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Introduction. One of the main objectives of reservoir characterization is to exploit the
acquired seismic and well log data to iner the distribution o elastic parameters and litho-fuid
facies around the investigated area. From the mathematical point of view this process is an ill-
conditioned inverse problem in which many models can t the observed data equally well. For
this reason, one goal o reservoir characterization studies is the quantication o the uncertainties
affecting the recovered solution, which are expressed by the so-called posterior probability
density function (pdf; Tarantola 2005). One challenge of this inversion process concerns the
simultaneous estimation o discrete (i.e. litho-fuid acies) and continuous (elastic properties)
model parameters from the observed data. Another challenge is related to the complexity of the
property distribution and correlation. For example, the distribution of elastic properties is often
multimodal due to the presence omultiple litho-fuid acies.An analytical and computationally
fast derivation of the posterior model is only possible in cases of linear forward operators,
Gaussian, Gaussian-mixture, or generalized Gaussian distributed model parameters and
Gaussian errors in the seismic data. However, the validity of the Gaussian or Gaussian-mixture
assumption is often case dependent because they could not be adequate to reliably capture the
complex relations among elastic attributes and litho-fuid acies. At the same time, the linear
orward model might not be suciently accurate to describe the relation between seismic data
and elastic parameters in cases o strong elastic contrasts at the refecting interace and ar
source-receiver offsets. For this reason, it is often advisable to numerically evaluate the posterior
model through a Markov Chain Monte Carlo (MCMC) algorithm. From the one hand, MCMC
methods have been successfully applied to solve many geophysical problems (Sambridge
and Mosegaard, 2002) as they can theoretically assess the posterior uncertainties in cases of
complex (i.e, non-parametric) prior distributions and non-linear forward modellings. From the
other hand, these methods convert the inversion problem into a sampling problem and for this
reason they require a much larger computational effort with respect to the analytical approach.
Moreover, the use of non-parametric priors often complicates the inclusion of geostatistical
a-priori information (e.g. a semivariogram model) into the inversion procedure and for this
reason the use of non-parametric models is not so common in geophysical inversions. Finally,
classical MCMCmethods, such as the Metropolis-Hastings algorithm, are known to mix slowly
between the modes if the target distribution is multimodal. To partially overcome this issue,
multiple MCMC chains are usually employed so that the ability to exhaustively explore the
high probability regions of the model space is enhanced.
We present an amplitude versus angle inversion algorithm for the joint estimation of elastic

properties and litho-fuid acies rom pre-stack seismic data in case o non-parametric mixture
prior distributions and non-linear forward modellings. The algorithm inverts the pre-stack
seismic responses along a given time interval using a 1-dimensional convolutional forward
modelling based on the Zoeppritz equations. The distribution of the elastic properties at each
time-sample position is assumed to be multimodal with as many modes as the number of
litho-fuid acies considered. In this context, an analytical expression o the posterior model
is no more available. For this reason, we adopt a MCMC algorithm to numerically evaluate
the posterior uncertainties. With the aim of speeding up the convergence of the probabilistic
sampling, we adopt a specic recipe that includes multiple chains, a parallel tempering
strategy, a delayed rejection updating scheme and hybridizes the standard Metropolis-Hasting
algorithm with the more advanced Differential Evolution Markov Chain method. For the lack
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o available eld seismic data, we validate the implemented algorithm by inverting synthetic
seismic data derived on the basis of actual well log data. The approach is also benchmarked
against an analytical inversion approach (see de Figueiredo et al. 2018) that assume Gaussian-
mixture distributed elastic parameters. The nal predictions and the convergence analysis o
the implemented method prove that our approach retrieve reliable estimations and accurate
uncertainty quantications with a reasonable computational eort.
The implemented MCMC algorithm. Let π and e be the facies and the elastic properties.

In our case of a mixed discrete-continuous inverse problem, the posterior pdf can be written as:

(1)

where m = [e, π]. Before the MCMC inversion, we exploit the available borehole data and/or
the available geological inormation about the investigated area to dene the p(π) and p(e|π)
distributions. In our implementation p(e|π) is a non-parametric mixture distribution that is
directly derived from the available data (e.g. well log data) by means of the kernel density
estimation algorithm. Then, we apply a normal score transformation to convert each non-
parametric component of the prior to a Gaussian model, thus deriving the p(z|π) distribution
where z represents the normal-score transformed elastic properties. After this transformation
the conditional p(z|π) is a Gaussian mixture model from which we extract the mean vector and
the covariance matrix of each component and the variogram model expressing the expected
lateral or vertical variability of the elastic parameters. The transformation to a Gaussian mixture
model allows for an easy inclusion of geostatistical constraints into the MCMC sampling in the
form of a variogram model.
Being m the current model and m΄ the proposed (perturbed) model, the probability for the

