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Node classification tasks on graphs are addressed via fully-trained deep message-passing models that
learn a hierarchy of node representations via multiple aggregations of a node’s neighbourhood. While
effective on graphs that exhibit a high ratio of intra-class edges, this approach poses challenges in the
opposite case, i.e. heterophily, where nodes belonging to the same class are usually further apart. In
graphs with a high degree of heterophily, the smoothed representations based on close neighbours com-
puted by convolutional models are no longer effective. So far, architectural variations in message-passing
models to reduce excessive smoothing or rewiring the input graph to improve longer-range message
passing have been proposed. In this paper, we address the challenges of heterophilic graphs with
Graph Echo State Network (GESN) for node classification. GESN is a reservoir computing model for
graphs, where node embeddings are recursively computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with
respect to most fully trained deep models that implement ad hoc variations in the architectural bias or
perform rewiring as a preprocessing step on the input graph, with an improvement in terms of effi-
ciency/accuracy trade-off. Furthermore, our analysis shows that GESN is able to effectively encode the
structural relationships of a graph node, by showing a correlation between iterations of the recursive
embedding function and the distribution of shortest paths in a graph.
� 2023 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Relations between entities, such as paper citations, links
between web pages, user interactions on social networks, or bonds
between atoms in molecules, can be best represented by graphs.
Tasks on this class of data require learning representations that
encode not only an entity, but also the complex context due to
its relationship network. Since the introduction of pioneering mod-
els such as Neural Network for Graphs [1] and Graph Neural Network
[2], a plethora of neural models have been proposed to solve
graph-, edge-, and node-level tasks [3–5]. Most of these models
share an architecture structured in layers that perform local aggre-
gations of node features, e.g. graph convolution networks [1,6–8].
More generally, this mechanism is known as ‘message-passing’,
and has allowed the adaptive processing of graph data, i.e. the
same model can generalize to different connectivity and different
graphs without changes in the neural model structure.
The architectural bias of performing progressive aggregations of
neighbouring node representations has proved particularly effec-
tive on graphs that exhibit an high degree of homophily, e.g. social
networks where people tend to establish relationships with their
similars [9]. Convolutional models tend to produce similar embed-
dings for close nodes, thanks to a smoothing effect that allows to fil-
ter out noise and reconstruct missing information [10]. However,
many real-world graphs depart from this setting, and present a
large number of inter-class edges, thus exhibiting heterophily. In
this case, representations and predictions that rely chiefly on a
node’s immediate neighbours can be misleading, since nodes
belonging to the same class are generally further apart. Hence, a
model may need the ability to learn long-range relationships
between nodes, which in message-passing models can be achieved
by stacking multiple aggregation layers to enlarge the receptive
field. However, on (semi-) supervised node classification tasks
(i.e., classifying nodes by learning from a labelled subset of the
graph) accuracy has been shown to decay as the number of layers
increases in deep graph convolutional networks [11], due to the
collapse of node representations [12]; this phenomenon is called
over-smoothing. This problem is thus exacerbated in the case of
heterophilic graphs [13]. In general, the inability to extract mean-
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ingful features in deeper layers for tasks that require discovering
long-range relationships between nodes is called under-reaching.
Alon & Yahav [14] maintain that one of its causes is over-
squashing: the problem of encoding an exponentially growing
receptive field [1] in a fixed-size node embedding dimension. In
order to address the disadvantageous setting caused by the diverse
challenges that message-passing models have to face, different
architectural variations in convolution-based model have been
proposed, such as expanding the radius of neighbourhood aggrega-
tions or introducing skip connections to exploit the full hierarchy
of representations [15]. Some models even propose abandoning
message-passing altogether [16]. Apart from changing the models’
architectural bias, another solution proposed is altering the con-
nectivity (rewiring) of the input graph, in order to ease message-
passing by removing structural ‘bottlenecks’ that prevent long-
range relationships to be learnt [17].

Graph Echo State Network (GESN) [18] is an efficient model
within the reservoir computing (RC) paradigm. In RC, input data
is encoded via a randomly-initialized reservoir, while only a linear
readout requires training [19]. GESN has already been successfully
applied to graph-level classification tasks [20]. We extended this
model to node-level tasks. In this paper, we build upon the prelim-
inary results on its first application to node classification tasks [21],
focusing in particular on the efficacy in tackling heterophilic
graphs. As our analysis will show, GESN is able to effectively repre-
sent the structural relationships of a node by going beyond the
previously-established stability constraints required for graph-
level tasks [22]. The reservoir computing paradigm allows us to
decouple the challenges intrinsic to the tasks from those inherent
to training deep convolutional models. In particular, we will
observe that our model does not suffer from the over-smoothing
effects that plague fully-trained deep convolutional models,
despite performing many more message-passing steps.

The remaining of this paper is organized as follows. In Section 2,
we present the general task of node classification, along with its
challenges and the solutions proposed so far in literature. We then
introduce GESN for node classification in Section 3. In Section 4,
our model is evaluated on 19 node classification tasks ranging from
medium- to large-scale graphs with different degrees of hetero-
phily, while its accuracy and efficiency is compared against a broad
class of fully-trained models. The factors contributing to the effec-
tiveness of GESN are analysed in Section 5. Finally, we draw our
conclusions in Section 6.

2. Node Classification

Let G ¼ V;Eð Þ denote a graph with nodes v 2 V and edges
v;uð Þ 2 E, having node feature vectors xv 2 RX for each node
v 2 V. We denote by Nr vð Þ the r-neighbourhood of the ego node
v, i.e. the set of nodes that can reach v via a path within r hops, and
by A the graph adjacency matrix. The goal of a (semi-) supervised
node classification task is to learn a model from a subsetVtrain � V

of graph nodes with known target labels xv ; yvð Þf gv2Vtrain
, in order

to infer the node labels yv 2 1; . . . ;Cf g for the remaining nodes
V nVtrain using the network structure and input features xv .

