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Abstract

Human errors are the primary cause of powered two-wheeler crashes worldwide

due to the demanding control required and the often ineffective rider-training

programs. Literature on rider behaviour is limited, partly due to the lack of

standard investigation methodologies.

This work investigated the differences in riding style and capability of a di-

verse set of riders. It explored the impact of familiarisation and riding instruc-

tion through objective metrics. Correlation with experience was a particular

focus.

Seven riders of various experience levels performed trials on an instrumented

motorcycle, following three riding instructions: ‘Free Riding’, ‘Handlebar Rid-

ing’, and ‘Body Riding’. Objective metrics assessed rider familiarisation, ca-

pability and willingness to excite motorcycle dynamics, riding style, and input

preference.

Results indicated that riders asymptotically converged to their motorcycle

dynamics intensity level after a specific distance; both intensity and distance

were positively correlated with experience. Experienced riders achieved higher
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longitudinal acceleration and utilised combined dynamics to a higher degree.

The negative longitudinal jerk during braking varied greatly among riders and

correlated with experience. A clustering approach identified two prominent trial

groups concerning the motorcycle response intensity. Higher diversity emerged

in the inputs, leading to five clusters with distinct riding style meanings. In-

structions influenced behaviour, particularly regarding input usage.

The unsupervised approach and metrics proposed should make rider be-

haviour research more straightforward and objective. It could be applied to

naturalistic riding sessions for more conclusive evidence of inter-driver differ-

ences. The diversity that emerged concerning the command inputs used war-

rants a revision of training practices to promote riding safety.

Keywords: Powered two-wheeler rider behaviour, Riding profiles, Motorcycle

dynamics, G-g diagram, Data mining, Research methods

1. Introduction1

Powered Two-Wheelers (PTWs), encompassing motorcycles, mopeds, and2

scooters, have become increasingly numerous worldwide (Terranova et al., 2022).3

While assistance systems and technological advancements have improved road4

safety, PTWs still carry a higher risk than other modes of transportation, with5

riders being more susceptible to severe injuries and fatalities in accidents (Beck6

et al., 2007; Brown et al., 2021).7

Global in-depth studies consistently attribute the primary cause of PTW8

crashes to the human factor (ACEM, 2008; Hurt et al., 1981). Various stud-9

ies have found some rider training programs ineffective, emphasising the need10

for improved training design (Ivers et al., 2016; Savolainen and Mannering,11

2007). To further reduce injury and fatality rates, it is crucial to compre-12

hend the human-vehicle interaction. This understanding, which is useful for13

the development of any active assistance system, becomes even more crucial for14

the development of systems acting on the steering, which could, in the future,15

reduce injuries in a significant portion of accidents involving such vehicles (Bar-16
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tolozzi et al., 2023b). A data-driven approach based on monitoring, recording,17

and analysing rider behaviour facilitates its understanding (Vlahogianni et al.,18

2011).19

Literature on riding behaviour is limited (Diop et al., 2020). Most studies20

focus on the inter-rider difference regarding vehicle dynamics, independent of21

the input causing it. Hisaoka et al. studied the driver-vehicle system behaviour22

through the g-g diagram, a scatter plot combining lateral and longitudinal ac-23

celeration (Hisaoka et al., 1999). In particular, they generalised the friction24

ellipse through the ‘capability envelope’ concept by recognising that the human25

constitutes an additional limiting factor. Not only is the maximum measured26

acceleration achieved lower than the physical limit, but the curve is not neces-27

sarily an ellipse. A subjective trial-and-error process determined the exponent28

characterising the capability envelope shape. The concept, first defined con-29

cerning cars, can also be applied to PTWs. Biral et al. followed a similar30

approach to determine the exponent; then, they determined the maximum lon-31

gitudinal and lateral acceleration values as those that let the envelope contain32

99% of the data points: however, multiple combinations of these two parame-33

ters satisfy the threshold (Biral et al., 2005). Will et al. analysed professional34

and non-professional riders’ behaviour in a naturalistic environment using the35

g-g diagram (Will et al., 2020). They highlighted the qualitative difference be-36

tween the diagram’s three typical shapes and their correlation with experience1.37

Some statistical features of the trials belonging to each group were computed38

and discussed, yet, the clustering process was manual and subjective. Even39

though these studies highlighted the g-g diagram’s usefulness in investigating40

each rider’s capability2, they did not propose a method to objectively and au-41

tomatically determine the capability envelope.42

1In the present article, ‘experience’ refers to the comprehensive assessment of an individ-

ual’s knowledge, skills, proficiency, and practical understanding acquired through an extended

period of active motorcycle riding, training, and exposure to various riding conditions.
2‘Capability’ refers to the rider’s tendency to demand and sustain high degrees of vehicle

dynamics, i.e. in terms of acceleration and its rate of change.
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Some studies compared the behaviour of different riders using additional43

signals. Magiera et al. assessed riding skill through the standard deviation44

of high-pass filtered roll rate signal (Magiera et al., 2016). The process was45

unsupervised; however, the two cut-off frequencies3 were chosen heuristically,46

and no indication was provided on generalising their selection. Diop et al.47

clustered the trials of different riders using the statistics of the roll angle and48

its derivatives; the unsupervised approach proposed is promising and should be49

applied to a broader range of signals (Diop et al., 2023).50

Studies investigating the influence of a specific riding instruction are rare.51

In another article, Diop et al. studied the behaviour of eight riders subject to52

different riding instructions (Diop et al., 2020). The study highlighted that dif-53

ferentiating between instructions is challenging and that various riding practices54

are possible. Limitations of the study are that the riders were all gendarmes55

and that the clustering considered only the signals describing the motorcycle56

response and not the specific inputs applied by the rider, which should be more57

indicative of the riding preference. No study automatically categorised riders58

under different instructions based on the rider inputs.59

A better understanding of motorcyclists’ behaviour, identifying the most60

common lack of skills and highlighting the main areas of improvement for a61

given subject would improve traffic safety by supporting preventive actions, like62

enhancing or re-designing training programs (Huertas-Leyva et al., 2021). To63

overcome these gaps, this article investigates the differences in riding style4 and64

capability of a diverse set of riders, considering any potential riding instructions65

provided and the effect of the familiarisation5 process. These differences are to66

3One frequency for stationary riding and another for dynamical manoeuvres.
4‘Riding Style’ is defined as the unique way a rider performs a manoeuvre type, i.e. entering

a corner. It encompasses body positioning and movement, acting on the steering, how the

throttle and brake are used, and their general approach to riding. It is an aspect of the broader

concept of ‘rider behaviour’.
5‘Familiarisation’ is defined as the process of becoming acquainted with a vehicle, its con-

trols, and the surrounding driving environment to operate it safely and effectively.
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be sought not only in the PTW response but also in the actions that cause it,67

many of which (such as the forces applied to the footpegs) have little impact68

on the dynamics but can be used for psychological and comfort reasons (Weir,69

1972). Therefore, the study also has a methodological purpose, whereby meth-70

ods must be automated and objective to be easily reproduced. All evidence71

must be compared with the experience level and possible correlations discussed.72

The paper structure follows: Section 2 describes the experimental proto-73

col and the participants, the instrumented motorcycle and reference frame, the74

metrics used to describe the familiarisation process and rider capability, and75

the clustering process. Section 3 presents the investigation results, which are76

further discussed in Section 4 also concerning their broader meaning. Lastly,77

Section 5 summarises the conclusions and implications and discusses the poten-78

tial applications and areas of interest for this study.79
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2. Materials and Methods80

