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Abstract
Minimizing NVH and friction-induced power losses is becoming paramount in the design of geared transmissions. The aim
of this paper is to present an automatic methodology to explore Pareto-optimal designs of bevel gears when minimization
of noise and frictional losses is essential. In the first part, a semi-empirical model to estimate frictional power losses
under elasto-hydrodynamic lubrication is described. The model has been validated against experimental data available in
the literature in previous works by the authors. The efficiency calculation is coupled with a state-of-the-art loaded tooth
contact analysis (LTCA) tool to obtain accurate predictions of the instantaneous load shared by the mating tooth pairs
during the meshing cycle. In the second part, an automatic framework based on multi-objective optimization (MOO)
is presented where the tooth micro-geometry is systematically designed. The design variables are represented by few
coefficients of a polynomial basis that embodies the tooth flank ease-off topography. To ensure manufacturability, the
polynomial modifications are projected onto the feasible set of the machine-tool envelopes. This step is achieved through
a state-of-the-art identification algorithm that the authors have developed in previous work. Frictional losses are estimated
with the aforementioned model, whereas the NVH level is measured by the loaded transmission error (LTE), directly
available from the simulation tool. The maximum contact pressures are limited by the material properties, thus proper
nonlinear constraints are prescribed. Application to a test case involving the design of a spiral bevel gearset reveals that
the methodology presented allows the designer to obtain Pareto-optimal solutions in a systematic and automatic manner.
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Untersuchung von Kompromisslösungen zwischen NVH undWirkungsgrad im Kegelraddesign

Zusammenfassung
Die Minimierung von NVH und durch Reibung induzierten Leistungsverlusten wird bei der Gestaltung von Getrieben im-
mer wichtiger. Ziel dieses Beitrags ist es, eine automatische Methodik zur Untersuchung von Pareto-optimalen Entwürfen
von Kegelrädern vorzustellen, wenn die Minimierung von Geräuschen und Reibungsverlusten essentiell ist. Im ersten Teil
wird ein semi-empirisches Modell zur Schätzung der durch Elasto-Hydrodynamische Schmierung verursachten Reibungs-
leistungsverluste beschrieben. Das Modell wurde in vorherigen Arbeiten der Autoren gegen experimentelle Daten, die in
der Literatur verfügbar sind, validiert. Die Effizienzberechnung wird mit einem modernen Loaded Tooth Contact Analysis
(LTCA) Tool gekoppelt, um genaue Vorhersagen der instantanen Lastverteilung der einrastenden Zähne während des Ver-
zahnungszyklus zu erhalten. Im zweiten Teil wird ein automatischer Rahmen auf Basis der Mehrzieloptimierung (MOO)
vorgestellt, in dem die Mikrogeometrie der Zähne systematisch gestaltet wird. Die Entwurfsvariablen werden durch einige
Koeffizienten einer polynomischen Basis dargestellt, die die Geometrie der Zahnflanke repräsentiert. Um die Herstellbarkeit
zu gewährleisten, werden die polynomen Modifikationen auf die machbaren Hüllen des Maschinenwerkzeugs projiziert.
Dieser Schritt wird durch einen modernen Identifikationsalgorithmus erreicht, den die Autoren in vorherigen Arbeiten ent-
wickelt haben. Die Reibungsverluste werden mit dem oben genannten Modell geschätzt, während das NVH-Niveau durch
den Loaded Transmission Error (LTE), der direkt aus dem Simulationstool verfügbar ist, gemessen wird. Die maximalen
Kontaktdrücke sind durch die Materialeigenschaften begrenzt, daher werden entsprechende nichtlineare Beschränkungen
vorgegeben. Die Anwendung auf einen Testfall mit der Gestaltung eines Spiralkegelrad-Sets zeigt, dass die vorgestellte
Methodik es dem Designer ermöglicht, Pareto-optimale Lösungen auf systematische und automatische Weise zu erlangen.