Message-passing models
Neural network models that are able to process the input graph

adaptively to learn node embeddings are based on the message-
passing architecture. Most common graph models are structured
in L layers, where each layer learns an embedding for each node
based on an increasingly large receptive field [1]. These layers
‘ P 1 can be formalized as [23]

h ‘ð Þ
v ¼ combine h ‘�1ð Þ

v ; aggregate h ‘�1ð Þ
u : u 2 N1 vð Þ

n o� �� �
; ð1Þ
2

where node embeddings h ‘ð Þ
v 2 RH of layer ‘ are obtained by aggre-

gating the previous embeddings h ‘�1ð Þ
v 0 of node v’s 1-hop neighbours

via aggregate �ð Þ, and then combined with the node’s previous

embeddings h ‘�1ð Þ
v via combine �ð Þ. The first layer ‘ ¼ 1 either receives

in input the original node features, h 0ð Þ
v ¼ xv , or their embeddings,

e.g. h 0ð Þ
v ¼ MLP xvð Þ. The final layer L either directly predicts the

one-hot encoding of target label yv , or is followed by an MLP that
serves this purpose. The whole model is trained end-to-end by typ-
ically minimizing the cross-entropy loss.

The choice of functions in (1) determines the architectural bias
of the model. For example, GCN [8] layers are defined as

h ‘ð Þ
v ¼ relu

X
u2N1 vð Þ

bAv;uW
‘ð Þh ‘�1ð Þ

u

 !
; ð2Þ

where bA is the normalized adjacency matrix, W ‘ð Þ are learnable
weights, and input node features xv 2 RX in layer ‘ ¼ 1. The local
aggregation of neighbouring node representations of (2) is called
graph convolution, in analogy with the 2D convolution operation
in neural networks for images or 1D convolution for time series.
Models of this class include GraphSAGE [24], which averages neigh-
bouring nodes’ representations, and GAT [25], which performs a
weighted average of neighbours via learned attention scores. For
the latter model, the aggregate and combine functions in (1) are
actually combined into a single step, as attention scores are com-
puted based on both ego and neighbour nodes embeddings.

Issues and challenges. As the development of deep learning on
graphs progressed, several challenges preventing the computation
of effective node representations have emerged. Li et al. [11] have
shown that stacking more than three or four layers of graph convo-

lution causes a degradation in accuracy, since representations h ‘ð Þ
v

converge asymptotically to a fixed point of bA as ‘ increases, or
more generally, to a low-frequency subspace of the graph spec-
trum [12]. This problem is known as over-smoothing. Indeed, by
acting as a low-pass filter, GCNs are biased in favor of tasks whose
graphs present a high degree of homophily, that is nodes in the
same neighborhood mostly share the same class [15]. Formally,
homophily in a graph can be quantified as the intra-class edges
ratio

hG ¼ v;uð Þ 2 E : yv ¼ yuf gj j
Ej j : ð3Þ

Alternative homophily measures have also been defined, such as
the average of node neighbourhood homophily ratios
hv ¼ j u 2 N1 vð Þ : yv ¼ yuf gj=jN1 vð Þj [26], or the excess homophily
with respect to a random graph connectivity [16]. The homophily
of a graph is not an intrinsic property of graph connectivity, but it
depends on the particular node label assignment yv , as Fig. 1 shows.

Over-squashing instead is an issue that intrinsically depends on
message-passing that follows the local graph connectivity: the
problem of encoding an exponentially growing receptive field [1]
in a fixed-size node embedding dimension. This problem can lead
to the inability to extract meaningful features in deeper layers,
which along with over-smoothing causes the under-reaching in
tasks that require discovering long-range relationships between
nodes. The latter problem is often more relevant in low-
homophily settings, since most nodes sharing the same labels are
not neighbours. Topping et al. [17] have provided theoretical
insights into this issue by identifying over-squashing with the
exponential decrease in sensitivity of node representations to the
input features on distant nodes, as the number of layers increases.

For example, in a GCN model [8] the sensitivity of h Lð Þ
v to the input

xu, assuming that there exists an L-path between nodes v and u, is
upper bounded by



Fig. 1. Depending on the label assignment yv , the same underlying graph G can
have high homophily (hG ¼ 0:85, left) or low homophily (hG ¼ 0:46, right).
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v
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YL
‘¼1

kW ‘ð Þk
 ! bAL

� �
v;u

: ð4Þ
Graph rewiring methods aim to improve this bound by acting on

the term bAL
� �

v;u
, for example guided by graph curvature [17].

As the reader may have noticed, the challenges to learning
effective node representations are of various nature, and all con-
tribute to the difficulty of heterophilic tasks. In end-to-end trained
models, there is also the additional difficulty of back-propagating
the gradient through many message-passing layers. Discerning
the inter-play between all these issues is still an open research
question.

Proposed solutions. Changes in the model architectural bias have
been proposed to improve classification on heterophilic graphs.
Some solutions identified by [15] are:

1. Separate ego and neighbourhood representations in (1), by
aggregating on open node neighbourhoods Nr vð Þ n vf g and
combining by concatenation, as done by GraphSAGE [24]. This
design allows the model to choose how much to take into
account neighbouring nodes in computing the node
representation.

2. Extend aggregation to multi-hop neighbourhoods Nr vð Þ; r > 1,
such as in graph convolutions that implement Chebyshev poly-
nomial filters (e.g. ChebNet [27]) or that aggregate with powers
of the adjacency matrix (e.g. MixHop [28]). This design aims to
improve the local homophily ratio when performing neighbour-
hood aggregation.

3. Exploit also the representations h ‘ð Þ
v computed at each interme-

diate layer ‘ < L to make predictions, e.g. as in Jumping-
Knowledge (JK) networks [29]. This choice also partly addresses
having an excessive smoothed representation in deeper layers;
other models aim to achieve a similar effect via skip-
connections instead (e.g. GCNII [30]).