2.1. Experimental Test Description81

The riding data was obtained through an instrumented sports touring mo-82

torcycle (Honda CBF 1000) during an experimental test campaign on a section83

of the La Ferté-Gaucher track; a single trial of that dataset was used in another84

study having a completely different purpose (Bartolozzi et al., 2023a). Seven85

riders were involved, having vastly different experience levels. The declared li-86

cence age and distance travelled in the previous year, used as a proxy for their87

experience level, are given in Table 1. Each rider was also asked to state their88

preference concerning riding using mainly the handlebar or mainly the body;89

the answers are found in the table. One rider (S2) was still in the process of90

getting his riding licence at the time of the experiment. Another one (S7) was91

a professional trainer of riding trainers. Six riders were male, and one (S1) was92

female.93

Each subject performed three runs for each of three different riding instruc-94

tions: Free-Riding (FR), Body-Riding (BR) and Handlebar-Riding (HR), for a95

total of 7 × 3 × 3 = 63 trials. The free-riding instruction preceded the other96

two, whose order differed among riders (shown in the rightmost column of Ta-97

ble 1). It allowed the rider to familiarise themself with the vehicle and the98

track and investigate their natural riding approach, as no specific instruction99

was provided. Concerning the BR trials, the rider was instructed to ride using100

their body movements (foot, buttocks, knees) primarily; the rider was, instead,101

instructed to use the handlebar to negotiate bends during the HR runs. Each102

trial was referred to using the following naming convention: Si{FR/BR/HR}j ,103

indicating the j-th repetition of the FR/BR/HR trial for the i-th rider. The104

test aimed to compare the riding style of riders with different experience levels105

and stated preferences, and the impact of the instruction given. Figure 1a illus-106

trates the trajectory of one generic trial. No additional instruction was given107

concerning the second or third repetition of each instruction type, so they were108

nominally identical to the first one.109
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Table 1: Subjects’ declarative data acquired before the test, including the Licence Age LA

and the distance travelled on a motorcycle during the previous year d. Handltot is the average

of the scores given by the rider to riding ‘using the handlebar’ and ‘counter-steering’. Bodytot

is the average of the scores given by the rider to riding ‘moving the body’, ‘applying pressure

on the tank’, and ‘pushing the footpegs’. The ratio between the two is also shown. A 0− 10

scale was used, with higher numbers indicating higher preference. The order of the instruction

received is shown in the rightmost column.

Experience Preference Score

Subj LA (years) d (km) Handltot (-) Bodytot (-) Ratio (-) Order

S1 10 0 8.0 5.9 1.36 FR,HR,BR

S2 0 0 8.0 5.8 1.38 FR,HR,BR

S3 9 25000 8.8 7.0 1.26 FR,HR,BR

S4 5 2000 8.2 8.3 0.99 FR,BR,HR

S5 2 8000 5.2 8.4 0.62 FR,HR,BR

S6 1 6000 6.5 6.7 0.97 FR,BR,HR

S7 19 5000 9.3 3.3 2.82 FR,BR,HR

(a) The trajectory of one trial. (b) The coordinate system and the quantities used.

Figure 1: Information on the experiment conducted.
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Figure 2: The instrumented motorcycle. The annotations show each sensor’s placement.

2.2. Signals and Reference Frame110

The instrumented motorcycle and the sensors used are shown in Figure 2;111

each sensor type is denoted by a number. Several sensors acquired the dynamic112

state of the motorcycle. Concerning the signals used in the analysis:113

• The longitudinal acceleration ax and lateral acceleration ay were provided114

by an MTi Xsens IMU6 (1), which also measured the motorcycle roll angle115

ϕ.116

• The Hall-effect sensor (2) on the rear wheel provided the travelling speed117

reading v.118

• A GNSS-RTK (Septentrio Altus APS3G7) (3) acquired the vehicle coor-119

dinates. These were used to compute the travelled distance s.120

Additional sensors acquired information about the rider-motorcycle interac-121

tion. In particular:122

6https://www.xsens.com/products/mti-100-series.
7https://www.septentrio.com/en/products/gnss-receivers/rover-base-receivers/

smart-antennas/aps3g.
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• Four Strain gauges (4) are placed on the right and left half-handlebars to123

measure the longitudinal and vertical forces acting on them. The result-124

ing torque produced by these forces was computed. As the inclination of125

the steering axis (the caster angle) was known, this torque was projected126

along the steering axis, obtaining the steering torque τsteer, and perpendic-127

ularly to it, obtaining the ‘perpendicular torque’ τ⊥. τsteer is the primary128

input for lateral motorcycle dynamics as it is responsible for the steering129

(Bartolozzi et al., 2023c; Weir and Zellner, 1978); instead, τ⊥ produces no130

steering action, but it will induce a relative angle between the two, as it131

is a torque at the interface between the rider and the motorcycle.132

• Strain gauges (4) acquired the force the rider exerted on each foot-peg;133

this was used to compute the rolling torque the rider produced through134

their feet τfeet.135

• A large pressure matrix pad (XSENSOR8 PX100) (5) acquired the pres-136

sure distribution over the saddle in the curvilinear coordinates mapped137

over it. This information was used to compute the coordinates CoPx,y of138

the Centre of Pressure.139

The sensors were non-invasive and did not appear in the rider’s field of view. The140

only clearly visible sensors were the pressure pad and the GNSS receiver. The141

subjects were told that data relative to rider behaviour would be acquired, with-142

out further details not to influence their behaviour. The signals were recorded143

through a data logger and were down-sampled to the joint 10Hz sampling fre-144

quency; each signal was timestamped during recording so that synchronisa-145

tion would not introduce errors. In the analysis, the dataset corresponding to146

each trial began when the motorcycle speed exceeded 3m s−1 at the start and147

stopped when the speed became lower than 3m s−1 at the end, to remove time148

instants relative to the motorcycle travelling very slowly that would introduce149

non-representative data.150

8https://www.xsensor.com/body-pressure-sensors.
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This work is data-driven and uses peculiar sensing equipment; data accu-151

racy was crucial, so they have been thoroughly validated by leveraging con-152

ceptual and physical models linking the measurements of the various sensors.153

A few notable examples are provided in this paragraph. Lateral acceleration,154

the product between the yaw rate and the travelling speed, and the tangent of155

the roll angle multiplied per the gravity of the Earth were very close in value,156

as expected: ay ≈ ψ̇v ≈ − tanϕ/g. The lowest correlation between the three157

was R = 0.945, which is extremely high considering that the relationship is158

approximately true only in steady-state conditions. The measured longitudinal159

acceleration was very close to the time derivative of the travelling speed sig-160

nal. In straight riding, the difference between the speed measured by the GNSS161

and that sensed by each wheel’s Hall effect sensor was negligible. The variabil-162

ity in steering torque was explained mainly by the roll angle and roll rate, as163

simplified models predicted (Bartolozzi et al., 2023b). The total vertical force164

sensed by the rider-motorcycle interfaces (handlebar, saddle and footpegs) ap-165

proximately equalled each rider’s weight on the straights and increased when166

cornering due to the additional pressure generated by the apparent centrifugal167

force; the increase followed that predicted by the theory (Figure 3b). The sum168

of the longitudinal forces applied on the two handlebars was strongly correlated169

with the longitudinal acceleration (Figure 3a, in blue). This relationship held170

concerning the vertical forces (shown in orange), too; therefore, the longitudinal171

and lateral forces were also correlated, and the ratio between the variation of172

each depended on the rider’s height, which dictated the position of their arms.173

On the straights, the steering torque, perpendicular torque, and torque at the174

footpegs were about zero on average. For all runs, the average lateral position175

of the centre of pressure was on the saddle’s centerline. The average longitudi-176

nal position depended on the rider’s stature and did not change based on the177

instruction given.178

Figure 1b shows the signs convention used. A non-tilting reference frame was179

used to express the acceleration: the forward x and leftward y axes belonged to180

the ground plane, independent of the motorcycle pitch and roll angles. There-181
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motorcycle interfaces for different intensities

of the lateral acceleration. The fit using the

theoretical relationship (in red) provides a

mass value close to the actual value for that

rider (Subject 7).

