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Abstract
Understanding	 how	 multifactorial	 fluctuating	 environments	 affect	 species	 and	
communities	remains	one	of	the	major	challenges	in	ecology.	The	spatial	configuration	
of	 the	 environment	 is	 known	 to	 generate	 complex	 patterns	 of	 correlation	 among	
multiple	 stressors.	 However,	 to	 what	 extent	 the	 spatial	 correlation	 between	
simultaneously	 fluctuating	 variables	 affects	 ecological	 assemblages	 in	 real-	world	
conditions	remains	poorly	understood.	Here,	we	use	field	experiments	and	simulations	
to	 assess	 the	 influence	 of	 spatial	 correlation	 of	 two	 relevant	 climate	 variables	 –		
warming	 and	 sediment	 deposition	 following	 heavy	 precipitation	 –		 on	 the	 biomass	
and	 photosynthetic	 activity	 of	 rocky	 intertidal	 biofilm.	 First,	 we	 used	 a	 response-	
surface	design	experiment	 to	establish	 the	 relation	between	biofilm,	warming,	and	
sediment	deposition	in	the	field.	Second,	we	used	the	response	surface	to	generate	
predictions	 of	 biofilm	 performance	 under	 different	 scenarios	 of	 warming	 and	
sediment	correlation.	Finally,	we	tested	the	predicted	outcomes	by	manipulating	the	
degree	of	correlation	between	the	two	climate	variables	in	a	second	field	experiment.	
Simulations	stemming	from	the	experimentally	derived	response	surface	showed	how	
the	degree	and	direction	(positive	or	negative)	of	spatial	correlation	between	warming	
and	 sediment	 deposition	 ultimately	 determined	 the	 nonlinear	 response	 of	 biofilm	
biomass	 (but	 not	 photosynthetic	 activity)	 to	 fluctuating	 levels	 of	 the	 two	 climate	
variables.	Experimental	results	corroborated	these	predictions,	probing	the	buffering	
effect	of	negative	spatial	correlation	against	extreme	levels	of	warming	and	sediment	
deposition.	Together,	these	results	indicate	that	consideration	of	nonlinear	response	
functions	and	local-	scale	patterns	of	correlation	between	climate	drivers	can	improve	
our	understanding	and	ability	to	predict	ecological	responses	to	multiple	processes	in	
heterogeneous	environments.
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1  |  INTRODUC TION

Ecosystems	face	multiple	interacting	natural	and	human-	driven	dis-
turbances	whose	occurrence,	magnitude,	and	impact	vary	in	space	
and	 time	 (Gunderson	 et	 al.,	 2016;	 Jentsch	 et	 al.,	2009;	Wernberg	
et al., 2013).	 Predicting	 the	 ecological	 impacts	 of	 environmental	
fluctuations	is	essential	as	anthropogenic	climate	change	alters	the	
frequency	and	intensity	of	climate	extremes	(Drijfhout	et	al.,	2015; 
Kirtman	 et	 al.,	 2013).	 Most	 notably,	 climate	 variability	 is	 already	
impacting	on	gross	primary	production	at	continental	scales,	and	it	
is	altering	patterns	of	biodiversity	at	local	scales	(Ciais	et	al.,	2013; 
Dornelas et al., 2014;	Franks	et	al.,	2007). In the last two decades, 
laboratory	and	field	experiments	have	documented	strong	ecolog-
ical	 effects	 of	 environmental	 fluctuations	 on	 species	 and	 assem-
blages	through	changes	in	frequency,	variance,	and	autocorrelation	
of	 disturbance,	 resource	 supply,	 or	 other	 variables	 (Benedetti-	
Cecchi, 2003;	Benedetti-	Cecchi	et	al.,	2006;	Bernhardt	et	al.,	2018; 
Bertocci	 et	 al.,	 2005; Crain et al., 2008;	 Gunderson	 et	 al.,	 2016; 
Lawson et al., 2015).	One	general	mechanism	explaining	 these	 re-
sults	is	the	prevalence	of	nonlinear	response	functions	relating	eco-
logical	and	environmental	variables.	Nonlinear	 responses,	where	a	
change	in	the	input	can	generate	a	disproportionate	change	in	the	
output,	are	ubiquitous	in	nature	(Denny,	2017; Zhang et al., 2015). 
If	 f(x)	 is	 a	nonlinear	 function	of	 an	environmental	 variable	 x, non-
linearity	causes	a	mismatch	between	the	expected	response	under	
average conditions, f(x),	and	the	integrated	response	under	variable	
condition, f(x),	 such	that	 f(x) ≠ f(x).	This	mathematical	property	of	
nonlinear	functions	is	known	as	Jensen's	inequality	or	nonlinear	av-
eraging	 (Jensen	 1906).	 The	 sign	 of	 the	 inequality	 is	 positive	 (neg-
ative)	 for	 accelerating	 (decelerating)	 response	 functions,	 whereas	
the	magnitude	of	change	depends	on	the	degree	of	nonlinearity	and	
the	amount	of	variability	in	× (Chesson, 2012;	Ruel	&	Ayres,	1999). 
Ecologists	have	successfully	used	Jensen's	 inequality	to	model	the	
performance	of	producers	and	consumers	under	stressful	and	vari-
able	environmental	 scenarios	 (Benedetti-	Cecchi,	2005;	Benedetti-	
Cecchi et al., 2012;	Bernhardt	et	al.,	2018; Denny, 2017;	Koussoroplis	
&	Wacker,	2016;	Ruel	&	Ayres,	1999;	Vasseur	et	al.,	2014).

The	great	emphasis	on	large	temporal	and	spatial	scales	of	varia-
tion	in	environmental	conditions	has	overshadowed	the	importance	
of	local-	scale	environmental	variability	(Helmuth	et	al.,	2006;	Sears	
et al., 2011).	Yet,	predictions	and	ecological	outcomes	at	local	scales	
can	be	dramatically	different	from	those	generated	by	global	climate	
models	(Nadeau	et	al.,	2017).	Landscape	configuration	and	hetero-
geneity	 have	 been	 shown	 to	 play	 an	 essential	 role	 in	 modulating	
the	impact	of	large-	scale	climate	forcing	on	both	plants	and	animals	
(Dong et al., 2017; Lehtilä et al., 2020; Ohler et al., 2020;	 Sunday	
et al., 2014).	Spatial	heterogeneity	in	the	thermal	environment	may	
create	 local	 refugia,	 allowing	 species	 to	 survive	 during	 unusually	
harsh	 conditions	 (e.g.,	 during	heatwaves).	 For	 example,	 local-	scale	
microclimatic	conditions	 in	plant	communities	can	determine	 long-	
term	 resilience	 in	 rear	 edge	 forests	 again	 heatwaves	 and	 drought	
pressures	 (Carnicer	 et	 al.,	 2021). In addition, spatial heterogene-
ity	may	 also	 ensure	 the	persistence	of	 thermally	 sensitive	 species	

(Angilletta,	2009).	However,	 the	extent	 to	which	 spatially	 variable	
thermal	regimes	determine	the	performance	of	organisms	in	natural	
environments	remains	largely	understudied	(Dowd	et	al.,	2015).