H2GCN [15] incorporates all three architectural solutions. Other
models perform multi-hop aggregations via personalized PageRank
(APPNP [31]) or a generalized version thereof (GPR-GNN [32]).
Alternative solutions include altering the graph structure to
improve the homophily degree, in order to increase the ratio of
intra-class edges in node neighbourhoods [33]. Models such as LINK
[34] and LINKX [16] abandon message-passing altogether, by
directly using the adjacency matrix rows as input features to an
MLP, thus also losing adaptiveness to graph changes and invariance
to node ordering.
3

3. Reservoir Computing for Graph Nodes

Reservoir computing [19,35,36] is a paradigm for the design of
efficient recurrent neural networks (RNNs). Input data is encoded
by a randomly initialized reservoir, while only the readout layer
for downstream task predictions requires training. Reservoir com-
puting models, in particular Echo State Networks (ESNs) [37], have
been studied in order to obtain insights into the architectural bias
of RNNs [38,39].

3.1. Graph Echo State Network for node classification

GESN has been introduced by Gallicchio and Micheli [18],
extending the reservoir computing paradigm to graph-structured
data. This model has already demonstrated its effectiveness in
graph-level classification tasks [20], where a whole-graph embed-
ding is computed from node embeddings via a parameter-free
pooling function, such as sum or mean. Node embeddings are in
turn obtained as the state of a non-linear dynamical system, which
is iteratively updated in a recursive fashion, similarly to the Graph

Neural Network model [2]. In detail, node embeddings h kð Þ
v 2 RH are

recursively computed by the non-linear dynamical system

h kð Þ
v ¼ tanh Win xv þ

X
u2N1 vð Þ

cWh k�1ð Þ
u

 !
; h 0ð Þ

v ¼ 0; ð5Þ

where Win 2 RH�X and cW 2 RH�H are the input-to-reservoir and the
recurrent weights, respectively, for a reservoir with H units (input
bias is omitted). Reservoir weights are randomly initialized from a
uniform distribution in �1;1½ �, and then rescaled to the desired
input scaling and reservoir spectral radius, without requiring any
training. Eq. (5) is iterated over k up to K times, then the final state

h Kð Þ
v is used as the node embedding. For node classification tasks, a

linear readout is applied to node embeddings yv ¼ Wouth
Kð Þ
v þ bout,

where the weights Wout 2 RC�H;bout 2 RC are trained by ridge
regression on one-hot encodings of target classes yv .

In the previous literature, the dynamical system (5) was con-
strained to be asymptotically stable, that is to converge to a fixed

point h 1ð Þ
v as K ! 1. The existence of a fixed point is guaranteed

by the Graph Embedding Stability (GES) property [20], which also

guarantees independence from the system’s initial state h 0ð Þ
v . A suf-

ficient condition for the GES property is requiring that the transi-
tion function defined in (5) to be contractive, i.e. to have

Lipschitz constant kcWkkAk < 1. In standard reservoir computing
practice, however, the recurrent weights are initialized according
to a necessary condition [22] for the GES property, which is

q cW� �
< 1=a, where q �ð Þ denotes the spectral radius of a matrix,

i.e. its largest absolute eigenvalue, and a ¼ q Að Þ is the graph spec-
tral radius. This condition provides the best estimate of the system
bifurcation point, i.e. the threshold beyond which (5) becomes
asymptotically unstable [22]. Previous literature has also shown
that on graph-level tasks, the system stability is essential to pro-
vide global graph embeddings hG via parameter-free pooling func-

tions, e.g. sum pooling: hG ¼Pv2Vh 1ð Þ
v .

3.2. Beyond stability constraints

Let us now consider a GESN where the number of iterations of
(5) is fixed to a constant K. In this case, the K iterations of the state
transition function (5) can be interpreted as equivalent to L ¼ K � 1
graph convolution layers with weights shared among layers and
input skip connections. This interpretation is illustrated in Fig. 2:
the functional blocks represent the unfolding of the recursive state



1 https://github.com/dtortorella/addressing-heterophily-gesn

Fig. 2. The dynamical system defined in Eq. (5) that computes GESN state h Kð Þ (on the left side). The unfolding of the recursive computation (on the right side) can be
interpreted as a deep graph convolutional network made of a random projection (for k ¼ 1, where no effective contribution is coming from neighbourhood aggregation due to
the null state initialization h 0ð Þ ¼ 0) followed by K � 1 convolutional layers with shared weightsWin;cW and input skip-connections. Inside the layer functional blocks, a single
stroke rectangle represents the linear functionWin applied to all node features, while a double-stroke rectangle represents a GCN-like graph convolution with neighbourhood
aggregation weights cW.
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computation in equivalent layers (on the right), where the double
border represent a GCN-like graph convolution with neighbour-

hood aggregation weights cW. Notice that at iteration k ¼ 1 no con-
volution is effectively performed, since all node states are null
initialized.

For GESN, the sensitivity of h Kð Þ
v to the input xu is upper bounded

by

@h Kð Þ
v

@xu

�����
����� 6

XK�1

‘¼0

kcWk‘ kWink A‘
� �

v;u
; ð6Þ

where by k � k we assume the 2-norm. Comparing Eq. (6) with the
input sensitivity in GCN (4), notice the effect of the input term in
the state transition function (5), which acts as an input skip connec-
tion. While in (4) only paths of length L contribute to the node
embeddings, in GESN all paths up to length K � 1 between nodes
u and v are taken into account. However, not all the paths influence

equally h Kð Þ
v . According to the value of kcWkkAk, we have two cases:

1. If kcWkkAk < 1, then the contribution from longer paths is expo-

nentially vanishing, as kcWk‘ kAk‘ ! 0 for ‘ ! 1. This is the case
where GESN satisfies the GES property, as its dynamics are con-

tractive and the embeddings converge to a fixed point h 1ð Þ
v .