Figure 3: Examples of the general approach used to verify the correctness of the data acquired.

fore, ax and ay acceleration components described the change of the magnitude182

and direction of the velocity, respectively. As x pointed forwards, the roll angle183

ϕ was positive when the motorcycle was tilted to the right; similarly, τfeet was184

positive when it tended to make the motorcycle roll to the right. A positive185

CoPx value meant the rider’s buttocks were placed forward compared to the186

saddle centre; a positive CoPy value indicated a leftward movement over the187

saddle. The steering torque τsteer was defined around the steering axis and was188

positive when pointing upwards. The perpendicular torque τ⊥ was positive when189

it tended to roll the motorcycle to the right. For most riding conditions, the190

steering torque that the rider applies has the same sign as the roll rate. When191

the roll angle is positive (rightward corner), or the rider is leaning towards the192

right, the steering torque is positive (anti-clockwise): this phenomenon is called193

‘counter-steering’.194
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2.3. Proposed Metrics195

2.3.1. Familiarisation196

First, a quantitative description of the familiarisation process was of inter-197

est. The first three trials for each rider were relative to the FR instruction, so198

they were ideal for assessing it. In general, different riders will be confident199

in reaching different longitudinal and lateral acceleration values; moreover, the200

same rider will build confidence along the ride and should become confident in201

reaching higher acceleration values.202

The area of the g-g diagram is proposed in this article as a synthetic indica-203

tor of rider dynamics performance: a larger area indicates that the rider reached204

higher acceleration values. Concerning familiarisation, this work proposed track-205

ing the g-g diagram area growth as a function of the distance travelled since the206

beginning of the first FR trial.207

The process to compute it follows. The corresponding k-th couple (aky , a
k
x)208

is added as a point on the diagram for each new time instant. The convex209

envelope is computed as the smallest convex polygon that contains the set of210

n acceleration couples produced up to that point. The polygon will have Q ≤211

n vertices, each one having coordinates Pq = (xq, yq), q = 1, . . . , Q. Notice212

that PQ+1 = P1. Its area A is then determined through the so-called ‘triangle213

formula’ formula that transverses its vertices in order (e.g. clockwise) (Abreu de214

Souza et al., 2018):215

An =
1

2

Q(n)∑
q=1

(xqyq+1 − xq+1yq) . (1)

As the trial progresses, more points are added to the diagram, so by definition,216

the area computed through Equation (1) is non-decreasing. This area, which217

measures the extension of the ‘rider-capability envelope’, is bounded between218

zero and the friction envelope of the vehicle, which contains the set of physically219

feasible accelerations; therefore, one expects this area to asymptotically converge220

to a value A∗ lower than the theoretical limit given by the friction envelope. In221

particular, the increase should be quicker at the beginning, when the area of the222
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envelope is smaller, compared to towards the end of the trial, where increasing223

the area further requires going beyond now-higher acceleration values. This fact224

suggests that the g-g diagram area as a function of distance s evolves following225

a negative exponential function:226

A(s) = A∗
(
1− e−s/s∗

)
, (2)

where s∗ is a constant indicating the distance travelled to reach 1−e−1 ≈ 63.2%227

of the asymptotic value A∗.228

2.3.2. Rider-Capability Envelope229

After an initial familiarisation, each rider will reach longitudinal and lateral230

acceleration values based on their confidence and experience. While the area231

A of the rider-capability envelope is a synthetic indicator, riders could differen-232

tiate also based on the shape of the diagram: a given area could be produced233

by different combinations of maximum lateral and longitudinal acceleration;234

moreover, one rider could have a smaller performance envelope despite reaching235

higher maximum acceleration values by using the combined dynamics to a lower236

degree.237

In general, the rider-capability envelope can be approximated by the follow-238

ing inequality (Hisaoka et al., 1999):239 (
|ax|
axmax

)m

+

(
|ay|
aymax

)m

≤ 1, (3)

where ax,ymax = maxk |ax,y| (k is the generic data time index of the concate-240

nated trials considered) are called ‘capable longitudinal/lateral acceleration’ and241

determine the length of the two envelope axes andm > 0 is the ‘capability expo-242

nent’, which commonly assumes values between 1 (the envelope is a rhombus;243

the rider monitors the sum of the two acceleration components) and 2 (the244

envelope is an ellipse); the rider monitors the magnitude of the resulting ac-245

celeration vector, as in the case of the friction ellipse). Higher ax,ymax values246

indicate confidence in reaching higher uncombined acceleration values; a higher247

m value means the rider used the combined dynamics more frequently and to a248

higher degree.249
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The proposed process to derive the rider-capability envelope follows. For250

each rider, ax,ymax are computed; then, m is determined as the smallest value251

that makes the rider-capability envelope enclose a fraction of the time instants252

higher than a threshold (set to 0.98, a trade-off between encompassing the higher253

acceleration values and making the shape obtained robust concerning possible254

outliers9). The inequality describing the capability envelope is now determined,255

and four metrics can be derived from it: its area A, the capable longitudinal256

and lateral acceleration ax,ymax, and the capability exponent m. The area is257

equal to:258

A = 2

∫ +axmax

−axmax

ax(ay) day, ax(ay) = axmax
m

√
1−

(
|ay|
aymax

)m

. (4)

The process was then repeated using the jerk10 values, proposing what in this259

article is referred to as the J-J diagram. While the g-g diagram informs about260

the steady-state limits of the dynamics, the J-J diagram describes how quickly261

the state moves inside the g-g diagram. In the case of the jerk, it was found262

that the maximum negative longitudinal values were higher than the maximum263

positive longitudinal values. For this reason, when expressed in terms of the264

jerk, Equation (1) was split between an upper and lower bound.265

It was expected to find some correlation between rider experience and ca-266

pability; a metric expressing each was defined to assess that. The ‘Experience267

Factor’ was defined for the i-th rider by taking into account both their motorcy-268

cle Licence Age LA and the distance travelled on a motorcycle in the last year269

d:270

expFactori =
1

2

(
LAi

LAmax
+

di
dmax

)
∈ [0, 1], LAmax = max

i
LAi, dmax = max

i
di.

(5)

A factor indicating the rider’s willingness to use intense dynamics was also271

9The threshold was set through trial and error. This threshold is lower than that used

by Biral (0.99), as that study used data relative to real roads, where values relative to low

acceleration values are over-represented compared to the current article (Biral et al., 2005).
10The jerk is the time derivative of the acceleration.
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Figure 4: Scheme showing the meaning of the angle ϕk
xy , which is the angle between the

generic k-acceleration vector ak = (aky , a
k
x) and the closest semi-axis, which is the negative

portion of the vertical axis in the case shown.

defined using the following metrics. axyi is the average total acceleration, each272

point’s distance from the centre of the g-g diagram. ϕxyi is the average angular273

distance of each point from the closest semi-axis in the g-g diagram, weighted274

using the total acceleration as weight: a value of 0 would indicate that the rider275

never produced longitudinal and lateral acceleration at the same time, while a276

π/4 value would indicate that the longitudinal and lateral acceleration always277

had the same value. Lastly, Jxyi is analogous to axyi, but in terms of jerk. Refer278

to Figure 4 for a graphical representation of the akxy, ϕ
k
xy values for the generic279

k-th data-point. The three metrics are computed using the following formulae:280

281

axyi = mean
k

akxyi
≥ 0, axy =

√
(ax)

2
+ (ay)

2
, (6)

ϕxyi =

∑
k ϕ

k
xyi
akxyi∑

k a
k
xyi

∈
[
0,
π

4

]
, ϕxy =


arctan

∣∣∣ax

ay

∣∣∣, if |ax| < |ay|

arctan
∣∣∣ay

ax

∣∣∣, if |ax| > |ay|

0, otherwise

(7)

Jxyi = mean
k

Jk
xyi

≥ 0, Jxy =

√
(Jx)

2
+ (Jy)

2
. (8)
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The three indicators were then combined into a single metric, called ‘Confi-282

dence Factor’ expressing the willingness the rider had to excite the motorcycle283

dynamics to a higher degree:284

confFactori =
1

3

(
axyi − axymin

axymax − axymin

+
ϕxyi − ϕxymin

ϕxymax − ϕxymin

+
Jxyi − Jxymin

Jxymax − Jxymin

)
∈ [0, 1] ,

(9)

where ‘max’ and ’min‘ refer to all subjects’ maximum and minimum values.285

2.3.3. In-depth Corner Entry Analysis286

A data-mining approach was utilised to scrutinise the acquired signals, with287

no previous knowledge of the diversity of practices. While the analyses de-288

scribed previously were relative to multiple complete trials, the data mining289

approach was applied to single executions of a corner entry manoeuvre (shown290

in Figure 1a). The manoeuvre started in the middle of the previous straight291

to capture the braking pattern and ended slightly after the corner apex; con-292

sidering a specific manoeuvre made it easier to compare different trials and293

interpret the results. The unsupervised technique used the Hierarchical Ag-294

glomerative Clustering (HAC) algorithm (Hastie et al., 2009). This algorithm295

clusters observations with high levels of similarity in the same cluster (intra-296

cluster homogeneity); it ensures that the clusters are as different as possible297