Despite	 the	 widely	 recognized	 importance	 of	 environmen-
tal	 variability	 in	 influencing	 organisms'	 performance,	 few	 studies	
have	explored	 the	consequences	of	 Jensen's	 inequality	 in	a	multi-
factorial	 context,	 incorporating	 the	 effect	 of	 correlation	 between	
variables	 (Koussoroplis	&	Wacker,	2016;	Koussoroplis	et	al.,	2019; 
Pincebourde	et	al.,	2012).	The	simultaneous	effect	of	multiple	fac-
tors	may	produce	nonlinearities	that	would	remain	undetected	in	a	
unifactorial	scenario	(Koussoroplis	et	al.,	2017). These nonlinearities 
may	 interact	with	 environmental	 variance	 and	 the	 degree	 and	 di-
rection	of	the	correlation	among	environmental	factors,	leading	to	a	
deviation	between	organism's	performance	under	constant	and	vari-
able	conditions.	Direct	evidence	of	 the	role	of	correlation	 in	mod-
ulating	 organisms'	 performance	 stems	 from	 recent	 laboratory	 and	
mesocosm	experiments	(Koussoroplis	&	Wacker,	2016;	Koussoroplis	
et al., 2019;	Pincebourde	et	al.,	2012).	For	instance,	Koussoroplis	and	
Wacker	 (2016)	have	shown	how	correlation	between	 temperature	
and	 resource	 supply	 influenced	 the	 life-	history	 traits	of	 the	water	
flea	Daphnia	magna.	To	what	extent	the	variance	and	correlation	be-
tween	simultaneously	fluctuating	variables	affect	ecological	assem-
blages	under	field	conditions	remains	largely	untested.

Rocky	 intertidal	habitats	have	been	extensively	used	as	model	
systems	 to	 test	 cornerstone	 hypotheses	 in	 ecology	 and	 to	 un-
ravel	 the	 influence	 of	 multiple	 interacting	 processes	 (Hawkins	
et al., 2020).	Plants	and	animals	living	on	rocky	shores	are	exposed	
to	a	mosaic	of	environmental	conditions	where	key	variables	such	
as	 temperature	 and	 wave	 action	 often	 covary	 at	 experimentally	
tractable	spatial	scales	(Helmuth	et	al.,	2006;	Lima	&	Wethey,	2012; 
Hawkins	et	al.,	2020).	The	small	size	and	short	life	span	of	many	or-
ganisms	living	on	rocky	shores	further	facilitate	the	analysis	of	mul-
tiple	stressors	and	their	correlation	 in	space	or	 time.	For	example,	
recent	 studies	 have	 used	 epilithic	 microphytobenthos	 (hereafter,	
biofilm)	to	show	how	the	temporal	clustering	of	extreme	events	of	
warming	and	sediment	deposition	can	promote	 legacy	effects	and	
drive	populations	to	collapse	(Dal	Bello	et	al.,	2017, 2019). These and 
other	 studies	 have	 documented	 strong	 negative	 effects	 of	warm-
ing	and	sediment	accretion	following	heavy	rains	on	rocky	intertidal	
organisms	 (Harley,	2003; Kordas et al., 2015;	Vaselli	 et	 al.,	2008). 
Substratum	complexity,	generated	by	emergent	surfaces	mixed	with	
heterogenous	 areas	 with	 depressions,	 cracks,	 and	 crevices	 in	 the	
rock,	can	result	in	different	patterns	of	spatial	correlation	between	
aerial	temperature	and	sediment.	For	example,	positive	correlation	
may	occur	on	emergent	rocks	on	sunny	days	and	calm	sea,	whereas	
cracks	and	crevices	where	sediment	is	more	persistent	during	rough	
sea	conditions	may	introduce	negative	correlation.

We	 used	 a	 combination	 of	 experimental	 and	 simulation	 ap-
proaches	to	evaluate	how	spatial	correlation	between	two	import-
ant	 climate	 variables,	 warming	 and	 sediment	 accretion	 following	
run-	off,	modulated	the	performance	of	rocky	 intertidal	biofilm.	As	
a	first	step,	we	used	a	response	surface	design	involving	16	combi-
nations	of	warming	and	 sediment	deposition	 to	derive	a	 response	
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surface	(hereafter	RS)	relating	the	biomass	and	photosynthetic	ac-
tivity	of	biofilm	to	the	two	variables	in	the	field.	Then,	we	used	the	
empirically	derived	RS	to	simulate	the	performance	of	biofilm	under	
different	correlation	scenarios	of	warming	and	sediment	deposition.	
We	expected	the	performance	of	biofilm	to	differ	between	constant	
and	variable	conditions	owing	to	nonlinearities	in	the	RS.	Finally,	we	
tested	the	predictions	originating	from	our	simulations	in	a	second	
field	 experiment	 in	 which	 we	 manipulated	 the	 spatial	 correlation	
(positive	or	negative)	and	intensity	of	warming	and	sediment	deposi-
tion	in	a	factorial	experiment.	Our	results	provide	the	first	empirical	
evidence	 of	 how	 spatial	 correlation	 between	 interacting	 stressors	
and	nonlinear	effects	drives	small-	scale	ecological	responses	of	pri-
mary	producers	in	real-	world	conditions	and	indicate	that	local-	scale	
patterns	between	 climate	 variables	may	play	 a	 crucial	 role	 in	pre-
dicting	ecological	responses	to	multiple	processes	in	heterogeneous	
environments.

2  |  METHODS

2.1  |  Study site

The	study	was	done	along	the	coast	of	Calafuria	 (Livorno,	43°	30′	
N,	10°19′	E)	between	March	and	December	of	2017.	The	coast	 is	
composed	 of	 gently	 sloping	 sandstone	 platforms	 with	 high-	shore	
levels	 (0.3–	0.5	 m	 above	 mean	 low-	level	 water)	 characterized	 by	
populations	of	barnacles	interspersed	among	areas	of	seemingly	bare	
rock,	where	biofilm	develops.	Biofilm	at	Calafuria	is	composed	mainly	
of	cyanobacteria	of	 the	genus	Rivularia,	contributing	up	to	50%	of	
the	bacterial	assemblage	(Maggi	et	al.,	2017)	(Figure	S1a).	As	shown	
in	a	previous	study,	warming	and	sediment	deposition	following	run-	
off	are	important	drivers	of	biofilm	biomass	in	this	system	(Dal	Bello	
et al., 2017).	Grazing	by	the	littorinid	snail	Melarhaphe neritoides (L.) 
can	also	affect	the	abundance	and	distribution	of	the	biofilm,	mostly	
in	late	fall	and	winter	(Dal	Bello	et	al.,	2017).

2.2  |  Experiment 1: Derivation of the 
response surface

We	 used	 a	 response-	surface	 experimental	 design	 involving	 16	
combinations	 of	 warming	 and	 sediment	 deposition	 to	 build	 a	
warming-	sediment	response	surface	(RS)	(Figure 1a).	The	experiment	
was	 conducted	 between	May	 and	 August	 2017.	 In	May	 2017,	 48	
plots	 consisting	 of	 patches	 of	 rock	 40	 × 40 cm	 fully	 covered	 by	
biofilm	were	marked	at	 their	corners	with	rawl	plugs	 inserted	 into	
the	rock	for	future	relocation.	Three	replicated	plots	were	randomly	
allocated	 to	 each	 combination	 of	 four	 levels	 of	 warming	 crossed	
with	four	levels	of	sediment	deposition.	Temperature	and	sediment	
were	manipulated	 following	methodologies	 developed	 in	 previous	
studies	(Dal	Bello	et	al.,	2017).	The	warming	factor	included	a	control	
(ambient	 temperature)	 and	 three	 levels	 of	 elevated	 temperatures	
(+5°C,	+10°C,	and	+15°C	above	ambient	levels).	Plots	were	heated	