2. Otherwise, if kcWkkAk P 1, the GES property is no longer guar-
anteed to be satisfied, but Eq. (6) suggests that such initializa-
tion is necessary to prevent the contributions from longer
paths to be exponentially vanishing. For this condition, the
number of iterations K is discussed in Section 5.2.

In our network, we are able to explicitly choose how large the lay-

ers’ Lipschitz constant kcWk is, thus controlling both the dynamical
and the sensitivity behaviour. Evaluating the effectiveness of node
embeddings obtained from non-contractive dynamics is one of
the aims of our work, which will be carried on experimentally in
Section 4 on several high and low homophily node classification
tasks. To investigate the different dynamics of GESN, we follow
the standard practice in reservoir computing of selecting the spec-

tral radius q cW� �
of recurrent weights initializations. The spectral

radius is a lower bound for the spectral norm [40], i.e.

kcWk P q cW� �
, and can be set very efficiently [41]. Since

kcWkkAk P q cW� �
a, non-contractive dynamics will be found in

the region q cW� �
> 1=a.
4

Our approach is alternative to graph rewiring methods, which
act directly on the term dependent on the graph adjacency A
instead. As argued by [17], the exponentially vanishing sensitivity
in e.g. Eq. (4) could be caused by topological bottlenecks in the fac-

tor bAL
� �

v ;u
. We defer a discussion of rewiring methods to Sec-

tion 4.3, where we will also experimentally investigate the
hypothesis that this problem could be contrasted by going beyond

a contractive initialization via kcWkkAk > 1 as we have just
proposed.
4. Experiments

In this section we evaluate GESN on three sets of node classifi-
cation tasks with varying degrees of homophily and ranging from
small to large graphs, as summarised in Table 1, for a total of 19
tasks extracted from 13 real-world graphs. We compare the classi-
fication accuracy with a variety of fully-trained deep models,
which were presented in Section 2. In all tasks, we select by grid
search the reservoir radius, input scaling factor, number of hidden
units, and readout regularization in ridge regression, while keeping
the number of iterations of Eq. (5) fixed at K ¼ 100. As our analysis
in Section 5 will demonstrate, the number of iterations is not much
relevant, provided that K is large enough for GESN to capture the
whole graph structure. Code for reproducing our experiments is
publicly available.1

4.1. Medium-scale tasks

We begin our evaluation from nine small- to medium-scale (up
to 103 nodes) classification tasks which are widely adopted in lit-
erature. Namely, we evaluate GESN on six node classification tasks
with low homophily degree (hG 6 0:3) and three tasks with high
homophily degree (hG > 0:7). We adopt the same 10 scaffold splits
48%/32%/20% of [15], averaging results in each fold over 10 differ-
ent reservoir initializations. We explore a number of units ranging
from 24 to 212, input scaling factors from 1 to 1

320, readout regular-

ization values from 10�5 to 102, and reservoir radii q from 0:1=a to
50=a (obtained via grid search).

Accuracy results are reported in Table 2, while Fig. 3 shows the
reservoir radii selected in the 10 splits. We can observe three dif-
ferent behaviours, exemplified in Fig. 4. The number of reservoir
units plays a significant role, offering best results when it is closer



Table 1
Statistics on the graphs employed in the node classification tasks.

Graph Homophily Nodes Edges Radius a Features Classes

Texas 0:11 183 295 2:56 1;703 5
Wisconsin 0:21 251 466 2:88 1;703 5
Actor 0:22 7;600 26;752 9:99 932 5
Squirrel 0:22 5;201 198;493 138:60 2;089 5
Chameleon 0:23 2;277 31;421 61:90 2;325 5
Cornell 0:30 183 280 2:68 1;703 5
Citeseer 0:74 3;327 9;104 13:74 3;703 6
Pubmed 0:80 19;717 88;648 23:24 500 3
Cora 0:81 2;708 10;556 14:39 1;433 7
Penn94 0:47 41;554 1;362;229 180:44 4;814 2
arXiv-year 0:22 169;343 1;166;243 8:96 128 5
genius 0:62 421;961 984;979 212:82 12 2
twitch-gamers 0:55 168;114 6;797;557 149:92 2;514 2

Table 2
Node classification accuracy on low and high homophily graphs following the experimental setting of [15]. Average accuracy and standard deviation for GESN is reported from
[21], while LINKX is reported from [16] and other models are reported from [15]. Results within one standard deviation of the best accuracy are highlighted.

Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

GCN 59:46�5:25 59:80�6:99 30:26�0:79 36:89�1:34 59:82�2:58 57:03�4:67 76:68�1:64 87:38�0:66 87:28�1:26

GAT 58:38�4:45 55:29�8:71 26:28�1:73 30:62�2:11 54:69�1:95 58:92�3:32 75:46�1:72 84:68�0:44 82:68�1:80

GraphSAGE 82:43�6:14 81:18�5:56 34:23�0:99 41:61�0:74 58:73�1:68 75:95�5:01 76:04�1:30 88:45�0:50 86:90�1:04

GCN + JK 66:49�6:64 74:31�6:43 34:18�0:85 40:45�1:61 63:42�2:00 64:59�8:68 74:51�1:75 88:41�0:45 85:79�0:92

GCN + Cheby 77:30�4:07 79:41�4:46 34:11�1:09 43:86�1:64 55:24�2:76 74:32�7:46 75:82�1:53 88:72�0:55 86:76�0:95

GraphSAGE + JK 83:78�2:21 81:96�4:96 34:28�1:01 40:85�1:29 58:11�1:97 75:68�4:03 76:05�1:37 88:34�0:62 85:96�0:83

MixHop 77:84�7:73 75:88�4:90 32:22�2:34 43:80�1:48 60:50�2:53 73:51�6:34 76:36�1:33 85:31�0:61 87:61�0:85