(inter-cluster heterogeneity). The bottom-up and hierarchical clustering process298

starts from individual observations, producing more prominent groups, includ-299

ing subgroups. The dendrogram is then cut at a user-chosen height to attain the300

desired partition. Dynamic Time Warping (DTW) (Senin, 2008) was used as301

a metric to determine the distance between two observations. In contrast, the302

distance between two clusters was measured using the single-linkage criterion,303

the minimum distance among cluster data points.304

HAC was applied to identify trials showing similar behaviour and to detect305

patterns relating each cluster to different riders or instructions. Two clustering306
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processes were executed: one investigating the motorcycle dynamics and another307

investigating the rider inputs:308

• The ‘Motorcycle Dynamics’ clustering considered the speed v, longi-309

tudinal acceleration ax, and roll angle ϕ signals. Each signal’s mean and310

standard deviation were used as features; for the roll signal, the maximum311

and minimum values were also considered.312

• The ‘Rider Inputs’ clustering considered the steering torque τsteer, per-313

pendicular torque τ⊥, foot-peg torque τfeet, and saddle centre of pressure314

coordinates CoPx,y signals. The mean and standard deviation of each315

signal were used as features, except for the longitudinal position on the316

saddle for which the mean was not considered11.317

In the article, a symbol with an overline refers to its mean, while σ is the318

standard deviation.319

3. Results320

3.0.1. Familiarisation321

Figure 5a shows the evolution of the g-g diagram during the three FR trials322

of one rider (S3). The convex envelope corresponding to each sampling instant is323

shown; the colour shifts from dark blue to yellow as the rider covers the distance324

(840m for the sum of three trials). Even in the third trial, the rider covered325

parts of the diagram whose acceleration levels were not reached previously.326

The evolution of the area of the rider-capability envelope is shown for each327

subject as a function of the distance travelled as a dotted line in Figure 5b.328

Equation (2), computed with parameters A∗ and s∗ obtained through best-fit329

regression, is plotted as a solid line. The coefficient of determination was high330

for all subjects, ranging from R2 = 0.91 for S1 to R2 = 0.99 for S5. Subjects 3331

11This choice was made as the mean longitudinal position on the saddle is influenced by the

rider height, and only its standard deviation is linked to their behaviour.
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Figure 5: Familiarisation process described through the rider-capability envelope.

and 7 had a particularly high asymptotic area of the capability envelope, which332

spanned from 40.1m2 s−4 (S1) to 138.0m2 s−4 (S3). The distance constant s∗333

spanned from 151m for S1 to 386m for S3. The distance constant was positively334

correlated with the asymptotic area (R = 0.72): the riders who reached higher335

acceleration values tended to improve for longer. There was a strong positive336

correlation (R = 0.90) between the experience factor and the asymptotic area337

and a weaker one (R = 0.49) between experience and the distance constant. In338

addition to improving for longer, more expert riders improved quicker in the339

initial phase: the slope of Equation (2) at the origin, equal to A∗/s∗, had a 0.84340

correlation with the experience factor. The correlation would have been even341

higher if considering ‘time’ as the independent variable, as more expert riders342

tended to ride faster, therefore covering the same distance in less time. Subject343

5 was peculiar: he had the lowest slope at the origin, showing modest initial344

improvement; however, his capability envelope continued to expand along the345

trials, becoming the third largest at the end. Table 2 contains each subject’s346

various metrics values. In particular, the ‘Familiarisation’ section shows each347

rider’s coefficients related to the familiarisation process.348
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Table 2: Each subject’s values of the metrics describing their riding style. The metrics are divided into four groups: those relative to the familiarisation

process, to the g-g diagram, to the J-J diagram, and to experience and confidence.

S1 S2 S3 S4 S5 S6 S7 Mean SD

Familiarisation

A∗ (m2 s−4) 40.09 50.02 138.01 54.07 60.16 42.56 90.69 67.95 31.17

s∗ (m) 151.23 227.47 385.52 227.16 364.81 163.87 234.49 250.65 91.12

g-g Diagram

axmax (m s−2) 4.02 5.70 6.68 5.95 4.72 5.66 6.36 5.58 0.92

aymax (m s−2) 7.65 6.62 7.35 6.58 6.78 7.56 6.76 7.05 0.46

m (-) 1.02 0.94 1.52 1.00 1.00 0.80 1.42 1.10 0.26

A (m2 s−4) 62.77 70.79 135.61 78.4 78.39 66.19 114.19 84.6 28.70

J-J Diagram

Jxmin (m s−3) -17.39 -20.98 -41.59 -28.90 -25.12 -22.45 -29.30 -26.53 7.89

Jxmax (m s−3) 15.16 15.13 29.23 19.36 17.17 14.43 17.16 18.23 5.13

Jymax (m s−3) 14.67 12.79 15.09 12.75 11.65 17.19 17.60 14.54 2.28

m (-) 1.30 1.26 1.17 0.92 0.97 1.15 1.27 1.15 0.15

A (m2 s−6) 275.13 298.49 552.62 299.19 277.55 283.77 386.20 338.99 101.64

Experience-Confidence

expFactor (-) 0.26 0.00 0.74 0.17 0.21 0.15 0.60 0.30 0.27

axy (m s−2) 1.77 1.94 3.84 2.55 2.27 2.12 2.97 2.50 0.71

ϕxy (rad) 0.27 0.25 0.30 0.26 0.27 0.27 0.30 0.28 0.02

Jxy (m s−3) 4.01 3.75 5.46 3.90 3.71 3.93 4.93 4.24 0.68

confFactor (-) 0.21 0.04 1.00 0.18 0.17 0.17 0.72 0.36 0.36
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(c) Capability envelopes.

Figure 6: g-g diagrams and corresponding capability envelopes, relative to all trials. The area

of each dot is proportional to the corresponding total jerk value.

3.0.2. Rider-Capability Envelope349

Figures 6a and 6b compare the g-g diagrams of a rider with moderate ex-350

perience (S1) with that of an experienced rider (S3). The area of each dot is351

proportional to the corresponding total jerk. The area of the capability enve-352

lope is shown in grey; two dash-dotted lines indicate the contour of the envelope353

with m = 1 (rhombus) and m = 2 (ellipse) as a reference: therefore, the red354

area indicates the potential area of the capability envelope lost due to using355

of combined dynamics less than what is theoretically possible, for the same356

maximum longitudinal and lateral acceleration values. Subject 1 reached the357

highest lateral acceleration values (7.65m s−2) when performing the left corners358

(positive lateral acceleration), but only modest longitudinal acceleration val-359

ues (≤4m s−2). Combined dynamics was limited (m = 1.02 ≈ 1): in practice,360

the rider summed the two acceleration components to assess the acceleration361

level. Subject 3 reached slightly lower lateral acceleration values (7.35m s−2)362

but much more intense levels of longitudinal acceleration (6.68m s−2), both in363

traction and in braking. Moreover, the rider used the combined dynamics much364

more, as indicated by the 1.52 value of his capability exponent. Consequently,365

the area lost due to a lower-than-possible use of the combined dynamics (in red)366

was limited.367

20



20 10 0 10 20
Jy (m/s3)

50

40

30

20

10

0

10

20

30
J x

(m
/s

3 )

(a) Subject 1.

20 10 0 10 20
Jy (m/s3)

50

40

30

20

10

0

10

20

30

J x
(m

/s
3 )

(b) Subject 3.

20 10 0 10 20
Jy (m/s3)

50

40

30

20

10

0

10

20

30

J x
(m

/s
3 )

S1
S2
S3
S4
S5
S6
S7

(c) Capability envelopes.

Figure 7: J-J diagrams and corresponding capability envelopes, relative to all trials.

Figure 6c compares the riders’ capability envelope. Rider S3 covered the368

widest area (135.6m2 s−4) of the g-g diagram, while S1 was the most conser-369

vative (62.8m2 s−4). S1 made the most modest use of longitudinal dynamics.370

S6 severely limited the use of combined dynamics, producing the only concave371

capability envelope (m = 0.80 < 1). The properties of each rider’s gg diagram372

are shown in the ‘g-g Diagram’ section of Table 2.373

374

Figures 7a and 7b compare the previous subjects (S1 and S3) in terms of375

jerk. Similar maximum lateral acceleration values for these riders translated376

into analogous maximum lateral jerk values. As mentioned in Subsection 2.3,377

all riders reached higher values of the negative longitudinal jerk than positive378

ones: for example, Subject 3 reached 29.2m s−3 in traction and 41.6m s−3 when379

braking. All riders (Figure 7c) reached higher jerk values in the longitudinal380

direction than laterally. Compared to the g-g diagram, the exponent of the381

envelope was less variable: from 0.92 for S4 to 1.30 for S1. Values for all riders382

can be found in the section ‘J-J Diagram’ of Table 2.383
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Figure 8: Regression showing the relationship between rider experience and confidence in

exciting motorcycle dynamics.