with	 aluminium	 chambers	 equipped	 with	 stoves	 (Figure	 S1), with 
warming	 levels	 chosen	 to	 reflect	 a	 wide	 range	 of	 temperatures	
experienced	by	the	biofilm	at	the	study	site,	from	common	to	rare.	
We	characterized	individual	warming	levels	as	the	averaged	return	
time	 of	 positive	 thermal	 anomalies	 using	 a	 66-	year	 time	 series	 of	
temperature	 measurements	 (Appendix	 S1,	 Figure	 S2).	 Positive	
temperature	 anomalies	 of	 +5°C	 are	 common	 during	 the	 central	
hours	of	 the	day	and	have	a	return	time	of	 less	 than	1	year,	while	
anomalies	of	+10°C	have	a	return	time	of	about	2 years.	Anomalies	
of	+15°C	 corresponded	 to	 extreme	 conditions	with	 a	 return	 time	
of	about	85 years.	The	warming	treatment	consisted	of	keeping	the	
difference	between	the	chamber	and	the	ambient	air	 temperature	
as	 close	 as	 possible	 to	 the	 designated	 treatment	 level	 for	 2	 h	
(Figures	S1c, S3a,b).	The	aerial	temperature	was	constantly	measured	
with	 iButton	loggers	during	the	2	h	of	warming	inside	and	outside	
the	 heating	 chambers.	 Three	 additional	 plots	were	 established	 as	
control	 for	 artifacts	 (CA)	 to	 assess	 the	potential	 effect	of	 shading	
on	biofilm	during	the	heating	sessions.	CA	plots	were	shaded	with	
cardboard	chambers,	but	they	were	not	warmed.

Sediment	deposition	included	a	control	(no	sediment	added)	and	
three	levels	of	sediment	accretion	(+0.5	cm,	+1.0	cm,	and	+1.5	cm	
thick	 layers	of	sediment	deployed	over	the	plots),	 to	mimic	the	ef-
fects	of	runoff	following	heavy	rainfall	events	(Figure	S1d).	Sediment	
layers	about	0.5–	1	cm	thick	originated	naturally	on	flat	rocks	after	
intense	storms	(>70 mm	within	the	previous	24 h)	and	could	persist	
for	about	2/3 days	before	being	washed	away	by	waves	(Figure	S1b)	
(Dal	Bello	et	al.,	2017).	 In	some	areas,	depressions	on	the	rock	fa-
vored	sediment	accretion	with	the	formation	of	mats	up	to	15 mm	
thick.	We	mimicked	these	events	by	adding	to	each	designated	plot	
a	layer	of	sediment	collected	in	the	surrounding	area	and	diluted	in	
freshwater.	 Sediment	 thickness	 was	 measured	 with	 a	 caliper	 and	
adjusted	 accordingly	 to	 the	 nominal	 value	 of	 the	 sediment	 depo-
sition	 treatment	 assigned	 to	 each	 plot	 (Figure	 S1c).	Warming	was	
performed	before	sediment	deposition,	but	the	order	 in	which	the	
two	stressors	are	imparted	has	no	effects	on	the	biofilm	(Dal	Bello	
et al., 2017).	Experimental	units	were	monitored	in	the	2–	3 days	fol-
lowing	treatment	application	to	assess	whether	sediment	thickness	
matched	 nominal	 treatment	 levels	 and	 to	 adjust	 when	 necessary.	
Experimental	treatments	were	applied	only	once	as	a	single	pulse;	
due	to	the	impossibility	of	treating	all	the	51	plots	(48	used	to	derive	
the	response	surface	and	the	three	CA	plots)	on	the	same	day,	sets	
of	5–	6	randomly	chosen	plots	were	treated	in	each	of	6 days	within	
a	month.

Biofilm	 biomass	 and	 photosynthetic	 activity	 were	 evaluated	
after	7,	14,	and	21 days	since	the	start	of	the	experiment.	Biomass	
was	determined	by	means	of	an	image-	based	remote	sensing	tech-
nique	 that	 uses	 chlorophyll	 a	 concentration	 as	 a	 proxy	 (μg chl a 
cm−2). Chlorophyll a	 was	 estimated	 from	 a	 ratio	 of	 reflectance	 at	
near-	infrared	 (NIR)	and	red	bands	 (Ratio	Vegetational	 Index	–		RVI)	
by	means	of	a	IR-	sensible	camera	(ADC),	following	the	method	pro-
posed	by	Murphy	and	colleagues	(Murphy	et	al.,	2009). NIR/red ra-
tios are related to chlorophyll a	by	a	 linear	relationship,	calculated	
on	 the	 basis	 of	 laboratory	 chlorophyll	a	 extraction	 from	Calafuria	
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sandstone	cores	(Dal	Bello	et	al.,	2015). Each photo was then han-
dled	with	a	java-	routine	in	ImageJ	software	to	haphazardly	select	six	
subplots	and	provide	a	mean	value	of	biofilm	biomass	for	each	plot	
(Schneider	et	al.,	2012).

The	physiological	status	of	the	photosynthetic	apparatus	of	bio-
film	was	assessed	through	a	portable	underwater	pulse-	amplitude-	
modulated	 (PAM)	 fluorometer	 (Diving-	PAM,	 Walz).	 Maximum	
photochemical	 efficiency	 after	 5′	 of	 dark	 adaptation	 (henceforth	
dark	yield)	and	effective	quantum	yield	of	photosystem	II	in	actinic	
light	(henceforth	light	yield)	were	used	as	a	proxy	of	photosynthetic	
efficiency	and	stress,	 respectively.	Within	each	experimental	plot,	
three	and	 six	measurements	were	haphazardly	 taken	 for	 light	and	
dark	yield,	respectively.	Sampling	had	an	average	duration	of	about	
2	h	and	started	around	2.5	h	after	sunrise	and	ended	at	midday.	Dark	
yield	measurements	were	taken	after	5	min	of	dark	adaptation,	while	
light	yield	was	measured	under	natural	light	condition.

We	used	a	generalized	additive	model	 (GAM)	 to	derive	 the	RS	
from	the	experimental	data.

We	obtained	a	single	RS	for	each	response	variable	(Chl	a, dark 
and	 light	 yield)	 by	 taking	 averages	 over	 the	 three	 sampling	 dates.	
Data	were	modeled	as	a	function	of	three	smoothers	of	nominal	lev-
els	of	warming	(W)	and	sediment	deposition	(S) and their interactions 
(W × S)	(with	identity	link	and	Gaussian	error	distribution):

 where the Yijk	is	the	value	of	the	response	variable	(Chl	a, dark and 
light yield) in replicate k,	sediment	level	j,	and	warming	level	i, ß0 is the 
intercept, s1 and s2	are	thin	plate	regression	splines	describing	the	in-
dividual	effect	of	warming	and	sediment,	te	is	tensor	product	smooth	
term	modeling	the	interaction	between	warming	and	sediment,	and	
�	is	the	Gaussian	error	term.	Smoother	terms	were	selected	through	

(1)Yijk
∼ �0 + s1

(

Wi

)

+ s2
(

Sj
)

+ te
(

W × Sij
)