H2GCN 84:86�6:77 86:67�4:69 35:86�1:03 36:42�1:89 57:11�1:58 82:16�4:80 77:07�1:64 89:40�0:34 86:92�1:37

LINKX 74:60�8:37 75:49�5:72 36:10�1:55 61:81�1:80 68:42�1:38 77:84�5:81 73:19�0:99 87:86�0:77 84:64�1:13

MLP 81:89�4:78 85:29�3:61 35:76�0:98 29:68�1:81 46:36�2:52 81:08�6:37 72:41�2:18 86:65�0:35 74:75�2:22

GESN 84:31�4:44 83:33�3:81 34:56�0:76 73:56�1:62 77:05�1:24 81:14�6:00 74:51�2:14 89:20�0:34 86:04�1:01

Fig. 3. Normalized spectral radii q cW� �
selected in the node classification exper-

iments via hyper-parameter grid search on GESN.
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to the number of input features. For Texas, Wisconsin, Actor, and
Cornell, the performances of GESN are closer to the accuracies of
MLP, which uses only node features xv , and H2GCN, with reservoir
radii q < 1=a: in this case, the graph connectivity appears to be of
no use. Other convolutive models, even with the addition of some
architectural variation, perform significantly worse in general.
While Squirrel and Chameleon present a low homophily degree,
graph convolution models fare better than MLP: in this case graph
connectivity needs to be taken into account. On these two tasks,
GESN improves upon the best message-passing model accuracy
respectively by 27:3% and 12:8% (by 14:8% and 8:7% with respect
to LINKX, which is not adaptive), with much larger reservoir radii
selected in the range 45=a to 50=a. Finally, on high homophily
tasks (Citeseer, Pubmed, Cora) GESN performs generally in line
with graph convolution models, which in turn do better than
MLP; reservoir radii are selected in the range 4=a to 6=a.

We observe how the best accuracy results are for reservoir radii
well above the stability threshold, which appear to be required
when the graph connectivity needs to be leveraged in classifying
nodes. To support this conclusion, we analyse how replacing the
original node input features with constant ones affects the accu-
racy, since in this case GESN can rely only to graph connectivity
for computing distinguishable node embeddings. In Fig. 5 we
report the accuracy on Squirrel and Cora where input features have
thus been removed. We observe that for stable embeddings
(q < 1=a), accuracy significantly drops below the level reached
by having input features, while it reaches almost the same levels
of accuracy for the values of q selected in tasks with original node
features, which are well beyond the region where GESN stability is
guaranteed. As we pointed out in Section 3 concerning Eq. (6), non-

contractive reservoir initialization (such as q cW� �
> 1=a) prevents



Fig. 4. Impact of reservoir radius and number of reservoir units in GESN on three medium-scale tasks. (Best viewed in colour.).

Fig. 5. Impact of reservoir radius and number of reservoir units in GESN on two medium-scale tasks where original input features have been replaced with a constant value
on all nodes. (Best viewed in colour.).
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the contribution from longer paths to be exponentially diminish-
ing, thus enabling GESN to capture structural relationships of a
node with respect to a larger sub-graph.

4.2. Large-scale tasks

We now evaluate the accuracy of GESN on four large-scale
(from 104 to 105 nodes) heterophilic node classification tasks pro-
6

posed by [16]. Penn94, genius, and twitch-gamers are binary clas-
sification tasks extracted from social networks, where the target
label is user gender, active account, and explicit content, respec-
tively; arXiv-year is a citation network where the publication year
is to be predicted. We adopt the same 5 scaffold splits
50%/25%/25% of [16], averaging results in each fold over 10 differ-
ent reservoir initializations. We explore a number of units ranging
from 24 to 213, input scaling factors from 1 to 0:01, readout regular-



Table 3
Average test accuracy (area under the ROC curve for genius) and standard deviation on four large-scale low-homophily tasks (best results highlighted). Except for GESN, the other
results are reported from [16].

Penn94 arXiv-year genius twitch-gamers

MLP 73:61�0:40 36:70�0:21 86:68�0:09 60:92�0:07

L. Prop. 1-hop 63:21�0:39 43:42�0:17 66:02�0:16 62:77�0:24

L. Prop. 2-hop 74:13�0:46 46:07�0:15 67:04�0:20 63:88�0:24

SGC 1-hop 66:79�0:27 32:83�0:13 82:36�0:37 58:97�0:19

SGC 2-hop 76:09�0:45 32:27�0:06 82:10�0:14 59:94�0:21

C&S 1-hop 74:28�1:19 44:51�0:16 82:93�0:15 64:86�0:27

C&S 2-hop 78:40�3:12 49:78�0:26 84:94�0:49 65:02�0:16

GCN 82:47�0:27 46:02�0:26 87:42�0:37 62:18�0:26

GAT 81:53�0:55 46:05�0:51 55:80�0:87 59:89�4:12

GCN + JK 81:63�0:54 46:28�0:29 89:30�0:19 63:45�0:22

GAT + JK 80:69�0:36 45:80�0:72 56:70�2:07 59:98�2:87

H2GCN OOM 49:09�0:10 OOM OOM
MixHop 83:47�0:71 51:81�0:17 90:58�0:16 65:64�0:27

APPNP 74:33�0:38 38:15�0:26 85:36�0:62 60:97�0:10

GPR-GNN 81:38�0:16 45:07�0:21 90:05�0:31 61:89�0:29

GCNII 82:92�0:59 47:21�0:28 90:24�0:09 63:39�0:61

LINK 80:79�0:49 53:97�0:18 73:56�0:14 64:85�0:21

LINKX 84:71�0:52 56:00�1:34 90:77�0:27 66:06�0:19

GESN 80:29�0:41 48:80�0:22 91:72�0:08 68:34�0:86
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ization values from 10�5 to 102, and reservoir radii q 2 1=a;30=a½ �
(obtained via grid search).