Figure 8 plots the ‘confidence factor’ (Equation (9)) against the ‘experience384

factor’ (Equation (5)). Rider’s confidence in exciting the motorcycle dynamics to385

a higher degree, in terms of total acceleration, total jerk and combined dynamics,386

was highly correlated (R2 = 0.97 for the linear regression, p = 7e−5) with their387

experience, based on the years of licence and distance travelled in one year. The388

order of the seven riders sorted based on the experience factor was the same as389

the order based on the confidence factor, except for S4 and S5 which had almost390

identical skill factor values. S3 had a ‘confidence factor’ equal to 1: he had the391

most extreme behaviour based on all the three metrics considered. Values for392

all riders can be found in the section ‘Experience-Confidence’ of Table 2.393

3.1. In-depth Corner Entry Analysis394

3.1.1. Motorcycle Dynamics395

Figure 9 shows the results of applying the clustering to the dynamical fea-396

tures computed for the corner entry manoeuvre. The dendrogram (Figure 9a)397

was cut using a 0.39 threshold for the DTW distance, obtaining two clusters398

and two outliers.399

Figure 9b shows the first two principal components, which explained 80% of400
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(a) Dendrogram, using Dynamic Time Warping (DTW) as the distance metric.
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(b) The first two Principal Components: PC1

explains 55% of the variance, PC2 25%.
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(c) Speed and roll angle signals. For each signal, the boxes relative to trials

belonging to each cluster are sorted by descending median.

Figure 9: Results of the clustering algorithm applied to corner entry when using statistical

properties of motorcycle dynamics signals as features. The High-Dynamics cluster is shown

in blue, and the Low-Dynamics cluster in green. Outliers are shown in black.
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the total variance of the dataset. In particular, the first principal component401

PC1 explained 55% of the variance and was sufficient to separate the two clus-402

ters: there was no overlap concerning the PC1 values. While PC1 described403

inter- and intra-cluster differences, PC2 only represented the difference among404

trials belonging to the same cluster. PCA loadings showed that PC1 was neg-405

atively correlated with the mean speed v̄ and the roll angle standard deviation406

σ(ϕ) and positively correlated with the minimum roll angle ϕmin and its mean407

ϕ̄: this means travelling slower along the corner, producing a more modest av-408

erage and maximum roll (as the roll is negative in a leftward corner). Overall,409

high PC1 values indicated less intense lateral dynamics. Trials belonging to the410

blue cluster had negative PC1 values; this cluster was named High-Dynamics411

( HD ). The green cluster had more positive PC1 values; therefore, it was named412

Low-Dynamics ( LD ). PC2, instead, was positively correlated with σ(v), ϕmax,413

and σ(ax), and was negatively correlated with āx: trials in the upper part of414

Figure 9a had a more variable speed, which decreased throughout the manoeu-415

vre (negative āx) with a highly variable longitudinal acceleration (higher σ(ax)).416

High PC2 values indicated more intense longitudinal dynamics: the rider ap-417

proached the corner at a relatively high speed and had to brake more intensely418

and for longer. As a leftward roll angle is negative, having a more positive ϕmax419

meant the rider widened the trajectory on corner entry by initially leaning to420

the right. One outlier (S2HR1) had an abnormally high PC1 value, travelling421

the corner at a very modest speed; the other (S6HR2) stood out compared to the422

Low-Dynamics trials for a peculiarly high PC2 value, indicating intense braking423

and high speed differentials.424

These results, relative to the statistical features computed from the measured425

signals, were confirmed by the signals themselves. The speed and roll angle426

(Figure 9c) were plotted against the distance travelled12 along the corner, and427

their statistical properties are shown through box plots. The higher speed of the428

12The distance travelled along the corner differed slightly between different trials due to the

trajectory variability.

24



trials belonging to the HD cluster was noticeable, with minimal overlap with429

the LD cluster, especially at the beginning and at the end of the manoeuvre.430

In the High-Dynamics cluster, the speed variation was more evident: as riders431

approached the corner faster, they tended to brake more. The speed reached432

its minimum around 5m earlier than for the Low-Dynamics cluster, with earlier433

throttle use after the apex. There are some HD trials whose minimum speed was434

higher than the maximum speed reached in some LD trials. The S2HR1 trial was435

characterised by an unusually low speed, coherently with its high PC1 value:436

the maximum speed reached was lower than the minimum speed of most LD437

trials. The S6HR2 trial was characterised by a significant speed reduction from438

the beginning of the manoeuvre to the apex, as predicted by its high PC2 value.439

The higher speed of the trials belonging to the HD cluster produced higher roll440

angle values: the maximum was higher and was reached sooner, magnifying roll441

rate and roll acceleration compared to the LD trials. The roll angle was also442

maintained longer towards the exit of the curve, despite opening the throttle443

sooner: this indicated higher use of the combined dynamics. The very modest444

speed of the S2HR1 trial reflected on the low roll angle values (<20◦).445

Table 3 shows how the different riders and instructions were distributed446

between the clusters. Subject S3 was most often in the HD cluster, with just447

one trial (his first BR trial) classified as LD. He was followed by S7, whose FR448

and HR trials were classified as HD, and his BR trials as LD. Therefore, Subjects449

3 and 7 had the confidence to get closer to the grip limits, but this was lessened450

when instructed to ride using their body. No other rider had a run classified451

as HD; two of them (S2 and S6) produced outliers. The BR instruction led to452

significantly fewer HD trials than others (two for BR, compared to six for FR453

and HR); HR was the only instruction that produced outliers.454

3.1.2. Rider Inputs Analysis455

Focus on S7. As the trials of Subject 7, a professional trainer of military train-456

ers, showed the most meaningful and repeatable difference based on the instruc-457

tion given, the clustering on the riding inputs was first conducted considering458
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Table 3: The number of runs in each cluster (High-Dynamics, Low-Dynamics) and of outliers,

for each subject Si and instruction (Free-Riding, Handlebar-Riding, Body-Riding), when using

the statistical properties of motorcycle dynamics signals as features. The distribution of the

runs among the three groups is shown for each row as a percentage inside brackets.

Cluster

HD LD Outliers

S1 0 (0%) 9 (100%) 0 (0%)

S2 0 (0%) 8 (89%) 1 (11%)

S3 8 (89%) 1 (11%) 0 (0%)

S4 0 (0%) 9 (100%) 0 (0%)

S5 0 (0%) 9 (100%) 0 (0%)

S6 0 (0%) 8 (89%) 1 (11%)

S7 6 (67%) 3 (33%) 0 (0%)

FR 6 (29%) 15 (71%) 0 (0%)

HR 6 (29%) 13 (62%) 2 (10%)

BR 2 (10%) 19 (90%) 0 (0%)

Total 14 (22%) 47 (75%) 2 (3%)
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his trials only.459

As the trials considered just one rider, the large rider-dependent trials vari-460

ability was removed; consequently, the first two principal components accounted461

for a significant portion (78%) of the variance. The remaining variability should462

then be described by the instruction and familiarisation process, mainly in the463

case of the FR trials, as they were conducted first.464

The resulting dendrogram is shown in Figure 10a. Cutting the dendrogram465

at a 0.60 DTW threshold produced three clusters and one outlier. The first two466

Free Riding trials were the first trials to merge; then, the third FR trial joined467

the same cluster (in cyan, named ‘Free Riding’, or FR ). After that, the two468

closest groups were the first two BR trials, which were joined by the third BR469

trial to form the pink cluster (named ‘Body Riding’, or BR ). The first two HR470

trials belonged to the same cluster (in orange, named ‘Handlebar Riding’, or471

HR ), whose intra-cluster similarity was lower than that of the other clusters.472

The FR and HR clusters merged; the resulting group was about as similar473

to the remaining HR trial as the BR cluster. Each cluster contained trials474

relative to a specific instruction.475

The time signals were then investigated, and their statistical properties sum-476

marised through box plots (Figure 10b). All three FR trials presented a rapid477

steering torque increase on corner entry and high peak values. The HR and478

BR showed reduced use of the steering torque. The rider used higher steer-479

ing torque inputs (Around 50% higher τsteer and σ(τsteer)) when receiving no480

specific riding instruction.481

BR presented a much lower use of the perpendicular torque as well. Pe-482

culiarly, in the HR cluster, the perpendicular torque grew very quickly, even483

more than for the FR cluster, although the steering torque was far smaller.484

FR instruction led to more intense actions on the handlebar, the opposite of485

the BR instruction. Following the HR instruction, actions were intense only in486

the direction perpendicular to the steering axis: the rider used the handlebar487

to make the motorcycle tilt.488

Concerning the use of the foot-pegs, trials in the HR cluster showed minimal489
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(a) Dendrogram, using Dynamic Time

Warping (DTW) as the distance metric.
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(b) Rider input signals. For each signal, the boxes relative to trials be-

longing to each cluster are sorted by descending median.