+ �ijk

F I G U R E  1 Flow	chart	illustrating	the	main	steps	of	the	study.	(a)	To	derive	a	response	surface,	we	performed	a	full	factorial	experiment	
crossing	four	warming	intensities	(+0°C,	+5°C,	+10°C,	and	+15°C	above	ambient	air	temperature,	corresponding	to	24.8°C,	30.4°C,	and	
40.0°C	absolute	temperatures,	respectively)	with	four	levels	of	sediment	deposition	(0	cm,	+0.5	cm,	+1.0	cm,	and + 1.5	cm	thick	layers	of	
sediment	deployed	over	the	plots).	(b)	Hypothetical	warming	and	sediment	response	surface.	The	response	surface	was	used	to	generate	
predictions	of	biofilm	performance	under	variable	(B(Warm. , Sed. )) and constant (B

(

Warm., Sed.
)

)	conditions	for	different	scenarios	of	
spatial	correlation	between	warming	and	sediment	deposition.	The	inset	shows	the	effect	of	nonlinear	averaging,	–		i.e.,	the	deviation	of	
biofilm	performance	due	to	the	nonlinearity	characterizing	the	warming-	sediment	RS	–		for	a	specific	combination	of	warming	and	sediment	
deposition.	Warming	and	sediment	deposition	are	expected	to	follow	a	normal	bivariate	distribution.	(c)	We	performed	a	field	experiment	
to	test	the	predicted	outcomes	of	the	simulations	by	manipulating	the	intensity	and	spatial	correlation	of	warming	and	sediment	deposition	
along	experimental	transects.	(d)	Transects	consisted	of	three	contiguous	quadrats	of	40 × 40	cm.	Spatial	correlation	between	warming	
and	sediment	deposition	was	generated	by	varying	the	levels	of	the	two	variables	along	the	quadrats	in	a	transect.	The	panel	shows	a	high	
intensity	treatment	with	an	average	level	of	warming	of	+15.5°C	above	ambient	temperature,	an	average	layer	of	sediment	of	1.5	cm,	and	a	
level	of	spatial	correlation	between	the	two	variables	of	−1.
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    |  5 of 13RINDI et al.

a	generalized	cross-	validation	procedure.	The	number	of	knots	was	
set	to	4,	which	corresponded	to	the	number	of	levels	of	predictors	
variables.	Model	assumptions	were	assessed	visually	using	plots	of	
residuals	 vs.	 fitted	 values,	 box	 plots	 of	 residuals	 vs.	 experimental	
conditions,	and	QQ	plots	of	standardized	residuals	vs.	normal	quan-
tiles	(Faraway,	2016).	GAM	fitting	was	performed	using	the	function	
gam	of	package	mgcv	in	R	3.5.1	(Wood	et	al.,	2016).

Potential	 artifacts	 due	 to	 shading	 effects	 during	warming	 ses-
sions	 were	 assessed	 through	 a	 t-	test	 contrasting	 control	 and	 CA	
plots.

2.3  |  Simulating from the response surface

The	RS	experiment	identified	a	significant	nonlinear	response	of	biofilm	
biomass	to	warming	and	sediment	deposition	(in	interaction),	but	not	
for	photosynthetic	activity	(see	RESULTS	–		Experiment	1:	Derivation	
of	the	response	surface).	Thus,	we	used	the	RS	model	derived	for	bio-
mass	to	simulate	the	response	of	biofilm	to	changes	in	warming	and	
sediment	deposition	under	constant	and	variable	scenarios	and	for	dif-
ferent	patterns	of	correlation	between	the	two	stressors.

These	simulations	allowed	us	to	explore	the	interactive	effects	
between	nonlinearities	and	environmental	variance	on	biofilm	per-
formance	 and	 the	 modulating	 effect	 of	 spatial	 correlation.	 We	
started	 our	 simulations	 by	 generating	 values	 of	 biofilm	 biomass	
under	constant	(Yconst,ij)	and	variable	(Yvar,ij) conditions, where i indi-
cated	values	of	temperature	(Ti, with i	varying	between	0	and	20°C	
in	steps	of	0.5)	and	j	the	levels	of	sediment	deposition	(Sj, with j vary-
ing	between	0.5	and	1.5	cm	in	steps	of	0.5),	resulting	in	a	prediction	
grid	of	164	values.	Biomass	values	under	constant	conditions	were	
simulated	by	simply	feeding	the	RS	model	with	the	warming	and	sed-
iment	 deposition	 values.	 To	 simulate	 variable	 conditions,	 for	 each	
point	in	the	prediction	grid,	we	generated	1000	values	of	tempera-
ture	and	sediment	deposition	by	sampling	a	bivariate	normal	distri-
bution	

�
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, where �T and �S corresponded to the chosen 

prediction	values,	�	defined	the	strength	of	correlation	between	pre-
dictors, and �T and �S	were	the	standard	deviations	of	temperature	
and	sediment	thickness	estimated	from	field	measurements	during	
the	experiment	(�T = 4.54°C	and	�S = 0.41 cm)	(Figure	S4).	In	particu-
lar, �Twas	calculated	from	temperatures	in	control	plots,	while	�S was 
calculated	 from	 data	 of	 the	 thickness	 of	 sediment	 deposits	 taken	
after	heavy	rainfall	events.	Thus,	the	two	standard	deviations	�T and 
�S	quantified	the	natural	levels	of	spatial	variability	of	warming	and	
sediment	deposition	at	the	study	site.	We	used	the	mean	over	1000	
simulations	to	obtain	the	predicted	value	of	biofilm	biomass	for	each	
combination	of	 temperature	and	sediment	deposition	 from	the	RS	
model.	This	procedure	was	repeated	for	different	values	of	correla-
tion (�)	ranging	from	−1	to	1,	with	increments	of	0.2.

In	addition	to	recording	changes	in	biofilm	biomass	in	the	various	
scenarios,	we	used	the	simulated	values	to	compute	the	total	variance	

effect	(TVE),	a	quantity	that	summarizes	the	effect	of	variance	and	
correlation	between	stressors	 (Koussoroplis	&	Wacker,	2016). The 
TVE	(in	percentage)	for	a	given	combination	of	warming	i and sedi-
ment	deposition	j	was	computed	as:

This	 metric	 expressed	 the	 standardized	 percentage	 difference	 of	
biomass	 under	 variable	 conditions	 compared	 with	 constant	 ones.	
Therefore,	negative	values	of	TVE	corresponded	to	lower	values	of	
biomass	under	variable	than	constant	conditions,	resulting	in	a	nega-
tive	effect	of	variance	on	biomass.	The	opposite	applied	to	positive	
values	of	TVE.

