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Abstract—Writing good code for FPGA is a challenge “per se”,
but also running already existing and optimized FPGA kernels
often requires writing specific “host side” code and some target
hardware knowledge to achieve good performances. In this work,
we describe a FastFlow extension supporting seamless offloading
of tasks to FPGA, once an FPGA kernel is available. In particular,
we show how kernels implemented in Vitis and running on
XILINX Alveo FPGA boards may be integrated to implement
“normal” parallel stages (pipeline stages, map/farm workers) in a
structured parallel FastFlow computation. Experimental results
are shown, demonstrating the feasibility of the approach.

Index Terms—structured parallel programming, design pat-
terns, FPGA offloading, accelerators.

I. INTRODUCTION

FPGAs offer substantial advantages when compared to both
CPU and GPU based accelerators. They offer the possibility to
implement “in hardware” particular algorithms such that their
execution may be completed with orders of magnitude speedup
with respect to CPU implementation. In addition, the power
needed to run algorithms on FPGA is usually considerably
smaller than the power needed to run the same algorithms
on both CPUs and GPUs. Unfortunately, efficient FPGA
programming is itself orders of magnitude more complex than
CPU programming and even than GPU programming. Indeed,
in recent years, a number of innovative programming models
and environments have been developed, that can be used to
produce quite efficient FPGA code from properly annotated
high level language code rather than from low level RTL
code such as VHDL, Verilog or other surrogates and look
like slightly higher level but still are fundamentally Register
Transfer Languages [1]–[3].

Several structured and non structured parallel programming
environments provide ways to target FPGA through the sup-
port of kernels compiled from high level user code. In the
context of the REPARA EU funded FP7 project, FastFlow
[4], has been extended with basic possibilities to address
FPGAs equipped and programmed with the ThreadPoolCom-
poser programming environment developed by the Darmstad
University [5]. The OpenMP family introduced the target
directive to support computation redirection to FPGA, and
a similar approach has been taken in OmpSS. The whole
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directive based programming model universe is again trying
to supply programmers with the possibility to target FPGAs
using properly annotated sequential code [6]. In most cases,
the usage of directives to identify the sequential code to be
offloaded on the FPGA leads to decent performances but does
not compete with hand written FPGA kernel whose execution
is managed through explicit OpenCL code. Whatever the
programming model used, FPGAs are separate accelerators
and host management code is therefore required to orchestrate
the execution of kernels on the FPGA.

In this work, we discuss a new support of FPGAs in
FastFlow. It provides efficient ways to offload computations
to existing, pre-compiled kernels running on Xilinx Alveo
FPGAs via the efficient and seamless embedding of the
needed OpenCL offloading code within the FastFlow run time.
Differently from the REPARA FastFlow implementation, the
new support does not require any additional logic on the
FPGA, thus leaving all the available FPGA resources free for
“business” kernel implementation. The new FPGA FastFlow
support ensures separation of concerns as well as maximisation
of the different expertise sported by FPGA and parallel ap-
plication programmers, greatly improving the time-to-solution
while developing CPU+FPGA parallel applications.

II. FASTFLOW

FastFlow1 is an open-source parallel programming frame-
work developed by the University of Pisa and Torino since
early 2000s [4]. It is a header only C++ library providing the
application programmer with a set of pre-defined, parametric
parallel programming patterns that can be completed with
business logic code and composed to model complex parallel
applications without charging the application programmers of
the burden typically involved in parallelism exploitation.

FastFlow was originally designed to target shared memory
multi-cores only. Recently, FastFlow has been extended in
such a way the patterns provided within the single shared
memory node may be used to orchestrate the execution of
a parallel application on COW/NOW architectures. This ex-
tension is built on top of two different backs ends, namely
plain TCP/IP and MPI [7].

FastFlow parallel computations are arranged as composi-
tions of parallel patterns. Parallel patterns include standard
stream parallel (pipeline, task farm) and data parallel (map
(parallel for), reduce, stencil) patterns as well as higher level

1https://github.com/fastflow/fastflow.git
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Fig. 1. Standard FastFlow component (left) and new FPGA offloading
component (right)

and more general patterns (divide&conquer, generic data flow
graphs) and a sequential “wrapper” pattern supporting the re-
use existing business code in a parallel computations.

The FastFlow sequential business logic code wrapper is
implemented by a a ff_node_t<Tin,Tout> class spe-
cialization that provides an svc method processing Tin*
data item and producing Tout* result. The ff_node_t
nodes may be constructed from properly written classes
sub-classing ff_node_t public interface and providing a
Tout *svc(Tin* t) method as well as simply providing
a std::function<Tout*(Tin*)> object in the con-
structor. An ff_node_t node is implemented using a thread
in charge of processing Tin* data taken from the node input
channel and of delivering results to the node output channel
(see Fig. 1 left). Composition leverages output/input node
channel merge. Every component in a FastFlow program is a
ff_node_t: sequential nodes wrapping business logic code,
pipelines with multiple stages, data parallel map and stencil
computations and so on.