Figure 10: Results of the clustering algorithm applied to corner entry by Subject 7 when using

statistical properties of rider input signals as features. The Free-Riding cluster is shown in

cyan, the Handlebar-Riding cluster in orange, and the Body-Riding cluster in pink. Outliers

are shown in black.
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τfeet variation through the trial. In the FR trial, a small negative torque (in490

the direction of the motorcycle lean) was generated when the rider moved to491

the right on the saddle. In the BR trials, the use of the foot-pegs was intense,492

particularly in the case of one trial: again, τfeet and CoPy had the same signs,493

but differently from the other trials they were positive.494

The difference among clusters was apparent regarding lateral displacement495

over the saddle. In the FR trials, the rider sat centred on the saddle at the496

beginning and end of the manoeuvre, and he moved to the right (towards the497

outside of the corner) in the corner entry phase. This repeated to a lower degree498

in the HR cluster. For the BR cluster, the behaviour was radically different:499

the rider moved towards the left on the saddle and kept this position throughout500

the remainder of the manoeuvre.501

The characteristics of the BR cluster were peculiar also concerning the502

longitudinal displacement: the rider moved significantly towards the front of the503

motorcycle starting from the initial braking phase, while he slid towards the back504

when starting to use the throttle; the rider in the BR trials, therefore, could be505

modelled as a mass-spring system with much lower stiffness. As the movement506

in both directions was intense, the rider interpreted the BR instruction as ‘to507

move significantly over the saddle’.508

The outlier (S7HR3) showed analogies with HR and FR trials but differen-509

tiated mainly concerning the use of handlebar torques. In this trial, τsteer was510

intermediate between FR and HR trials, while τ⊥ was lower than for both. The511

movement over the saddle was analogous but higher than that of the FR trials.512

All Subjects. After analysing the trials by Subject 7, the clustering was repeated513

considering all the riders so that the placement of S7’s trials in the various514

clusters could be used to understand the meaning of each. Figure 11 shows515

the dendrogram obtained; a 0.35 DTW distance threshold was used to cut it,516

obtaining five clusters and several (11) outliers, indicating significant variability517

in the inputs given to the vehicle. Three clusters (indicated in yellow, green and518

red) contained few trials, all relative to a specific rider-instruction combination.519
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Figure 11: Dendrogram showing the clustering algorithm results when using the statistical

properties of rider input signals as features.

The other two clusters contained a much higher number of trials; therefore,520

they were more diverse in terms of the subjects and instructions represented;521

in fact, the roots of the clusters were placed slightly higher than for the three522

smaller clusters. The five signals considered were uncorrelated: except for the523

correlation between the steering torque and the perpendicular torque, which524

are produced by the same action (the forces applied on the handlebar), the525

strongest correlation among other signals was just −0.19 (the one between τ⊥526

and τfeet). The correlation between statistical features was modest as well; the527

highest correlation between any two features relative to different signals was528

0.37, between σ(CoPx) and σ(CoPy): for a given trial, the rider tended to move529

more over the saddle in one direction when there was higher movement in the530

other direction. The correlation between the time signals and that between the531

statistical features was lower compared to what was obtained considering only532

S7, as expected.533

Clusters are numbered from left to right in the dendrogram. Their properties534

are derived by looking where the previously discussed clusters for S7 are placed535

among them and by looking at the statistical properties of each (shown in Table536

4).537

• Cluster C1 coincided with the BR cluster described previously for S7. In538

30



Table 4: Values of the statistical features computed from the rider input signals for each

cluster. For the mean values, the cell is red if the value is negative, white if it’s null, and blue

if it’s positive. For the standard deviation values, the cell colour goes from white if the value

is zero to dark grey for the highest value.

C1 C2 C3 C4 C5 Outliers Weighted Mean

mean(τ_steer) -4.64 -4.14 -3.48 -7.51 -3.89 -5.93 -5.29

σ(τ_steer) 4.60 3.31 3.99 5.12 4.47 4.91 4.66

mean(τ_perp) -9.58 -16.00 -24.18 -12.42 -15.02 -12.05 -13.83

σ(τ_perp) 7.33 8.73 16.16 11.06 9.95 11.61 10.58

mean(τ_feet) -0.38 -1.02 4.58 -0.33 0.01 0.78 0.14

σ(τ_feet) 1.44 0.56 1.41 1.27 0.96 1.88 1.24

mean(CoPy) 0.34 0.97 -0.57 0.03 -0.18 0.11 0.00

σ(CoPy) 0.38 0.54 0.12 0.15 0.15 0.37 0.22

σ(CoPx) 1.11 0.54 0.40 0.34 0.29 0.44 0.39

these trials, the rider minimised the perpendicular torque (smallest mean539

and standard deviation). The rider moved significantly longitudinally on540

the saddle (maximum σ(CoPx) value) and quite a lot laterally as well541

(second highest σ(CoPy) value), varying the footpegs torque in the process542

(maximum σ(τfeet) value). These evidences attest that S7 interpreted the543

BR instruction as ‘Apply minimal torque on the handlebar; move the544

buttocks and use the foot-pegs to lean the motorcycle’.545

• Cluster C2 contained the three BR trials of S3. He used the steering546

torque minimally (lowest standard deviation and modest mean) and the547

perpendicular torque modestly. The foot-pegs torque was negative on548

average, making the motorcycle roll more, and it had the lowest stan-549

dard deviation. The rider was on the left side of the saddle on average550

(highest and positive CoPy), moving significantly (highest σ(CoPy)). S3551

interpreted the BR instruction as ‘Do not use the handlebar to make the552

motorcycle lean; move the buttocks and use the foot-pegs for that’.553

• Cluster C3 contained two HR trials by S5. The use of τsteer was minimal,554

while τ⊥ was by far the highest as both mean and standard deviation.555

This cluster was the only one with a clearly negative CoPy value, and it556

also had the lowest σ(CoPy): the rider remained on the right side of the557
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saddle, and moved minimally. S5 interpreted the ‘HR’ instruction as ‘use558

the handlebar mostly to lean the motorcycle and do not move laterally559

over the saddle’. τfeet was the highest by far and positive: the rider used560

the foot-pegs to straighten the motorcycle, and this action was probably561

linked to his position over the saddle.562

• Cluster C4 contained eight trials of S2, three of S3, three of S4, and the563

three FR trials by S7. It contained four riders and multiple instructions,564

mainly FR and HR. The cluster was relative to intense use of the steering565

torque: τsteer and σ (τsteer) were highest. Movement over the saddle was566

extremely limited in both directions (low σ(CoPx,y) values), as the rider567

sat on the centerplane on average (CoPy ≈ 0). The FR cluster described568

previously for S7 is a subset of C4 trials ∈ C4 are similar to how S7 rode569

when subject to the FR instruction, applying high steering torque and a570

small, negative torque through the foot-pegs, with limited movement over571

the saddle.572

• Cluster C5 contained 26 trials belonging to six different riders and all573

the riding instructions, about equally: 9 FR trials, 8 HR trials and 9574

BR trials. In particular, it contained all the trials by S1. Consequently,575

the trial was relatively diverse; however, common characteristics emerged.576

Longitudinal movement over the saddle was the lowest, and the lateral577

movement was also very low. On average, the torque applied through578

the foot-pegs was null. The cluster contained trials which did not show579

extreme behaviour concerning the other signals. HR ⊂ C5 : trials ∈580

C5 show analogies to how S7 rode when subject to the HR instruction:581

much higher τ⊥ than τsteer, minimal movement over the saddle and small582

foot-pegs torque.583

Table 5 shows the distribution among the clusters of the trials by each rider or584

instruction. Three categories of riders emerge concerning whether they followed585

the instructions given:586
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Table 5: The number of runs in each cluster and of outliers, for each subject Si and instruction

(Free-Riding, Handlebar-Riding, Body-Riding), when using the statistical properties of rider

input signals as features. The distribution of the runs among the six groups is shown for each

row as a percentage inside brackets.