2.4  |  Experiment 2: Testing predictions

Simulations	generated	quantitative	predictions	on	the	nonlinear	re-
sponse	of	biofilm	biomass	to	changes	in	variance	and	correlation	be-
tween	warming	and	sediment	deposition.	We	tested	some	of	these	
predictions	 in	 a	 second	 experiment	 in	 which	 we	 manipulated	 the	
intensity	and	spatial	correlation	between	stressors.	In	August	2019,	
we	marked	12	transects	each	consisting	of	three	contiguous	quad-
rats	 (40 × 40 cm)	 in	areas	originally	covered	by	biofilm	 (Figure	S1d). 
The	experiment	had	a	factorial	design	with	two	levels	of	correlation	
(+1	and	−1)	crossed	with	two	levels	of	intensity	(low:	+5°C	of	warm-
ing	and	0.5	cm	of	sediment	deposition;	high:	+15°C	of	warming	and	
1.5	cm	of	sediment	deposition)	and	three	replicate	transects	in	each	
treatment	 combination.	 Each	 transect	 constituted	 a	 single	 experi-
mental	unit	in	which	spatial	correlation	was	manipulated	by	exposing	
each	of	the	three	quadrats	to	a	specific	combination	of	warming	and	
sediment	deposition.	For	example,	 in	the	positive	correlation	treat-
ment,	 quadrats	 exposed	 to	 high	 (low)	 temperatures	 also	 received	
high	(low)	levels	of	sediment	deposition.	In	contrast,	in	the	negative	
correlation	treatment,	quadrats	exposed	to	low	(high)	warming	also	
received	high	(low)	 levels	of	sediment	deposition	(Figure 1d). Initial 
values	of	temperature	and	sediment	for	the	three	quadrats	in	each	
transect	with	designated	levels	of	correlation	(+1	and	−1)	were	gen-
erated	by	sampling	a	bivariate	normal	distribution	(Figures 1d, S1c,d). 
Due	to	the	small	sample	size	involved	(the	three	quadrats	in	a	tran-
sect),	 this	 procedure	 often	 resulted	 in	 levels	 of	 spatial	 correlation	
that	were	lower	than	the	nominal	level.	In	these	instances,	the	values	
of	the	two	variables	were	adjusted	arbitrarily	to	obtain	the	desired	
level	of	correlation.	As	in	the	first	experiment,	three	additional	tran-
sects	were	used	as	controls	for	artifacts	(CA)	to	assess	the	potential	
effect	of	shading	on	biofilm	during	the	heating	sessions.

To	compute	the	TVE,	each	of	the	four	combinations	of	intensity	
and	correlation	of	stressors	was	matched	with	an	independent	set	of	
three replicate transects (12 in total: three replicates ×	two	levels	of	
correlation ×	two	levels	of	intensity)	with	zero	correlation	between	
warming	 and	 sediment	 deposition.	 These	 additional	 transects	 pro-
vided	the	constant	condition	at	the	denominator	of	Equation 2 and 

(2)TVE(%) =
Yvar,ij − Yconst,ij

Yconst,ij
× 100
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6 of 13  |     RINDI et al.

were	obtained	by	imparting	the	same	levels	of	warming	and	sediment	
deposition	across	the	three	quadrats	in	each	transect.	We	recognize	
that	 although	 these	 treatments	 had	 zero	 nominal	 covariance,	 real-
ized	 correlations	 could	differ	 from	zero	owing	 to	 small	 variation	 in	
treatments	levels	across	quadrats	in	a	transect.	Nevertheless,	since	
Equation 2	 uses	 the	 mean	 values	 of	 biofilm	 biomass	 across	 treat-
ments,	it	is	the	realized	mean	correlation	that	must	be	close	to	zero.	
We	verified	this	expectation	by	recording	the	amount	of	warming	and	
sediment	deposition	imparted	to	all	quadrats	during	the	experiment	
and	computing	the	corresponding	correlation	values	(Figure	S4).

Chl a	was	used	as	a	surrogate	for	biofilm	biomass	and	was	mea-
sured	10	and	18 days	after	the	beginning	of	the	experiment	as	de-
scribed	 above	 (Section	3.1).	 Treatment	 effects	were	 evaluated	 on	
time-	averaged	Chl	a	 and	TVE	values	 in	 each	quadrat	 using	 Linear	
Mixed	 Effect	 Models	 (LMEM)	 (Bates	 et	 al.,	 2015).	 In	 the	 model,	
Correlation	(with	two	levels:	−1	and	+1), Intensity (with two levels: 
Low	and	High),	and	their	interactions	(Correlation	× Intensity) were 
included	 as	 fixed	 effects,	while	 transects	were	 included	 as	 a	 ran-
dom	effect	to	account	for	the	lack	of	spatial	 independence	among	
biomass	 values	 in	 different	 quadrats.	 Post-	hoc	 contrasts	 between	
treatments	 were	 performed	 using	 the	 “emmeans”	 package	 in	 R	
(Lenth et al., 2018).	We	evaluated	model	assumptions	using	standard	
graphical	procedures.	95%	confidence	intervals	(CIs)	were	computed	
for	 each	 experimental	 condition	 using	 non-	parametric	 bootstrap-
ping	and	were	used	to	assess	the	convergence	of	experimental	and	
predicted	values	of	biomass	and	TVE.	The	bootstrap	procedure	in-
volved	 resampling	 with	 replacement	 each	 experimental	 condition	
1000	times.	The	95%	CIs	were	then	calculated	as	2.5th	and	97.5th	
percentile	of	the	distribution	of	bootstrapped	values.

To	 assess	 the	 effect	 of	 error	 propagation	 stemming	 from	 the	
uncertainty	 associated	with	 the	RS,	we	 calculated	 the	95%	CIs	 of	
predicted	 values	of	 biomass	 and	TVE	using	 a	 bootstrapping	 tech-
nique.	We	followed	a	three-	step	process:	(1)	the	biomass	values	ob-
tained	in	the	first	experiment	for	each	combination	of	warming	and	
sediment	deposition	were	sampled	with	replacement	to	generate	a	
bootstrapped	dataset;	(2)	the	GAM	model	(Equation 1)	was	then	fed	
with	the	bootstrapped	data	to	generate	biomass	and	TVE	values	for	
each	 of	 the	 four	 treatment	 combinations	 examined	 in	 the	 second	
experiment	(see	Section	2.3);	(3)	95%	CIs	were	finally	computed	as	
2.5th	and	97.5th	of	the	vector	of	bootstrapped	estimates,	obtained	
by	repeating	the	steps	1	and	2	above	1000	times.

Data	and	R-	script	used	in	this	study	are	available	from	Figshare	
(DOI: 10.6084/m9.figshare.14447871).

3  |  RESULTS

3.1  |  Experiment 1: Derivation of the response 
surface

Warming	 and	 sediment	 deposition	 interactively	 affected	 biofilm	
biomass	 (GAM:	WaldWarm×Sed = 1.09, p < .01;	 Figure 2a,	 Table	 S1). 
The	 RS	 showed	 four	 distinct	 regions	 with	 contrasting	 nonlinear	

responses	of	biofilm	biomass	to	warming	and	sediment	deposition.	A	
concave-	8(0–	10°C)	and	at	intermediate	sediment	deposition	(1	cm)	
and	extreme	warming	(15°C)	(Figure 2a).	 In	contrast,	a	concave-	up	
relation	was	evident	at	low	to	moderate	levels	of	warming	(0–	10°C),	
at	 moderate	 to	 extreme	 levels	 of	 sediment	 deposition	 (1–	1.5	 cm)	
and,	 to	 a	 less	 extent,	 under	 extreme	 warming	 and	 low	 sediment	
deposition (Figure 2a).	 A	 response	 surface	 fitted	 to	 absolute	
temperatures	 (Figure	 S5)	 provided	 a	 similar	 outcome,	 although	 it	
explained	 slightly	 less	 variation	 (delta	 temperatures	 in	 Figure 2a: 
AIC	 =	 175.0,	 R2

Adj. = 29%;	 absolute	 temperatures	 in	 Figure	 S5: 
AIC	=	178.71,	R2

Adj. = 27.7%).
Cross	sections	of	the	RS	indicated	the	prevalence	of	a	declining,	

almost	linear	relations	between	biomass	and	warming	for	all	but	the	
intermediate	 levels	of	sediment	deposition,	where	the	relation	be-
came	positive	(Figure 2b).	In	contrast,	biomass	changed	nonlinearly	
with	sediment	thickness	for	all	but	the	intermediate	level	of	warm-
ing (Figure 2c).	The	relation	was	concave-	down	at	low	to	moderate	
levels	of	warming	and	 sediment	deposition,	becoming	 concave-	up	
at	the	most	extreme	level	of	sediment	thickness.	The	opposite	was	
observed	under	extreme	warming	(Figure 2c).