III. VITIS

Vitis [8] provides a high-level synthesis (HLS) flow sup-
porting the implementation of “quasi” standard C/C++ pro-
grams (kernels) on the FPGA; “quasi” standard because some
constructs (mainly, recursion) are not supported by the flow.
The FPGA is divided into two sections: a static section,
programmed once at the board installation time, containing
all the HW IP’s needed to interface with the outer world
(PCIe and memory controllers, clock and reset generators)
and a dynamic section, programmed via the PCIe interface,
which is configured with the kernels defined by the user. To
achieve efficient behavior, the kernel code must be carefully
written to allow the compiler to extract the inherent parallelism
(both spatial and pipeline). To this aim, the HLS flow provides
some pragmas to guide the compilation step (to pipeline or
unroll a loop, to inform the compiler that some variables
are not dependent so parallelization can be carried out, to
force the implementation of certain operations on specific

Fig. 2. Structure of typical Vitis kernel: dotted text represent C/C++
signatures, orange boxes are the hardware components, synthesised from
C/C++ user code and library/IP code

HW modules, etc). The set of techniques used by Vitis
programmers to achieve efficiency in the implementation of
the C/C++ kernels onto the FPGA are peculiar to FPGAs and
quite far from the techniques used to achieve efficiency in the
programming of CPU or GPU code. To be compliant with
the streaming behavior, which best suits the pipeline style of
FPGA programming, we structured the kernel to be mapped
on the FPGA using two kinds of components (see Fig. 2)

• Data mover components: they access the external memory
and streams, copying in a pipelined way data from input
streams to the memory or from the memory to the output
stream. Data movers can be seen as the starting and
ending points of streamed processing.

• Compute components: these are functions taking streams
as arguments and computing output stream items from
the input stream items.

The two kinds of components are structured in a “dataflow”
computation graph and compiled to produce a configuration
file (.xclbin) describing the set of hardware components to
be mapped onto the FPGA, possibly exploiting any kind of
data-flow parallelism available. The .xclbin file is loaded
into the dynamic section of the FPGA via the run-time APIs
that control the FPGA through the PCIe interface. It’s worth to
point out that the translation of the C/C++ kernel code into the
.xclbin file is a long process, requiring hours to be executed.

IV. FFPGA PROTOTYPE

Within FastFlow, we designed a specialized node
(ff_node_fpga) implementing the ff_node_t public
interface and embedding all the additional logic needed to
offload task computation to an FPGA kernel rather than
executing the task on a CPU thread. The constructor of
the ff_node_fpga) accepts parameters specifying the
kernel name and the bit-stream file to be used for offloading.
Constructor code manages to discover the FPGA resources
available and pre-load the bitstream and set up all the
necessary OpenCL context and command queues. The
constructor parameters include also a specific data structure
filled up by programmer detailing the kind (input or output
parameter, vector or scalar) of the kernel parameters. The
svc method–i.e. the method actually computing the result



out of any input task reaching the ff_node_t–manages
to “unpack” the input task, sets up the buffers needed to
transfer the input parameters to the FPGA and to retrieve
the results from the FPGA, starts input data transfers, starts
kernel execution and finally starts result copy to host memory.
Depending on some specific class constructor parameters,
these sequence of actions may be executed sequentially, in
such a way computation/communication time is overlapped,
with or without using “pinned memory” and therefore with
different memory usage and performances. Fig. 1 (right)
illustrates the usage of the new node within a regular FastFlow
computation to offload tasks to the FPGA Vitis kernels. The
new node type may be used in any place where a normal
ff_node_t can be used in FastFlow, for instance as a
pipeline stage, a farm or map worker, etc. As an example, an
ff_node_fpga may be declared such as2:

1 FTaskCL task_description;
2 task_description.addIn(size_in_bytes);
3 task_description.addIn(size_in_bytes);
4 task_description.addOut(size_in_bytes);
5 task_description.addScalar(sizeof(int));
6 ...
7 auto ComputeFpga =
8 new ff_node_fgpa(kernelName, bitstreamFilename,
9 task_descr);

and used in a code such as:

1 ff_pipeline p; // create a pipeline
2 p.add_stage(new Source(...)); // gen input stream
3 p.add_stage(new Compute1(...));// comp. tasks (CPU)
4 p.add:stage(ComputeFpga); // comp. tasks (FPGA)
5 p.add_stage(new Drain(...)); // store results
6

7 p.run_and_wait_end(); // run to completion

to implement a pipeline with a FPGA offloader stage.