MCMC chain to move from m to m΄ can be computed from the Metropolis-Hasting rule:

(2)

where q() is the proposal distribution that denes the new model m΄ as a random deviate from
a probability distribution q(m΄|m) conditioned only on the current model m. Note that the
proposal ratio term in equation (2) vanishes if symmetric proposals (for example a Gaussian
proposal) are employed. If m΄ is accepted m = m΄ and another model is generated as a random
perturbation of m. The ensemble of accepted models after the burn-in period is used to
numerically compute the posterior pdf.
To derive a reliable posterior model, we adopt multiple chains that start from different initial

points dened on the basis o the a-priori inormation. To increase the computational eciency
of the algorithm we employ a parallel tempering strategy, in which multiple and interactive
chains are simultaneously run at different temperature levels T = [T

1
, T

2
, ..., T

max
]. According

to stochastic criteria, swaps of models are allowed between chains at different temperatures,
and in this context the high temperature chains ensure that low-temperature chains access
all the high probability regions while maintaining an ecient exploitation capability. In the
case of AVA inversion, we expect the posterior pdf having different spreads along the Vp, Vs
and density directions due to the different resolvability of these parameters. For this reason,
we increase the eciency o the implemented MCMC sampling by using a delayed rejection
scheme: This strategy automatically adapts the characteristics of the proposal distribution to
the spread of the posterior pdf associated to different model parameters. Finally, we promote
the mixing of the chains by including some principles coming from the Differential Evolution
Markov Chain (DEMC) algorithm into our MCMC recipe. In brief our algorithm uses iterative
perturbation of the facies, and of the elastic properties of the current model to sample the
posterior pdf. A normal score transformation is used to easily include geostatistical constraint
on the elastic properties, whereas a vertical transition matrix is used to constraints the facies
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model. A kriging interpolation is employed to preserve the a-priori vertical correlation in all
the sampled models.
Results
The prior model and the vertical transition matrix are derived from actual well-log data

pertaining to 5 wells investigating a gas-saturated clastic reservoir located in a shale-sand
sequence. One of the two remaining wells is used as a blind test in the following inversion
examples. Fig. 1 shows the a-priori non-parametric (Fig. 1a) and the Gaussian-mixture (Fig.
1b) marginal distributions for each elastic property derived for the reservoir interval. The non-
parametric prior model is used by the MCMC algorithm, while the Gaussian-mixture is used
by the analytical inversion approach. We note some important differences between the non-
parametric and Gaussian-mixture distributions. In particular, the distributions are very similar
or shale, but signicatively dierent or brine sand and gas sand where the non-parametric
distribution shows skewness or even multimodalities. Obviously, the Gaussian-mixture model
does not capture these characteristics and or this reason it constitutes an oversimplied statistical
model in this context. For this reason, we expect that the MCMC inversion outperforms the
analytical approach. These considerations are conrmed by the normal probability plots o Fig.
1c where we observe signicative deviations rom the Gaussian model or Vp and Vs in the

Fig. 1 - a) The a-priori non-parametric model derived through the kernel density estimation algorithm. b) The
Gaussian-mixture prior model. c) Normal probability plot derived from the actual well log data. b) Normal probability
plot derived on the normal score transformed actual well log data. In c) and d) the dotted lines represent the theoretical
Gaussian distribution, whereas the circles represent the actual well log data.
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brine sand and gas sand. These deviations disappear after the normal score transformation (Fig.
1d). In the synthetic seismic inversion example, we simulate a signal-to-noise ratio of 2 in the
observed data, whereas an angle range o [0, 30] degrees and a 55-Hz Ricker wavelet are used to
compute the seismic data. In the MCMC inversion we use 40 different chains running for 10000
iterations each and with a burn-in period of 5000: 20 chains run at T=1, while the remainder at
logarithmically spaced temperature values. We consecutively perturb the elastic properties or
the acies conguration at ten dierent time positions beore the likelihood evaluation.

Fig. 2 - Estimated elastic properties provided by the analytical (a) and the MCMC (b) inversion for the synthetic
inversion test. The black lines represent the true property values, the red lines are the estimated mean models, whereas
the colormap codes the estimated posterior pdf. The rightmost plots show a comparison of the observed (black) and
the predicted (red) seismic data computed on the estimated a-posteriori mean models.