Neither	 dark	nor	 light	 yield	 exhibited	 a	 significant	 relationship	
with	warming	and	sediment	deposition	(Figure	S6,	Table	S2).	Shading	
effects	or	other	artifacts	due	to	the	heating	chambers	were	not	de-
tected	for	any	of	the	three	variables	examined	(Figure	S7,	Table	S4).

3.2  |  Simulations

The	 strength	 and	 direction	 of	 correlation	 between	 warming	 and	
sediment	 deposition	 modulated	 the	 compounded	 effect	 of	 these	
stressors	 on	 biofilm	 biomass	 (Figure 3).	 At	 the	 lowest	 level	 of	
sediment	 deposition	 (0.5	 cm),	 biofilm	 biomass	 exhibited	 a	 slight	
positive	 relationship	 with	 the	 degree	 of	 correlation	 between	 the	
two	stressors,	while	at	the	intermediate	level	of	sediment	thickness	
(1.0	cm),	biofilm	showed	no	variation	along	the	correlation	gradient	
(Figure 3a,b).	Under	extreme	sediment	deposition	(1.5	cm),	biomass	
drastically decreased with increasing correlation, collapsing at high 
levels	 of	 warming	 (Figure 3c).	 Warming	 reduced	 biofilm	 biomass	
across	all	levels	of	sediment	deposition	(Figure 3a–	c).

Fluctuating	conditions	of	 low	 to	moderate	warming	 (0–	10°C)	
and	low	sediment	deposition	depressed	biofilm	biomass	compared	
with	 a	 constant	 environment,	whereas	 environmental	 variability	
became	beneficial	to	biofilm	at	larger	temperatures	(18–	20°C),	de-
termining	a	shift	from	a	negative	to	a	positive	TVE	(Figure 4a). This 
trend	 reversed	at	 the	 intermediate	 level	of	 sediment	deposition,	
with	 the	 TVE	 declining	 consistently	 along	 the	warming	 gradient	
(Figure 4b).	The	TVE	exhibited	a	funnel-	shaped	pattern	along	the	
warming	 gradient	 at	 the	 extreme	 level	 of	 sediment	 deposition,	
with	negative	 (positive)	correlation	driving	positive	 (negative)	ef-
fects	of	variance	on	biofilm	biomass	(Figure 4c).	Overall,	the	effect	
of	 a	 negative	 correlation	 between	 stressors	 on	 the	 TVE	 shifted	
from	negative	to	positive	with	increasing	levels	of	sediment	depo-
sition	(compare	Figure 4a with c).
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3.3  |  Experiment 2: Testing predictions

The	 impact	 of	 warming	 and	 sediment	 deposition	 on	 biofilm	 was	
strongly	 modulated	 by	 the	 degree	 of	 spatial	 correlation	 between	
these stressors (Figure 5a).	The	analysis	 identified	a	significant	 in-
teraction	 between	 correlation	 and	 treatment	 intensity	 (LMEM	 for	
the Correlation × Intensity interaction: t = 2.98, p < .05,	 df	= 12; 
Figure 5a,	 Table	 S3).	 Negative	 correlation	 increased	 significantly	
biofilm	biomass	compared	with	the	positive	correlation	treatment	at	
high	intensity	of	warming	and	sediment	deposition,	whereas	the	op-
posite	(not	significant)	pattern	occurred	when	the	two	stressors	were	

imparted	at	 low	intensity	(Figure 5a,	post-	hoc	contrasts,	Table	S3). 
Observed	 values	 of	 biofilm	 biomass	 were	 close	 to	 simulated	 val-
ues,	and	differences	could	be	considered	not	significant	under	the	
more	intense	conditions	of	warming	and	sediment	deposition	where	
treatment	means	were	embraced	in	the	simulated	CIs	(Figure 5a). In 
agreement	with	the	outcomes	of	the	simulations,	negative	correla-
tion	was	beneficial	to	biofilm	biomass	under	the	most	stressful	con-
ditions,	whereas	the	opposite	was	observed	under	low	intensity	of	
warming	and	sediment	deposition	(Figure 5a).

Similarly	 to	what	observed	for	biofilm	biomass,	spatial	correla-
tion	and	treatment	intensity	interactively	affected	the	TVE,	(LMEM	

F I G U R E  2 Biofilm	biomass	as	a	function	of	warming	and	sediment	deposition.	(a)	Response	surface	(RS)	relating	biofilm	biomass	to	
warming	and	sediment	deposition.	Blue	regions	of	the	curve	indicate	positive	values	of	the	curvature	(approximated	by	its	second	derivative)	
and	reflect	a	concave-	down	region	of	the	RS,	while	red	regions	indicate	a	locally	concave-	up	curvature.	Data	shown	are	mean	values	of	
biofilm	biomass	(n =	3)	estimated	as	μg chl a	cm−2	for	each	combination	of	warming	and	sediment	deposition.	Cross	sections	of	the	response	
surface	are	shown	across	levels	of	warming	(b)	and	sediment	deposition	(c).
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8 of 13  |     RINDI et al.

for	the	Correlation	× Intensity interaction: t = 3.23, p < .01,	df	= 12; 
Figure 5b,	Table	S3).	The	TVE	was	significantly	 larger	for	negative	
compared	with	positive	correlation	at	high	intensity	of	warming	and	

sediment	 deposition,	 whereas	 the	 opposite	 (not	 significant)	 pat-
tern	was	observed	at	 low	 treatment	 intensity	 (post-	hoc	 contrasts,	
Table	S3).	Similarly	to	what	observed	for	biomass,	the	experimental	

F I G U R E  3 Biomass	simulations	for	
different	correlation	scenarios	of	warming	
and	sediment	deposition.	Panels	show	
the	response	of	biofilm	biomass	(as	μg chl 
a	cm−2)	for	different	levels	of	warming,	
sediment	deposition,	and	their	spatial	
correlation	in	simulations.	Black	dots	
indicate	the	values	of	the	two	variables	
and	their	correlation	chosen	as	treatment	
levels	in	the	subsequent	experimental	test	
of	simulation	predictions.

F I G U R E  4 Total	variance	effect	(TVE).	
Joint	warming-	sediment	variance	and	
correlation	effects	on	biofilm	biomass	
(μg chl a	cm−2)	as	a	function	of	warming	
(∆T)	at	each	of	three	levels	of	sediment	
deposition:	0.5	cm	(a),	1.0	cm,	(b)	and	
1.5	cm	(c).	The	TVE	quantifies	the	change	
of	biofilm	biomass	between	variable	
and	constant	conditions	for	a	given	
combination	of	sediment	and	warming.
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    |  9 of 13RINDI et al.

results	for	the	TVE	matched	the	expectations	originating	from	sim-
ulations;	observed	and	expected	values	were	statistically	undistin-
guishable	under	positive	correlation	(treatment	means	were	within	
the	simulated	CIs)	(Figure 5b).

LMEMs	indicated	no	differences	between	controls	for	artifacts	
and	controls	for	the	three	response	variables	examined	(Figure	S8, 
Table	S5).