V. EXPERIMENTAL RESULTS

We discuss a set of experiments running on a local server
equipped with an FPGA. This is a Dell Power Edge dual socket
Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz host node,
with 128G of memory and a Xilinx Alveo U50 FPGA board
[9] connected through a PCIe Gen3x16 bus. We have tested our
prototype implementation of the ff_node_fpga FastFlow
node with different kernels and different parallel application
structures. As far as FPGA kernels are concerned, we used
simple kernels from Vitis examples (vecadd) and different
kind of much more complex kernels we developed, including
a file compressor kernel [10] and a set of video filters used
to develop more complex applications operating on standard
mpeg video frames. The compressor kernel, in particular is
about 700 lines of code, including some 50 #pragma HLS
directives that finally describes the compressor kernel as a
dataflow graph as follows:

1 static hls::stream<io_stream_48B_tuser>
2 LZ77Enc2Huffman_stream("LZ77Enc2Huffman_stream");
3 static hls::stream<io_stream_16B>
4 DDR2Deflate_stream("DDR2Deflate_stream");
5 static hls::stream<io_stream_32B>

2different kind of constructors and accessor methods are available

Fig. 3. Comparison of kernel execution times on FPGA with different input
tasks “host” refers to C++/OpenCL host code, “overlap” and “pinned” refer to
two different implementations of the FastFlow node ff_node_fpga (times
in µsecs)

6 Deflate2DDR_stream("Deflate2DDR_stream");
7

8 #pragma HLS dataflow
9 Memory2Stream(in,DDR2Deflate_stream,input_size);

10 LZ77_Encoder(DDR2Deflate_stream,
11 LZ77Enc2Huffman_stream, input_size);
12 huffman_encoder(LZ77Enc2Huffman_stream,
13 Deflate2DDR_stream);
14 Stream2Memory(out,outSizeMem,Deflate2DDR_stream);

which is fully compliant to the structure described in Sec. III
and represented in Fig. 2.

A. Functional test

Functional tests have been completed demonstrating that the
offloading actually works as expected both on the attached
FPGA board and in software emulation mode, which is
particularly useful during program development and tuning.
Functional test experiments show that offloading a computa-
tion on the FPGA requires times in the order of hundreds of
µsecs at the steady state–that is after the initialization phase
that includes bit-stream upload–which are the same times
experimented offloading the same computation from within
standard OpenCL host code. The execution times on the FPGA
are obviously the same of the ones measured when using
OpenCL/XRT code to manage offloading, as expected (see
Fig. 3).

B. FastFlow wrapper vs plain OpenCL host code

We implemented our wrapper node in two different ways,
that can be used specifying proper parameters while creating
the wrapper ff_node_fpga. The two versions exploit dif-
ferent kind of buffering/communications strategies.

• The version labelled as “overlap” in the following, issues
data transfer and kernel execution commands on the
FPGA OpenCL queue by using actual, asynchronous
copy commands. Different threads are used on the host to
start FPGA kernel computations (moving input data and
starting kernel) and to wait kernel termination and to copy
back the kernel results. Communication time hiding thus
results out of the overlap of different operations relative to
different kernel executions ordered by different threads.



Fig. 4. OpenCL vs FastFlow pipe ”pinned” compression completion times

• The version, labelled as “pinnned”, enforces buffer set
up such that input buffer access is granted through DMA
accesses commanded by the FPGA IP rather than by the
execution of explicit, synchronous copy operations. This
version uses aligned and pinned memory buffers which
are transparently managed by the FTaskCL implemen-
tation.

These different versions have been used to run a FastFlow
stream compressor application modelled as a three stage
pipeline:

1 ff_pipeline p;
2 p.add_stage(new gen());
3 fnode_pinned_overlap fnp(bitStream, kernelName);
4 p.add_stage(fnp.stage());
5 p.add_stage(new drain());
6 p.run_and_wait_end();

The first stage, the gen node added at line 2, reads files
from disk, the second stage (lines 3–4) offloads tasks to the
FPGA and the third stage, the drain node added at line
5, eventually writes zipped files to disk. The second node in
this code excerpt is the one using pinned memory (zero copy
while offloading to FPGA) and communication/computation
overlap via double buffering as described above. “Pinned”
version works better than the simple “overlap” version and
both outperform the plain OpenCL host code, offloading the
kernels sequentially, one after the other. The “pinned” version
of the compressor pipeline actually takes some 765 msec
to complete compressing a short stream of tasks, while the
OpenCL host code spends for the same stream 853 msec (in
both cases these are averages computed on 32 runs). Overall
this represents a 10% improvement (see Fig. 4).