Accuracy results are reported in Table 3, while Fig. 3 shows the
reservoir radii selected in the 5 splits. We notice that generally an
MLP under-performs convolutional models, thus suggesting that
on this set of tasks connectivity is also relevant. Indeed, in case
of GESN, we can observe that reservoir radii are selected well
beyond the stability region, analogously to what happened for
Squirrel and Chameleon. GESN achieves top accuracy on genious
and twitch-gamers, while on Penn94 and arXiv-year it performs
generally in line with fully-trained convolutional models. The less
optimal performance on Penn94 can be possibly attributed to the
high-dimensional one-hot node features, which pose a difficulty
for the input random projection via Win, while arXiv-year has
paper text embeddings as node input features that GESN could
be not properly exploiting for the same reason. We notice also that
H2GCN, which in the previous set of tasks demonstrated to gener-
ally outperform other fully-trained models, on large-scale graphs is
unable to be trained due to too demanding memory requirements;
this could be explained by the architectural choices of the model,
which implements all the architectural solutions outlined in Sec-
tion 2, thus increasing the gradient computation cost. Label-
propagation based models [42], including SGC [43] and C&S [44],
generally do not over-perform an MLP, due to their innate bias
towards homophilic graphs. However, an increase to 2-hop neigh-
bourhoods seems to mitigate such bias, as pointed out in Section 2.
A similar strategy of multi-hop neighbourhood aggregation is
adopted by APPNP [31], which performs message-passing on the
propagation matrix computed by a personalised PageRank (PPR)
algorithm, and by GPR-GNN [32], which adopts a generalised
PageRank algorithm instead. Other fully-trained graph convolu-
tional models seems to perform roughly in the same range, except
GAT [25] which present some difficulties on genius and twitch-
gamers. Architectural variations, e.g. JK [29], or skip connections
featured in GCNII [30], seem to offer just a slight improvement
with respect to basic models such as GCN. Finally, LINKX [16] per-
forms as the best (Penn94, arXiv-year) or second-best behind GESN
(genious and twitch-gamers). This model also over-performs its
variant LINK [34], which does not exploit node input features, thus
demonstrating their significance to the tasks. However, we point
out that both models are not adaptive to alterations in the input
graph, nor they are permutation-invariant with respect to node
ordering, since both use an MLP on the adjacency matrix rows as
7

(additional) node input features. In doing so, it is also lost the local-
ity advantage of convolutional models, which perform aggrega-
tions limitedly to a node’s neighbourhood, and the model
sparsity, since the MLP weight dimensions should scale with the
number of graph nodes jV j.
4.3. Comparison with rewiring methods

Topping et al. [17] have further investigated the connection of
over-squashing — as measured by the Jacobian of node representa-

tions in (4) — with the graph topology via the term bAL
� �

v ;u
, and

have identified in negative local graph curvature the cause of ‘bot-
tlenecks’ in message propagation. In order to remove these bottle-
necks, they have proposed rewiring the input graph, i.e. altering
the original set of edges as a preprocessing step, via Stochastic Dis-
crete Ricci Flow (SDRF). This method works by iteratively adding an
edge to support the most negatively-curved edge while removing
the most positively-curved one according to the balanced Forman
curvature [17], until convergence or a maximum number of itera-
tions is reached. This rewiring approach can be contrasted to e.g.
Graph Diffusion Convolution (DIGL) [33], which aims to address
the problem of noisy edges in the input graph by altering the con-
nectivity according to a generalized graph diffusion process, such
as personalized PageRank (PPR). Since DIGL has a smoothing effect
on the graph adjacency by promoting connectivity between nodes
that are a short diffusion distance, it may be more suitable for tasks
that present a high degree of homophily [17], i.e. graphs with an
high ratio of intra-class edges.

We compare the accuracy of GESNs on six low-homophily node
classification tasks against different rewiring mechanisms applied
in conjunction with fully-trained GCNs. As pointed out in [17],
avoiding over-squashing in order to capture long-range dependen-
cies is often more relevant in low-homophily settings, since most
nodes sharing the same labels are not neighbours. In our experi-
ments we follow the same setting and training/validation/test
splits of [33,17], with tasks limited to the largest connected com-
ponent of the original graphs, and report the average accuracy with
95% confidence intervals on 1000 test bootstraps. As in previous
tasks of Section 4.1, the hyper-parameters selected on the valida-

tion splits for GESN are: the reservoir radius q cW� �
in the range

0:1=a;50=a½ �, which controls how large the Lipschitz constant of
(5) should be; the input scaling factor of Win in the range 1

320 ;1
� �

;



Table 4
Average test accuracy with 95% confidence intervals (best results in bold). Except for GESN, the other results are reported from [17]. Tasks are limited to the largest connected
component of the original graphs.

Cornell Texas Wisconsin Chameleon Squirrel Actor

None 52:69�0:21 61:19�0:49 54:60�0:86 41:80�0:41 39:83�0:14 28:70�0:09

Undirected 53:20�0:53 63:38�0:87 51:37�1:15 42:63�0:30 40:77�0:16 28:10�0:11

Fully Adjacent 58:29�0:49 64:82�0:29 55:48�0:62 42:33�0:17 40:74�0:13 28:68�0:16

DIGL (PPR) 58:26�0:50 62:03�0:43 49:53�0:27 42:02�0:13 34:38�0:11 30:79�0:10

DIGL + Undir. 59:54�0:64 63:54�0:38 52:23�0:54 42:68�0:12 33:36�0:21 29:71�0:11

SDRF 54:60�0:39 64:46�0:38 55:51�0:27 43:75�0:31 40:97�0:14 29:70�0:13

SDRF + Undir. 57:54�0:34 70:35�0:60 61:55�0:86 44:46�0:17 41:47�0:21 29:85�0:07

GESN 69:75�1:11 73:96�1:45 77:76�1:68 50:19�0:65 42:70�0:29 35:07�0:24

Fig. 6. Accuracy/computational time trade-off of GESN and fully-trained models on
two large-scale node classification tasks.
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the number of units H in the range 24;212
h i

; and the readout reg-

ularization for the ridge regression.
The results are reported in Table 4. For details on the fully-

trained models used in conjunction with rewiring methods and
their hyper-parameters, we refer to [17], where experimental
results are taken from. We observe that GESNs beat the other mod-
els by a significant margin on all the six tasks. Indeed, DIGL and
SDRF offer improvements over the baseline GCN of a few accuracy
points on average, usually requiring also that the graph to be made
undirected. In contrast, GESN improves by up to 16% over the best
rewiring methods, and by 4-6 points on average. Notice also that
rewiring algorithms, in particular SDRF, can be extremely costly
and need careful tuning in model selection, in contrast to the effi-
ciency of the reservoir computing approach, which ditches both
the preprocessing of input graphs and the training of the node
embedding function. Indeed, just the preprocessing step of SDRF
can require computations ranging from the order of minutes to
hours, while a complete model can be obtained with GESN in a
few seconds’ time on the same GPU.