The analytical and MCMC approach yield similar predicted elastic proles (see Figs. 2a
and 2b), although the MCMC inversion often provides slightly superior prediction intervals
as demonstrated by the coverage probability values (not shown here for the lack of space).
The differences between the outcomes of the two approaches can be clearly appreciated by
comparing the acies classication results (Fig. 3). Indeed, just a visual inspection o the
estimated facies models and the associated posterior pdfs conrms that the MCMC method
(Fig. 3b) outperforms the analytical inversion (Fig. 3a) as it estimates a maximum-a-posteriori
(MAP) acies solution with a closer match with the actual acies prole especially below 935
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ms, where the analytical approach erroneously interprets a nely layered shale-brine sand
sequence as a gas saturated layer enclosed in a thick brine sand sequence.
Conclusions. We presented a Markov Chain Monte Carlo (MCMC) inversion algorithm

for elastic amplitude versus angle (AVA) inversion. The main advantage of the implemented
MCMC recipe is that it is suitable for mixed discrete-continuous inverse problems, non-linear
forward modellings and multimodal, non-parametric prior distributions. In other terms, our
approach does not require any assumptions (i.e. Gaussianity) about the distribution of the
continuous properties in a given facies. The method includes geostatistical constraints for the
elastic parameters, a 1D Markov prior models for the facies distribution, and use the exact
non-linear Zoeppritz equations as the forward modelling. Our implemented MCMC recipe
is especially aimed at decreasing the computational effort and it includes multiple chains, a
parallel tempering strategy, a delayed rejection updating scheme and hybridize the standard
Metropolis-Hastings algorithm with the Differential Evolution Markov Chain method. Our
inversion results and the convergence analysis (this analysis is not shown here for the lack of
space) demonstrated that the implemented algorithm eciently samples rom a multimodal
non-parametric mixture distribution with a reasonable computational effort. Our synthetic
inversion experiments proved the importance of correctly modelling the multimodal behavior of

Fig. 3 - Facies classication results provided by the analytical (a) and the MCMC (b) inversion. From let to right we
represent: True acies prole; MAP acies solution; Estimated posterior pdf of facies.
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the elastic properties to retrieve accurate predictions. Indeed, although the analytical inversion
algorithm achieved satisfactory results, the non-parametric prior considered by the MCMC
approaches guaranteed superior solutions and more accurate uncertainty quantications. The
MCMC inversion o eld seismic data is the urther step o this work.
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Introduzione. Ilmetodo della resistività in corrente continua è unmetodo geoelettrico attivo
che si basa sulla misura della dierenza di potenziale elettrico in diversi punti della supercie
del terreno, in seguito all’immissione di corrente. La ricostruzione della distribuzione delle
resistività reali del sottosuolo avviene mediante il processo di inversione dei dati acquisiti, che
prevede l’assunzione iniziale di unmodello di resistività, anche corredato da inormazioni esterne
e da vincoli dettati dalla geologia locale. Il problema inverso relativo al metodo geoelettrico
è di tipo non-lineare e questa è la principale caratteristica che lo rende dierente dai campi di
potenziale. Pérez-Flores et al. (2001) hanno sviluppato una semplice approssimazione lineare
che svincola la soluzione dall’assumere valori di resistività di rierimento. La linearizzazione
del problema ci permette di analizzare le misure del campo elettrico nello stesso modo dei campi
di potenziale. Abbiamo così sviluppato un nuovo approccio metodologico per l’analisi dei dati
geoelettrici, mediante l’applicazione del metodo di interpretazione CWT (Continous Wavelet
Transform) alle dierenze di potenziale elettrico misurate. Tale metodo è già utilizzato per
l’analisi dei campi di potenziale (gravimetrico e magnetico) ed è in grado di denire proondità
ed estensione areale dei corpi sepolti. Esso ha il vantaggio di prescindere dalla necessità del
confronto della distribuzione del campo elettrico osservata con quella calcolata su un modello
di sottosuolo ipotizzato.
Il dispositivo elettrodico scelto per la misura della dierenza di potenziale (ddp) è il dipolo-

dipolo, che risulta il più utilizzato in letteratura ed è particolarmente sensibile alle variazioni
laterali di resistività. La lunghezza dei due dipoli (di corrente e di potenziale) è la stessa ed è
data da a. La spaziatura invece tra i dipoli è pari ad n*a, aumenta secondo multipli interi di
a. Il massimo valore assunto da n è 6: oltre tale soglia è dicile ottenere misure accurate del
potenziale (Loke, 2004).
Metodo. L’analisi CWT applicata ad un segnale 1D, f(x) ∈ L2(R) attraverso una famiglia di

unzioni a media nulla (wavelets) viene denita da Grossmann e Morlet (1984):

dove ψ̃ (x) = ψ̃ (x); a ∈ R+ è la scala (o dilatazione) dell’ondina ψ e b ∈ R è il parametro


