty, and anti-ageing segments,
which account for around 24% market share (Figure 10) [64]. “Based in region, North
America dominated the global Health and wellness market in 2020 in term of revenue
and is estimated to sustain its dominance during the forecast period” as of 2020–2030
(Figure 11) [64]. Thus, the cosmetic market and the innovative cosmeceutical tissue market
are expected to show interesting growth levels.

Cosmetics 2023, 10, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 10. Forecasted health and wellness market size, from 2020 to 2030, based on market data [64]. 

 

Figure 11. Regional market share in 2020, based on market data [64]. 

Nanotechnologies and nano-structured materials will most probably become essen-

tial elements in medical, chemical, and biological applications, as well as in basic genomic 

research. The genomics of RNA, based on the study of proteins and their relation to genes 

(proteomics), allow genes to be translated into proteins (transcriptomics), and the key 

chemicals and biopolymers involved in metabolism (metabolomics) represent a new basis 

for research and innovation in a wide range of applications in human and animal health 

and wellbeing, as well as in cosmetics, food agriculture, and forestry. Thus, among the 

basic technologies resulting from the rise of genomics, it has been possible to realize fast 

and sustainable tools for high-throughput molecular analysis in order to identify the 

structure of natural molecules and biopolymers. Moreover, the fundamental role played 

by scaffolds in providing a microenvironment, as well as in providing and selecting inno-

vative and effective active ingredients to make smart cosmeceuticals for aged skin, can 

influence cell perception and responses to substrate mechanics [65]. The use of global gene 

expression profiling (i.e., genomics), together with in vitro human cell cultures, provide a 

means to identify both key pathways that affect aged skin, such as the altered function of 

ECM, cells shape, and signaling [66,67]. Moreover, innovative technologies, such as tissue 

engineering, have allowed physiological scaffolds and smart biodegradable and special-

ized cosmeceutical tissues to be made [32,44,54,58–60]. These innovative scaffolds/tissues, 

Figure 11. Regional market share in 2020, based on market data [64].

Nanotechnologies and nano-structured materials will most probably become essential
elements in medical, chemical, and biological applications, as well as in basic genomic
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research. The genomics of RNA, based on the study of proteins and their relation to genes
(proteomics), allow genes to be translated into proteins (transcriptomics), and the key
chemicals and biopolymers involved in metabolism (metabolomics) represent a new basis
for research and innovation in a wide range of applications in human and animal health
and wellbeing, as well as in cosmetics, food agriculture, and forestry. Thus, among the basic
technologies resulting from the rise of genomics, it has been possible to realize fast and
sustainable tools for high-throughput molecular analysis in order to identify the structure
of natural molecules and biopolymers. Moreover, the fundamental role played by scaffolds
in providing a microenvironment, as well as in providing and selecting innovative and
effective active ingredients to make smart cosmeceuticals for aged skin, can influence cell
perception and responses to substrate mechanics [65]. The use of global gene expression
profiling (i.e., genomics), together with in vitro human cell cultures, provide a means to
identify both key pathways that affect aged skin, such as the altered function of ECM, cells
shape, and signaling [66,67]. Moreover, innovative technologies, such as tissue engineering,
have allowed physiological scaffolds and smart biodegradable and specialized cosmeceu-
tical tissues to be made [32,44,54,58–60]. These innovative scaffolds/tissues, which play
a critical role in tissue engineering by directing the growth of cells, seem able to guide
and promote controlled cellular growth and differentiation, which is necessary in order to
regenerate and rejuvenate various human skin layers, for example. As a consequence, their
increased use in the market of a new generation of cosmeceuticals should prevent or reverse
the signs of aging, directly modifying skin structures and functions [67]. Thus, on the one
hand, the role of dermatologists and plastic surgeons “in testing, promoting and introduc-
ing new cosmeceuticals to their patient” has grown in importance [67]. On the other hand,
demand is growing for multifunctional products, such as proposed cosmeceutical-tissues,
which offer excellent efficacy, reducing the time spent on grooming to a few minutes per day,
also due to global biodegradability. In fact, both women and men are looking for natural
and safe products that can rejuvenate their skin, are not a burden for the environment based
on scientific soundness and pure sustainable ingredients, and are packed in bio-based and
compostable containers.

In conclusion, progress and innovations in these reported branches of science were
found to be fundamental in order to protect human health and the environment, as well as
to avoid the worldwide waste that invades land and oceans. Because of this, it is important
to not forget the reduction in the world’s forested area, which has decreased the Earth’s
capacity to store future carbon emissions and has contributed to more than 18% of global
greenhouse gas emissions, with a consequential increase in temperature, i.e., the main
cause of related worldwide disasters and the loss of biodiversity [68], as well as the loss of
mammal habitats due to temperature increases.

8. Future Directions

“The most important factor in developing an innovation strategy is recognizing that
innovation is not an isolated activity, but rather the result and driver of growth and col-
laboration, based on the necessity to transform challenges into opportunities for business
growth and competitive advantage” [69]. Thus, given the various future challenges, it
is necessary for academics to teach more topics related to biopolymers and to point out
the novel chemical and physical properties of different carbon-based materials at their
nanometer-sized structures, as well as the human biological systems at the cellular, molecu-
lar, and atomic levels, using the existing programs [70]. Thus, it is also important to provide
students with advanced knowledge on the different activities and the industrial usage
of polymers using the novel platform (Community Resource for Innovation in Polymer
Technology (CRIPT)) [71]. Therefore, the larger use of biopolymers will be probably useful
in order to stimulate the industry’s R&D, increasing the market growth of innovative
cosmeceuticals produced by the utilization of food loss and agroforestry waste that is
necessary to safeguard the Earth’s precious natural raw materials for future generations. In
a biomimetic way, circularity principles [72] will be applied based on the conceptualization
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of new products, from the nano scale to macro scale. Moreover, these new fields of research
could even lead to smarter functional bio-cosmetics with more health benefits than the
proposed cosmeceutical tissues. Finally, a better way of producing, selecting, and con-
suming goods will help to transform the actual linear economy, based on taking, making,
and producing waste, in a circular economy, based on redesigning, reducing, recycling,
and reusing. This new vision for the future will give us a healthier life, also reducing
worldwide poverty.
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