4.4. Efficiency

Finally, we evaluate the efficiency of GESN. Our model is consti-
tuted by an untrained module that computes node embeddings
recursively via K message-passing operations, and a trained linear
readout module. As for any message-passing model, the cost of a
graph convolution is O jEjð Þ vector sums. Since input projection
can be computed just once before iterating convolutions, the over-
all computational complexity of Eq. (5) is

O HXjVj þ K HjVj þ jEjH þ H2jVj
� �� �

, which is similar to other

convolutional-based models (where K is replaced by the number

of layers L). The cost O KH2jVj
� �

due to state projection can be fur-

ther reduced to linear with respect to embedding dimension H by
introducing sparsity in the recurrent matrix connectivity, as is
common practice in reservoir computing [20]. In GESN, only the
linear readout’s C H þ 1ð Þ parameters require training, against the

additional O H2L
� �

parameters of models that need to be trained

end-to-end through many gradient descent epochs. Training the
readout via ridge regression can be done efficiently even for large

data in a single pass [45], requiring O H2 þ CH þ C2
� �

jVj
� �

to com-

pute a sufficient statistics matrix and at most O H3
� �

to solve C lin-

ear systems with a direct method (iterative solvers can further
lower the computational cost).

The efficiency/accuracy trade-off for two large-scale tasks is
shown in Fig. 6. For GESN and fully-trained models we measured
the time required to perform a training and inference experiment
with the largest model configuration (for hyper-parameters of
fully-trainedmodels refer to [16]), averaged over 5 trials on an Nvi-
dia A100 GPU. For twitch-gamers, we notice that GESN is from
8

twice to ten times faster with respect to fully-trained models,
while offering a gain in accuracy of at least þ2%. GESN does not
achieve top accuracy on Penn94, but still offers the same efficiency
gain with respect to fully-trained models that have a similar accu-
racy. In this task, in particular, the fastest fully-trained models
(such as C&S and MLP) have to significantly sacrifice accuracy,
while LINK, as we previously noted, is not an adaptive model, like
the top-accuracy LINKX. We observe that generally the fastest
fully-trained models are those that keep the number of trainable
weights at minimum, such as C&S and SGC, or that avoid perform-
ing message-passing, such as LINK and MLP. Apart from GAT and
GAT + JK that are particularly demanding due to the attention
mechanism, the relative time ranking of fully-trained models var-
ies according to how different number of edges and input feature
dimension interacts with the respective model architectures.
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Notice that in Fig. 6 we adopted K ¼ 100 iterations for GESN. As it
will be shown in the next section, this number can be greatly tai-
lored down for each task according to the shortest-path distribu-
tion of the graph, thus significantly reducing the computation
time. Notwithstanding the much larger embedding dimension
required compared to fully-trained models, we can overall con-
clude that, by avoiding to perform numerous gradient descent
epochs for learning node embeddings, GESN can offer an improved
efficiency/accuracy trade-off with respect to most fully-trained
models.
5. Analysis

In this section we analyse more in detail different aspects of
GESN, with the aim to better understand the motives behind its
efficacy.
5.1. Reservoir radius

In Fig. 7, we show the impact of reservoir radius q and input
scaling factor on average test accuracy for the small to medium
scale tasks. Chameleon and Squirrel (two tasks with low homo-
phily) require an extremely large reservoir radius, while essentially
ignoring the input features due to the extremely small input scal-
ing factor (indeed, removing input features altogether and replac-
ing them with a constant value does not prejudice accuracy). This
Fig. 7. Impact of input scaling and reservoir radius on tes

9

indicates that having a non-contractive reservoir with a large Lip-

schitz constant (kcWk P q cW� �
� 1) is beneficial for the extraction

of relevant topological features from the graph. The other four low
homophily tasks (Actor, Cornell, Texas, Wisconsin) seem to exploit
more the information of node input labels instead of graph connec-
tivity, by requiring reservoir radii within the stability threshold.
Indeed, as noted in Section 3, a contractive reservoir initialization
produces an exponentially vanishing sensitivity to more distant
node inputs. Finally, the three high homophily tasks (Cora, Cite-
seer, Pubmed) achieve the best accuracy with a combination of
moderately high spectral radius and input scaling relatively close
to 1. Overall, what we have observed shows that GESN can be flex-
ible enough to accommodate the two opposite task requirements
thanks to the explicit tuning of both input scaling and reservoir
radius in the model selection phase.

5.2. Iterations

We now analyse the role played by the number of iterations K of
the GESN recursive embedding function (5), that is the number of
message-passing steps. For a stable reservoir initialization, the
convergence to a fixed point is ensured by the contractivity of

the state transition function, in turn guaranteed by kcWk < 1. In
this case, the iterations can be simply allowed to go on until a con-
vergence threshold is reached. However, the experiments and anal-
ysis in this paper have demonstrated that a non-contractive
t accuracy (other parameters set by model selection).



Fig. 8. The curve of test accuracy in function of GESN iterations K � 1 compared against the empirical cumulative distribution (ECD) of shortest paths between reachable
nodes in the task graph (4096 reservoir units, other parameters chosen by model selection).