Cluster

C1 C2 C3 C4 C5 Outliers

S1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 9 (100%) 0 (0%)

S2 0 (0%) 0 (0%) 0 (0%) 8 (89%) 0 (0%) 1 (11%)

S3 0 (0%) 3 (33%) 0 (0%) 3 (33%) 1 (11%) 2 (22%)

S4 0 (0%) 0 (0%) 0 (0%) 3 (33%) 1 (11%) 5 (56%)

S5 0 (0%) 0 (0%) 2 (22%) 0 (0%) 6 (67%) 1 (11%)

S6 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8 (89%) 1 (11%)

S7 2 (22%) 0 (0%) 0 (0%) 3 (33%) 2 (22%) 1 (11%)

FR 0 (0%) 0 (0%) 0 (0%) 9 (43%) 9 (43%) 3 (14%)

HR 0 (0%) 0 (0%) 2 (10%) 6 (29%) 8 (38%) 5 (24%)

BR 3 (14%) 3 (14%) 0 (0%) 2 (10%) 9 (43%) 4 (19%)

Total 3 (5%) 3 (5%) 2 (3%) 17 (26%) 26 (41%) 12 (19%)
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• Subjects S1,2,6 did not follow the instructions, as all the trials which were587

not outliers belonged to the same cluster, independent of the instruction.588

These clusters were C5 for S1, C4 for S2, and C5 for S1; therefore, S1589

and S6 also had a similar riding style. The familiarisation process did not590

influence their riding inputs, as well.591

• Subjects S3,7, the most experienced ones, followed the instructions. All592

the BR instructions by S3, and only those, belonged to a specific cluster,593

highlighting a different behaviour compared to his HR and FR trials. S7594

had its trials classified in a different cluster for each instruction.595

• Subjects S4,5 had trials belonging to different clusters; however, there596

was not a clear relationship between instruction and consequent cluster:597

so their behaviour changed in a mostly chaotic way. In particular, S4598

produced five outliers: his riding style was inconsistent and not repeatable.599

The riding style preference stated before the test (handlebar vs body, in600

Table 1) was compared with the clustering results. All trials by S1 ∈ C5 which601

is relative to high perpendicular torque and minimal movement over the saddle:602

this is coherent with the higher score the rider assigned to ‘riding through the603

handlebar’ compared to ‘riding through the body’ (8.0 vs 5.6). Eight trials604

by S2 ∈ C4 which is relative to high steering torque values while not moving605

on the saddle: also S2 gave a clear preference to riding through the handlebar,606

coherently with his behaviour. His only outlier is a BR trial. S3’s BR trials are in607

a separate cluster: this instruction led him to ride differently than when subject608

to the FR instruction, which is coherent with his stated preference about riding609

using the handlebar. S4 produced five outliers, which included his very first610

trial, probably due to the effect of familiarisation, and all his BR trials; before611

the test, he stated equal preferences concerning riding using the handlebar and612

using the body, but after the test, he expressed an appreciation for the HR613

instruction. S5 was the only rider to state a clear preference concerning riding614

with the body (8.4 vs 5.2): in fact, the BR instruction was the only one that615

produced trials belonging to the same cluster. S6 didn’t have trials belonging to616
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different groups as the instruction changed: his preference was about the same617

concerning riding using mainly the handlebars or the body (6.5 vs 6.7), and this618

lack of preference might have influenced his lack of behavioural change.619

4. Discussion620

Overall, the results showed appreciable differences between the riders, signif-621

icantly influenced by experience. For a given rider, rider behaviour evolved as622

the familiarisation process occurred. For most riders, the instruction imparted623

clearly influenced behaviour, especially concerning the inputs used.624

The familiarisation analysis showed that all the riders tended to explore625

additional portions of the g-g diagram along the trials. As was hypothesised,626

the growth of its area as a function of the travelled distance was excellently627

described by a negative exponential (lowest coefficient of determination equal628

to 0.91). The expansion of the capability envelope continued in the subsequent629

familiarisation trials, even though the riders were never told to ride faster as they630

gathered experience: the process happened naturally. A significant variability631

emerged among riders regarding the asymptotic area, for which experience was632

a precise predictor, and the distance travelled before reaching the asymptote.633

The fit was worse in the first 100m, as the rider started from a standstill on the634

initial straight: as such, the first points on the g-g diagram were all located on635

the upper part. Therefore, even if the longitudinal acceleration was significant,636

the envelope area was small; it was only in correspondence to the first corner637

that the rider explored a different part of the diagram, producing an abrupt638

area increase.639

Concerning the estimated capability envelope of each rider, some patterns640

emerged. All riders reached higher acceleration values in the lateral than the641

longitudinal direction. The inter-rider difference was surprisingly modest in642

terms of lateral acceleration (1.07m s−2 difference between the lowest and high-643

est aymax values). It was more significant in terms of longitudinal acceleration644

(axmax ranged from 4.02m s−2 to 6.68m s−2). Each rider had similar longitudi-645
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nal acceleration levels when using the throttle compared to braking. The differ-646

ence in the longitudinal dynamics concerning jerk was even higher, particularly647

when braking: the highest Jxmin value was around 2.5 times the lowest. The648

high variability in the negative jerk values confirms the results of previous re-649

search on the braking patterns of riders with various skill levels (Huertas-Leyva650

et al., 2019). Concerning the riders who reached the highest negative jerk val-651

ues, the high jerk was produced by quickly transitioning from high throttle use652

to strong braking, producing a significant and quick longitudinal acceleration653

differential. Opposite to the evidence concerning the acceleration values, the654

lateral jerk was more modest than the longitudinal one. Although there was655

a clear indication that more experienced riders tended to excite the combined656

dynamics more, the variability of the jerk capability exponent was more modest657

and less correlated with experience. A higher frequency of the feedforward con-658

trol, required for minimising travel time given friction conditions or minimising659

the grip required for a given travel time (Limebeer and Massaro, 2018), inher-660

ently produces higher jerk values. A more intense feedback action, which might661

be linked to a less stable vehicle or a more erratic rider (Lot and Sadauckas,662

2021), can produce higher jerk levels, too. Further research should differentiate663

between the two, potentially providing suggestions to improve training pro-664

grams. To summarise, more expert riders used a more intense braking action,665

which was applied more abruptly and continued well into the corner. Expe-666

rience predicted very well (p = 7e−5) the intensity of the riding dynamics in667

terms of acceleration magnitude and combination and jerk magnitude. The J-J668

diagram, proposed in this work, was useful for comparing riders in terms of jerk669

values in addition to acceleration. It should be noted that jerk, and in partic-670

ular the measured peaks, are particularly dependent on the specific motorcycle671

used (e.g. suspension damping) and the filtering performed on the computed672

jerk13. However, this does not impact the comparison of trials performed using673

13In this work, jerk was computed as the central finite difference of the acceleration signal

(sampled at 10Hz), then filtered through a Savitzky–Golay filter with a cubic polynomial and
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the same hardware and software, like in the case of the present study or for674

an instrumented motorcycle employed by a riding school. Other studies have675

shown that rider behaviour can repeatedly differ between right and left-hand676

corners (Magiera et al., 2016); future work could extend the asymmetry of the677

ellipse to the lateral direction, too. In naturalistic riding sessions, elements like678

roundabouts, which are always travelled in the same direction, might explicitly679

induce this phenomenon.680

The HAC algorithm classified the different trials concerning the corner entry681

manoeuvre, highlighting the characteristics of the various riders and each one’s682

behaviour following a specific instruction. The ‘Motorcycle Dynamics’ cluster-683

ing produced two groups, distinguished by the intensity of the corresponding684

dynamics. The ‘High-Dynamics’ (HD) cluster only contained trials by the two685

most expert riders: therefore, rider experience was a more impactful factor686

than the riding instruction concerning the intensity of the dynamics observed.687