4  |  DISCUSSION

Jensen's	 inequality	 has	 provided	 a	 phenomenological	 model	 for	
interpreting	 and	 predicting	 how	 environmental	 fluctuations	 and	
nonlinear	 response	 functions	 interactively	 affect	 organisms'	 per-
formance	 (Denny	&	Benedetti-	Cecchi,	2012;	 Ruel	&	Ayres,	1999). 
Recent	 laboratory	 studies	 have	 extended	 Jensen's	 inequality	 to	 a	
multifactorial	 context,	 showing	 how	 correlation	 between	multiple	
ecological	drivers	can	shape	the	response	of	organisms	to	environ-
mental	 fluctuations	 (Pincebourde	 et	 al.,	2012, 2016;	 Koussoroplis	
&	Wacker,	2016;	Koussoroplis	et	al.,	2017–	2019).	Consideration	of	
multiple	factors	and	their	correlation	provides	a	more	realistic	view	
of	the	performance	of	organisms	in	fluctuating	environments,	com-
pared	 with	 the	 analysis	 of	 individual	 factors.	 Yet,	 empirical	 tests	
of	 these	 ideas	 in	 real-	world	conditions	have	 lagged	behind	 theory	
(Chesson, 2012;	Koussoroplis	et	al.,	2017).

Combining	 simulations	 with	 field	 experiments,	 our	 study	
showed	 how	 the	 degree	 of	 spatial	 correlation	 between	warming	
and	 sediment	 deposition	 modulated	 the	 impact	 of	 these	 stress-
ors	 on	 rocky	 intertidal	 biofilm	 through	 the	 total	 variance	 effect	

(TVE).	 In	principle,	 the	direction	and	magnitude	of	 the	TVE	for	a	
specific	combination	of	warming	and	sediment	deposition	should	
reflect	the	degree	and	direction	(concave-	up	or	concave-	down)	of	
the	 curvature	 of	 the	 response	 surface	 (RS)	 (Denny	&	Benedetti-	
Cecchi, 2012).	Jensen's	inequality	correctly	identifies	the	direction	
of	 nonlinear	 averaging	 effects	 for	 univariate	 response	 functions	
(Benedetti-	Cecchi,	2005;	Ruel	&	Ayres,	1999;	Foray	et	al.,	2014; 
Wetzel	et	al.,	2016).	In	contrast,	predicting	from	response	surfaces	
(multiple	 predictors)	 requires	 consideration	 of	 the	 direction	 and	
degree	of	correlation	between	variables.	In	our	analysis,	outcomes	
consistent	with	 Jensen's	 inequality	were	observed	 for	 regions	of	
the	 RS	where	 deviations	 from	 linearity	 (i.e.,	 the	 curvature)	were	
more	pronounced.	Negative	values	of	the	TVE	corresponded	to	a	
strong	positive	curvature	of	the	RS	(concave-	down),	such	as	those	
obtained	at	low	and	intermediate	levels	of	sediment	deposition	in	
combination	with	either	low	or	elevated	warming,	respectively.	In	
contrast,	positive	values	of	the	TVE	were	observed	at	intermediate	
levels	of	sediment	deposition	and	low	warming,	where	the	RS	had	
a	strong	negative	curvature	(concave-	up).	The	modulating	effect	of	
spatial	correlation	was	not	strong	enough	to	change	the	sign	of	the	
TVE	for	these	combinations	of	stressors	(Figures 2 and 4).

The	 correlation	 effect	 –		 i.e.	 the	 contribution	 of	 spatial	 cor-
relation	to	nonlinear	averaging	–		emerges	when	two	stressors	act	
non-	additively,	that	is,	when	the	effect	of	the	concurrent	change	
of	two	stressors	is	different	from	the	sum	of	the	effects	of	chang-
ing	 each	 stressor	 individually	 (Crain	 et	 al.,	 2008;	 Koussoroplis	
et al., 2017).	 In	our	 simulations,	 the	moderate	 correlation	effect	
in	the	low-	intensity	condition	originated	from	the	mild	antagonis-
tic	effect	of	warming	and	sediment	deposition,	where	 low	 levels	

F I G U R E  5 Testing	predictions.	Predicted	vs.	experimental	values	of	biomass	(μg chl a	cm−2)	as	a	function	of	the	correlation	and	
intensity	of	warming	and	sediment	deposition.	Yellow	and	dark-	green	filled	circles	indicate	mean	biofilm	biomass	under	negative	and	
positive correlation, respectively (n =	3).	Gray	circles	refer	to	mean	biomass	of	transects	exposed	to	constant	conditions	(n =	3).	Purple	
reversed-	triangles	indicate	mean	biomass	of	plots	exposed	to	constant	conditions	derived	from	the	first	experiment	(n = 3). Yellow and 
dark-	green	empty	squares	are	the	expected	values	of	biofilm	biomass	obtained	from	simulations	under	low	(∆T = +5°C	and	sediment	
deposition =	0.5	cm)	and	high	(∆T = +15°C	and	sediment	deposition	=	1.5	cm)	intensity,	respectively.	Error	bars	are	non-	parametric	
bootstrapped	95%	confidence	intervals.	In	particular,	error	bars	of	predictions	incorporate	the	effect	of	error	propagation	stemming	from	
uncertainty	associated	with	the	RS.
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of	 sediment	 deposition	 (0.5	 cm)	may	 have	 buffered	 the	 adverse	
effects	 of	 warming	 through	 nutrient	 release	 and	 reduction	 of	
desiccation stress (Figure 4a)	 (Larson	&	Sundbäck,	2012; McKew 
et al., 2011;	Nakamoto	et	al.,	2000).	The	correlation	effect	evan-
ished	with	 increasing	 sediment	 deposition,	weakening	 the	 inter-
action	between	sediment	and	warming.	Increasing	sediment	loads	
may	 have	 generated	 hypoxic	 conditions	 at	 the	 sediment–	biofilm	
interface,	 such	 that	 the	 antagonistic	 buffering	 effect	 caused	 by	
the	0.5	cm	layer	of	sediment	switched	into	a	negative	effect	op-
erating	 additively	 with	warming	 under	 the	 thicker	 1.5	 cm	 layer.	
The	correlation	effect	reversed	under	high	warming	and	sediment	
deposition,	with	a	positive	spatial	correlation	of	the	two	variables	
resulting	in	adverse	effects	on	both	the	TVE	and	biofilm	biomass	
compared	with	negative	spatial	correlation	(Figures 4c and 5a,b). 
Such	inversion	of	the	correlation	effect	could	also	reflect	a	switch	
from	an	antagonistic	to	a	synergistic	effect	of	warming	and	sed-
iment	 deposition	 on	 biofilm	 biomass.	However,	 caution	must	 be	
paid	 in	 interpreting	 this	 inversion,	 as	 no	 previous	 experiments	
have	directly	characterized	the	nature	(antagonistic	or	synergistic)	
and	the	magnitude	effect	of	warming	and	sediment	deposition	on	
rocky	intertidal	biofilm.

The	 observed	 differences	 among	 correlation	 scenarios	 might	
also	 reflect	 a	 shift	 in	 species	 composition.	 Although	 physiological	
responses	 to	 stress	 may	 occur	 within	 a	 few	 days	 in	 microorgan-
isms,	 longer	 periods	 (months)	may	 be	 necessary	 for	 these	 effects	
to	 translate	 into	 compositional	 shifts	 (Schimel	 et	 al.,	 2007). In a 
parallel	experiment,	we	found	that	changes	in	species	composition	
in	response	to	warming	required	at	 least	4	months	to	be	detected	
(L.	 Rindi,	 unpublished	 data).	 Since	 the	 experiment	 presented	 here	
lasted	3	months,	we	are	more	inclined	to	believe	that	outcomes	were	
driven	more	by	physiological	responses	than	shifts	in	species	com-
position	within	the	biofilm.