C. Threads vs. OpenCL advanced features

Despite the fact double buffering techniques are a de facto
standard when programming and exploiting PCIe based ac-
celerators with OpenCL, we explored the possibilities offered
by directing computations to a single FPGA accelerator from
different host threads, as an example from workers in a
farm parallel pattern. The idea is to avoid complex buffer
management and to simply direct different computations to the
same kernel running on the FPGA through the same interface.
According to the FPGA documentation, this should enable
the controller to order the different requests coming to the

Fig. 5. FastFlow farm vs FastFlow pipe ”pinned” compression completion
times

FPGA through the very same manager in such a way that
data buffer copies (to and from FPGA memory) overlap with
the actual kernel computations. We therefore modified the
application sketched in Sec. V-B in such a way the compressor
FPGA node in the pipeline is substituted by a farm (i.e. it
has been parallelized) with 3 workers. All the workers direct
computations to the same FPGA board and kernel. The code
is simply modified by substituting lines 3–4 in Sec. V-B code
with lines:

1 ff_farm farm;
2 FDevice *devic=new FDevice(bitStream,kernelName);
3 std::vector<ff_node *> w;
4 for(int i = 0; i < 3; ++i) {
5 fnode_pinned_overlap * worker =
6 new fnode_pinned_overlap(device);
7 w.push_back(worker->stage());
8 }
9 farm.add_workers(w);

10 p.addStage(farm);

This brings down the completion time for the same file stream
of the previous section to an average of 585 msecs, that is
with a 31% improvement over the OpenCL code and a 23%
improvement with respect to the ”pinned” pipeline (see Fig. 5).

D. On going work

The results shown so far where somehow expected, but
confirmed the proper design of the “FastFlow single node
offloader”. Indeed, FastFlow offers much more possibilities
that are worth begin explored relatively to task offloading
to accelerators. We are currently evaluating different aspects
related to computation offloading to FPGA:

a) Multiple kernel instances: we are trying to measure
the advantages derived from the usage of different instances of
the same kernel used to compute task offloaded from different
FastFlow concurrent activities (e.g. farm or map workers, see
Fig. 6 (left)). Also, we are considering the possibility to use
different kernels to support task offloading from FastFlow
concurrent activities running diverse “business logic code”,
such as stages in a pipeline. In both cases, we hope to be able
to take advantage of the communication/computation overlap
such that we are able to saturate the host–board memory
bandwidth.



Fig. 6. Alternative usage of FPGA kernels: Multiple kernel instances from multiple farm workers (left) and Different kernel instance on different FPGA
boards from different pipeline stages (right)

b) Multiple board support: we want to figure out how
different FPGA boards attached to the same multicore node
may be conveniently exploited to offload computations from
different components (patterns) in FastFlow structured parallel
applications (see Fig. 6 (right)).

c) Multiple cooperating boards: we want to explore the
possibility to use different FPGA boards, interconnected as
a pipeline of boards, each running some pre-compiled kernel
completely encapsulated in a single FastFlow ff_node_t.
We are currently investigating the possibilities offered by
an FPGA networking library developed at INFN within the
TextaRossa EU project that partially funded this work.

VI. CONCLUSIONS

We described preliminary results relative to the support of
computation offloading to FPGA from FastFlow. We showed
that tasks may be seamlessly offloaded to pre-compiled kernels
provided that a) the xclbin file and kernel name are known
and b) the structure (type and input/output usage) of the kernel
parameters is also known. In addition to providing the kernel
name and the name of the bit-stream file, the FastFlow pro-
grammer is only required to set up a special object to declare
how many parameters are to be given in input and output to the
kernel as well as their sizes. All the rest of the effort of locating
the FPGA, loading the kernel, managing the host-to-board
and board-to-host communications, offloading computations to
FPGA and the whole set of associated synchronization actions
is managed through our FastFlow ff_node_t extension.
Our support run time does not introduce any kind of delay
with respect to the offloading to the very same pre-compiled
kernels using different, lower level programming tools and
environments. We also showed that the possibilities offered
by FastFlow to seamlessly set up different parallel structures
for the very same application can be exploited to manage
efficient offloading of tasks to available FPGA kernels. Our
FastFlow FPGA support does not require to load specific IP
on the FPGA to manage offloaded kernels but the standard
FPGA dynamic configuration IP. This is a step ahead w.r.t. to
what we alredy experimented in previous projects [5].

We de facto rely on the existence of pre-compiled (and
optimized) kernels, and therefore our proposed approach does
not solve the problem of reducing the time-to-solution relative
to FPGA kernel programming. On the other hand, it fully
preserves separation of concerns, in that parallel application
programmers may easily and seamlessly experiment different
parallel exploitation patterns relying on the existence of the
optimized FPGA kernels while the FPGA kernel developers
should not care about kernel usage from host parallel code
while developing and optimizing the FPGA code.
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