Still, the Body Riding (BR) instruction could (always in case of S7, in the first688

attempt in the case of S3) move a subject’s trial from the HD cluster to the689

Low-Dynamics (LD) one. Notably, the opposite effect was never observed: in690

no case did the BR instruction move a rider from cluster LD to cluster HD.691

The principal components projection proved useful in understanding the intra-692

and inter-cluster differences. Each component described one distinct aspect of693

the motorcycle response: lateral dynamics in the case of PC1, mainly the mean694

lateral acceleration or roll angle, which for a given trajectory is linked to the695

mean speed, and the longitudinal dynamics in the case of PC2, in terms of mean696

and variation of the longitudinal acceleration. The HD trials were also charac-697

terised by more intense use of the combined dynamics. The HD cluster had a698

lower variance in the speed signal across different trials (Figure 9c) compared699

to the LD cluster: this is partly due to fewer trials (14 vs 47). However, there700

could be an additional explanation: as a rider reduces the manoeuvre execution701

time, they will, on average, remain closer to the edge of the friction envelope;702

a 5-points window size.
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in doing so, the set of acceleration signals resulting in a given travelling time703

reduces. The limit case is the ‘optimal manoeuvre’, consisting of a unique com-704

bination of inputs that leads to the theoretical minimum time. On the contrary,705

when travelling slower on average, a rider can complete the manoeuvre in a706

given time using various combinations of longitudinal and lateral acceleration707

profiles: one could say that ‘there are many ways to ride slowly and fewer ways708

to ride quickly’. Another factor could be that the HD consisted of trials by709

S3 and S7 only, who are very experienced riders that probably found it easier710

to have a repeatable behaviour. Just two trials (3%) were outliers: in terms of711

motorcycle dynamics, most attempts could be described as a variation of a more712

general case. The S2HR1 trial was abnormally slow; however, no instabilities713

or events of interest emerged when checking the video footage. For S2, the HR714

instruction followed the FR trials, so the HR1 trial was the first one in which a715

specific riding instruction was given: this probably caused some discomfort to716

S2, which was the only rider still getting their licence at the time of the test.717

The other outlier (S6HR2) was produced by the rider with the shortest licence718

age (one year).719

On the other hand, the ‘Rider Inputs’ clustering showed high variability con-720

cerning the possible input combinations a rider can use to enter a corner. Some721

riders followed the instructions, changing their behaviour based on their instruc-722

tion interpretation. For example, S3 and S7 both followed the BR instruction723

but did so in slightly different ways, both coherent with the concept of ‘riding724

using the body’: the instruction was deliberately generic, leading to this result.725

Others did not follow the instructions to the same extent: a subset of riders726

did not change behaviour based on the instruction, and others did chaotically727

such that the instruction only explained a part of riding style variation. A much728

higher number of clusters (five) and outliers (eleven) resulted when classifying729

the trials based on the inputs given instead of the consequent motorcycle re-730

sponse. All the measured inputs were relative to lateral dynamics, for which the731

steering torque τsteer is the primary input; instead, the other actions, like push-732

ing the footpegs or moving laterally over the saddle, have a modest effect on the733
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motorcycle response and are mainly linked to psychology and comfort (Weir and734

Zellner, 1978). In fact, S7, who has high consciousness and preparation being735

a professional trainer of trainers, expressed a strong preference concerning the736

use of the handlebar and counter-steering (9.2 and 9.3, respectively), and very737

low scores about pushing against the footpegs (1.3) and the tank (3.4). In his738

case, the instruction dictated the inputs he used, with solid repeatability. The739

clear instruction-dependent behaviour difference manifested in each one of the740

time signals considered in the clustering. Identifying the meaning of each cluster741

using the proposed approach was relatively easy, despite the high number of sub-742

jects, instructions, trials, repetitions, and features used. The statistics of each743

feature cluster showed the peculiar aspects of each cluster. Even though not744

all riders followed the instructions, their behaviour was overall in line with the745

preference given before the test; when this was not true, the rider corrected their746

opinion in the post-test questionnaire. In all trials, the rider counter-steered and747

applied a leaning torque towards the fall (τsteer, τ⊥ < 0 in the leftward corner):748

this is coherent with the results by Wilson-Jones (Wilson-Jones, 1951). Notably,749

even though counter-steering was always clearly present as it’s an unavoidable750

phenomenon, S5 stated in the questionnaire that they make limited use of it:751

this lower consciousness might induce the rider to apply a steering torque in the752

wrong direction during emergencies, greatly limiting the probability of avoiding753

the obstacle (Nugent et al., 2019). The clustering process considered either the754

rider inputs or the corresponding motorcycle response, while the link between755

the two was only considered indirectly: in the future, the relationship between756

the two should be assessed explicitly, for example, by applying the HAC to the757

union of the two sets of features proposed in this work. Additionally, statistics758

relative to the throttle position and brake pressure signals (not recorded during759

the experiment) should be added as features to complement the inputs related760

to trajectory control to those linked to managing the speed. In particular, a761

given deceleration can be achieved through different front-rear brake pressure762

combinations, possibly linked to experience and skill.763

This work investigated riding preferences and style concerning the inputs764
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used and the corresponding motorcycle dynamics for a diverse set of riders and765

evaluated the impact of familiarisation and the instruction given on their be-766

haviour. A strong correlation was found between the rider’s experience and767

several traits, such as the level of acceleration and jerk used and the usage of768

combined dynamics, and suggests conducting additional research to draw more769

general conclusions. Limitations consist of the modest length of each trial,770

which was conducted in a controlled environment: future work should extend771

the approach to a longer naturalistic ride on open roads to assess riding style772

and preferences in the real world, as the road width and absence of traffic could773

have impacted the rider behaviour. On the other hand, conducting trials fol-774

lowing a pre-defined path in a controlled environment removed several external775

factors, like traffic or the properties of the road chosen, making the trials, whose776

statistics are compared, likewise. Moreover, the sophisticated instrumentation777

was not invasive and only a few sensors were visible: as the subjects did not778

know which quantities were measured, their behaviour was influenced less by the779

measurement apparatus. The work considered a small sample (N = 7) of riders,780

and only one of them was a professional trainer, even though one can expect781

professional riders to have less variable behaviour due to the training; there-782

fore, the generalisability of the values obtained concerning the various metrics783

is limited. However, most other studies that compare the behaviour of different784

subjects using sensors consider a lower or analogous number of participants.14785

Yet, inter-rider variability was significant, and the correlation with experience786

was statistically significant. The main contribution of this work is methodolog-787

ical: the approach and metrics proposed can be employed for more extensive788

panels of participants. The work proposed an automatic approach to identify789

several metrics related to riding preferences and capability: these could be used790

as features for the HAC algorithm to classify riders based on their macroscopic791

behaviour, for example, concerning using combined dynamics or the familiarisa-792

14N = 2 (Magiera et al., 2016), N = 3 Biral et al. (2005), N = 7 (Diop et al., 2023), N = 8

(Diop et al., 2020), N = 12 (Will et al., 2020).
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tion process. The approach could aid researchers in characterising rider models793

relative to different skill levels or even corresponding to a real rider. Lastly,794

comparing the signals to the corresponding cluster’s statistical features might795

help detect instabilities or the cause of a crash.796

5. Conclusions797

This work investigated the difference in riding style, preference, capability,798

and willingness to excite the motorcycle dynamics of a diverse set of riders.799

A significant inter-rider difference was found concerning the riding inputs em-800

ployed and the corresponding motorcycle response. The effect of the riding801

instruction received, the rider’s stated preference, and the familiarisation pro-802

cess was investigated. The novelty consists in the reproducibility of the objective803

and automatic approach proposed and the focus on the impact of experience804

and stated preference on behaviour, including the inputs used. This approach,805

which worked well even in such a repetitive riding condition, discriminating well806

between subjects doing the same manoeuvre, has considerable application po-807

tential for analysing naturalistic data, where the differences between riders will808

be even more apparent. The diversity of riding practices, and the minimal effect809

of some inputs used, warrant a revision of training and retraining practices to810

direct behaviour towards improved safety and make riders aware of the inputs811

that determine much of the PTW response, such as steering torque. Their con-812

sequences in terms of comfort should also be investigated in more detail. The813

most safety-effective riding styles, i.e. those that allow for greater manoeuvra-814

bility, should be identified and taught; in terms of capabilities, one could aim to815

raise the level of each trainee. The approach proposed could make research on816

rider behaviour more straightforward and objective and allow trainers to track817

the progress made by the trainees easily.818
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