Although	the	direct	manipulation	of	warming	and	sediment	re-
produced	the	effects	of	intensity	and	spatial	correlation	observed	in	
the	simulations,	RS	predictions	may	be	affected	by	error	propagation	
(Figure 5).	This	likely	reflected	the	uncertainty	associated	with	esti-
mating	the	RS	from	field	data.	However,	results	of	the	bootstrapping	
analysis	showed	that	despite	a	moderate	fit	(R2 =	0.29),	our	RS	gen-
erated	realistic	predictions	of	response	of	biofilm	to	changes	in	in-
tensity	and	spatial	correlation	of	warming	and	sediment	deposition.

Our	 study	 examined	 the	 effects	 of	 nonlinearities	 and	 correla-
tion	between	variables	at	small	spatial	scales.	Whether	our	RS	could	
predict	 the	TVE	at	 larger	spatial	 scales	 remains	an	open	question.	
Scale-	transition	 theory	 uses	 Jensen's	 inequality	 (nonlinear	 aver-
aging)	 and	 measures	 of	 environmental	 variances	 and	 correlations	
to	 extrapolate	 local	 ecological	 patterns	 (e.g.,	 population	 dynamics	
within	patches	of	habitat)	 to	broader	 scales	 (e.g.,	 regional	popula-
tion	dynamics)	(Benedetti-	Cecchi	et	al.,	2012; Chesson et al., 2005; 
Melbourne	&	Chesson,	2006).	The	effect	of	Jensen's	inequality	in-
creases	with	 the	degree	of	 nonlinearities	 and	with	 the	 amount	 of	
variance	 encountered	 when	 embracing	 larger	 spatial	 or	 temporal	
scales.	Thermal	performance	curves	are	a	typical	example	of	non-
linear	 response	 functions	 that	 have	 been	 widely	 used	 to	 model	

population	 responses	 in	 fluctuating	 environments	 (Denny,	 2017; 
Kingsolver	&	Woods,	2016;	Koussoroplis	&	Wacker,	2016).	Studies	
have	shown	how	the	shape	of	performance	curves	may	change	de-
pending	on	the	duration	and	history	of	exposure	to	stressful	condi-
tions,	acclimatation,	and	ontogeny	that	may	all	affect	the	accuracy	
of	 temporal	 predictions	 from	 Jensen's	 inequality	 (Kingsolver	 &	
Woods,	2016;	Kremer	et	al.,	2018;	Sinclair	et	al.,	2016).	Similar	ef-
fects	may	occur	when	extrapolating	across	spatial	scales.	Due	to	the	
patchy	 nature	 of	 the	 rocky	 intertidal	 environment,	 biofilm	 assem-
blages	might	become	increasingly	different	in	terms	of	disturbance	
legacies,	 acclimatation,	 and	 overall	 response	 to	warming	 and	 sed-
iment	 deposition	with	 increasing	 spatial	 scales,	 compromising	 the	
ability	of	the	RS	to	predict	patterns	at	larger	scales.	Although	these	
caveats	remain	to	be	clarified,	our	study	shows	how	consideration	of	
nonlinear	response	functions	and	spatial	correlation	can	help	eluci-
dating	the	influence	of	multiple	processes	at	small	spatial	scales	in	a	
heterogeneous	environment.

Focusing	on	 local	patterns	and	processes	 is	 important	because	
small-	scale	variability	is	ubiquitous	in	nature,	and	most	of	the	inter-
actions	between	organisms	and	the	surrounding	environment	occur	
at	 the	 scale	 of	 the	 microhabitat	 (Korell	 et	 al.,	 2021;	 Pincebourde	
et al., 2016;	 Potter	 et	 al.,	 2013).	 Yet,	 microhabitat	 heterogeneity	
can	 promote	 adaptation	 by	 buffering	 populations	 against	 adverse	
environmental	conditions	and	small-	scale	processes	can	drive	large-	
scale	 patterns	 of	 community	 stability	 (Grman	 et	 al.,	2010; Riddell 
et al., 2021).	 For	 example,	 ridges	 and	 depressions	 may	 generate	
various	patterns	of	correlation	among	solar	radiation,	freezing,	and	
moisture	 in	 tundra	 systems,	 providing	 favorable	microclimates	 for	
the	persistence,	growth,	and	adaptation	of	dominant	shrub	species	
that	are	responsible	for	coarse-	scale	vegetation	shifts	(greening)	in	
Arctic	and	Alpine	ecosystems	(Dobbert	et	al.,	2021).	Similar	small-	
scale	 patterns	 of	 correlation	 between	 leading	 environmental	 vari-
ables	are	expected	to	occur	in	other	terrestrial	and	aquatic	systems	
where	landscape	features	and	topographic	complexity	promote	fine-	
scale	environmental	heterogeneity	(Deák	et	al.,	2021).	Assessing	the	
generality	of	nonlinear	and	correlation	effects	as	mechanisms	shap-
ing	small-	scale	ecological	patterns	is	important	to	better	understand	
the	compound	effects	of	multiple	processes	and	the	ecological	role	
of	microclimates	in	changing	environments.

Climate	change	projections	for	the	21st	century	involve	modifica-
tions	of	the	spatiotemporal	patterns	of	climate	variables	(Gunderson	
et al., 2016;	Hayashida	et	al.,	2020;	Young	&	Ribal,	2019). The spatial 
context	 in	which	organisms	are	embedded,	 such	as	 landscape	and	
microtopographic	 features,	 strongly	 filter	 and	modify	 the	 climate-	
change	signal	(Pincebourde	et	al.,	2016).	The	thermal	mosaics	orig-
inating	from	the	topographic	complexity	of	rocky	 intertidal	shores	
are	an	example	of	a	filtered	signal	(Helmuth	et	al.,	2006).	In	the	same	
vein,	filtered	signals	may	originate	in	a	multifactorial	context	when	
topographic	features	generate	small-	scale	patterns	of	correlation	of	
environmental	variables.	As	we	have	shown	here,	 local	patterns	of	
correlation	may	play	 a	 crucial	 role	 in	modulating	 the	 effect	 of	 cli-
mate	 extremes,	 ultimately	 influencing	 average	 biofilm	 biomass	 at	
the	scale	of	the	shore.	Our	analysis	signals	the	need	for	researchers,	
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resource	managers,	 and	policymakers	aiming	at	predicting	 the	 im-
pact	of	multiple	stressors	to	account	for	current	and	possibly	future	
spatiotemporal	patterns	of	correlation	among	stressors.	Black	swans	
can	occur	in	space	as	well	as	in	time	(Anderson	&	Ward,	2019),	but	
the	spatial	context	is	often	overlooked	in	the	analysis	of	ecological	
extremes.	Spatial	correlation	should	be	explicitly	incorporated	into	
multiple-	stressors	studies	(Gunderson	et	al.,	2016),	risk-	assessment	
framework	 (Côté	 et	 al.,	 2016;	 Goussen	 et	 al.,	 2016)	 and	 coupled	
environmental-	physiological	 models	 (Pincebourde	 et	 al.,	 2016; 
Rezende et al., 2014).	Our	study	shows	how	the	inclusion	of	correla-
tion	between	drivers	can	improve	predictions	from	Jensen's	inequal-
ity	in	real-	world	conditions.	Further	experimental	work	is	needed	to	
evaluate	 the	generality	of	 these	 findings	 in	other	 ecosystems	and	
over	a	wider	range	of	environmental	variables.
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