Fig. 9. Node embeddings for the Cora graph at different iterations k (q ¼ 6=a;2048 units). Colours in the t-SNE plots represent different node classes, qualitatively showing
how well separable are the node representations. (Best viewed in colour.).
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reservoir is crucial for encoding the structural relationships of a
node, thus requiring the choice of a suitable value for K.

First of all, let us consider a pair of nodes v ;u 2 V with their
distance, measured as the shortest path length between the two,
as dv ;u < 1. Since GESN is performing local aggregations on 1-
hop neighbourhoods, for a ‘message’ from node v to reach node u
are required K > dv ;u iterations. Therefore, a K larger than the long-
est shortest path between all nodes in the graph would allow GESN
to process all graph’s sub-structures, exploiting them in the node
embedding to address the task at hand.

In Fig. 8, we compare the test accuracy for different number of
GESN iterations with the cumulative empirical distribution of the
shortest paths between connected nodes for three different graphs.
10
Shortest paths can be computed in O jV j3
� �

by the Floyd–Warshall

algoritm [46] or by specialized versions of the Djikstra’s algorithm
[47]. In all three cases, we observe that test accuracy reaches an
asymptotic value even before a number of iterations corresponding
to the 95th percentile of the shortest path distribution. In particu-
lar, for Cora this asymptotic accuracy is reached already for a smal-
ler number of iterations, around K ¼ 4: since this is an homophilic
task, information from the closes nodes is already sufficient for
providing effective embeddings. Indeed, the number of GESN iter-
ations is comparable to the number of layers employed in fully-
trained convolutional models such as GCN [11]. In understanding
why the accuracy presents an asymptotic behaviour, we can look



Fig. 10. The curves of test accuracy as the number of message-passing layers or iterations increase (except for GESN, values are taken from [13]).
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at the sensitivity Eq. (6): the contributions of paths of length ‘ < K
to the embeddings of node v from a node u at a distance dv ;u < K
does not diminish as the number of iterations increase. The same
can be intuitively observed in the unrolled representation of GESN
in Fig. 2. Thus, our analysis offers a simple criterion for selecting K
as a parameter: either precisely tailoring it to the specific graph by
computing the largest shortest path length, or by setting a value
large enough as to capture the whole receptive field of each node,
as done in our experiments.

5.3. Over-smoothing

The decline of accuracy as the number of layers increase was
the first empirical observation of the over-smoothing problem in
deep graph convolutional models [11]. In GESNs, the iterations of
the recursive transition function can be interpreted as equivalent
to layers in deep message-passing graph networks where weights
are shared among layers, in analogy with the unrolling in RNNs for
sequences (Fig. 2). As we have just observed in the analysis con-
cerning the number of iterations, this problem seems not to affect
GESN. In Fig. 10, we observe the curve of test accuracy as the num-
ber of layers increases in different fully-trained deep convolutional
modes and as the number of equivalent iterations increases in
GESN. For convolutional models able to be trained up to 64 layers,
we notice that architectural variations, also employed to ease gra-
dient propagation as in GCNII, can help overcome the phenomenon
on the homophilic graph Cora, while an accuracy decline seems
nevertheless inevitable on heterophilic graph, in particular on Cha-
meleon. Noticeably, in the latter GESN presents an inverse trend
with respect to fully-trained models, showing an increase of test
accuracy as a the number of iterations increases.

As a further insight, in Fig. 9 we present the t-SNE plots of node
embeddings of the Cora graph computed at different iterations of
(5) with reservoir radius set at q ¼ 6=a. We observe that instead
of the collapse of node representations that has been shown in
[11] and subsequent works on the over-smoothing issue, node
embeddings become more and more separable as the number of
iterations increases. This observation, in conjunction with the
results of Section 4, in particular concerning the comparison
against rewiring methods, suggests that the contractivity of the
message-passing function, i.e. whether its Lipschitz constant is
smaller or larger than 1, is the critical factor in addressing the
degradation of accuracy in deep graph neural networks. Indeed,
tuning the layer contractivity was implicitly done by MADGap
[48] via a regularization term that favours larger pairwise dis-
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tances of node representations as a mean to address the over-
smoothing problem.

6. Conclusion

In this paper, we addressed the challenges presented by node
classification on heterophilic graphs with GESN, a recursive model
based on the reservoir computing paradigm. Albeit GESN computes
the node embeddings without training its weights, our experi-
ments on small- to large-scale graphs have shown that our model
can attain accuracy better or in line with fully-trained deep graph
message-passing models, while offering a more advantageous
trade-off with computational cost.

Our analysis has shown that GESN does not seem to suffer from
the over-smoothing and over-squashing issues encountered by
other models, as the increase of message-passing steps do not
cause a decline in accuracy and no rewiring of the input graph is
required to remove message-passing ‘bottlenecks’. Instead, our
model is able to effectively encode the structural properties of a
node, with a number of message-passing iterations dependent on
the shortest path distribution in the graph. In doing so, GESN exhi-
bits an opposite trend with respect to fully-trained deep graph
convolutional models, benefiting instead of suffering from an
increase in message-passing steps. A crucial factor is having a
non-contractive message-passing function, which our model can
explicitly obtain by selecting a sufficiently large reservoir spectral
radius. This is in contrast to previous literature, where convergence
to a fixed point of the GESN dynamical system was required to pro-
duce effective global graph embeddings. Our empirical analysis
shows that this choice is beneficial for preventing the exponential
vanishing of the sensitivity to long-range nodes in the node
embeddings.

Future work will involve investigating how the change in Lips-
chitz constant affects the organization of the node embedding
space, and assessing the merit of transferring those results in
fully-trained graph convolution models via a regularization term
or via constraints on layers’ weights. Furthermore, having an effec-
tive and untrained baseline model as GESN offers new opportuni-
ties to further the investigation on the issues that plague fully-
trained deep graph convolutive models.
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