1 Introduction

Spiral bevel gears are extensively utilized in diverse in-
dustrial applications owing to their capability to efficiently
transmit high torque, operate smoothly, and offer high reli-
ability in power transmission. Nevertheless, the deployment
of spiral bevel gears in high-end applications is confronted
with some design challenges, such as minimization of effi-
ciency losses, noise, vibration and harshness (NVH).

The efficiency of spiral bevel gears may be impacted by
various factors, which can be categorized into two types:
load-independent and load-dependent losses. The former
encompass churning and windage losses, which refer to the
lubricant being pumped between the mating members and
its splashing caused by inertial effects. The latter pertains to
rolling and sliding frictional losses, with the former being
negligible in comparison to the latter, particularly in geared
transmissions. Our study specifically concentrates on slid-
ing frictional losses, which are primarily influenced by the
sliding motion between the teeth, gear mesh stiffness, and
tooth modifications.

The core aspects involved in correctly modeling the me-
chanical losses are:

1. loaded tooth contact analysis (LTCA) to predict load
sharing between the mating teeth and the pressure distri-
bution over the contact zones;

2. calculation of the geometric and kinematic properties of
the contacting zones (i.e., entraining velocity of the lu-
bricant, sliding velocity, and surface curvatures);

3. estimation of the elasto-hydrodynamic lubrication (EHL)
friction coefficient;

Numerous models and methods exist in the literature for
evaluating friction-induced losses. The primary differences
between these models and methods lie in the semi-empiri-
cal formulas used to estimate the EHL friction coefficient
and/or the tools used to perform the LTCA.

Li et al. [1] proposed an EHL friction model for helical
gears. In this model, the contacting bodies are sliced along
the entire contact zone, and a line contact model is postu-
lated on each slice. The authors noted a conflicting trend
on tooth flank modifications between mechanical efficiency
and other transmission specifications, such as maximum
pressure and loaded transmission error (LTE).

Xu et al. [2] applied a similar EHL friction model to
estimate efficiency losses in hypoid gears. In this model,
a large set of results from EHL analyses were fitted to
obtain a semi-empirical coefficient formula, while LTCA
was carried out using the same simulation tool employed in
this paper (Calyx, [3]). However, their EHL model did not
account for mixed and boundary lubrication conditions.

Kolivand et al. [4] started from the same EHL fric-
tion model and improved it to also account for mixed and
boundary lubrication, with the aim of investigating effi-
ciency losses in hypoid gears. However, the LTCA tool
was replaced by the Hypoid Analysis Program (HAP) [5],
which uses a semi-analytical shell theory to compute the
tooth compliance and an ease-off–based approach to per-
form LTCA analyses. If compared to the former, HAP

K



Forschung im Ingenieurwesen

trades computational efficiency for accuracy, especially at
high loads.

Cao et al. [6] evaluated the lubrication performance un-
der different possible contact paths on bevel gears. Moham-
madpour et al. [7] carried out an EHL analysis on hypoid
gears under relatively high loads, while Pu [8] analyzed the
lubrication of hypoid gears taking into account the three-
dimensional surface roughness. However, despite their ac-
curate tribological analyses, many of the cited contributions
fall short in providing reliable contact analysis results. In
fact, an accurate LTCA tool has a paramount importance
for the evaluation of the contact pressures and the subse-
quent estimation of the friction coefficient. Moreover, most
of the cited references do not offer precise estimations of
the lubricant’s entraining velocity, often relying instead on
calculating it as the average of the absolute velocities of the
mating pairs at their contact points.

Ziegltrum et al. [9] provided an accurate estimation of
the local friction coefficient of spur gears under transient
thermo-elasto-hydrodynamic lubrication (TEHL) condi-
tions using FE-based multiphysics software. Their results
were also validated against experimental data for different
lubricants.

Paschold et al. [10] mathematically modeled the heat
transfer during meshing of worm gears in order to accu-
rately investigate their overall efficiency losses.

NVH issues in spiral bevel gears can largely be attributed
to gear meshing errors, manufacturing errors, and misalign-
ments. These problems may result in increased noise levels,
vibration, and reduced reliability of the gear system. Conse-
quently, understanding the underlying causes of NVH prob-
lems and efficiency losses in spiral bevel gears and devel-
oping strategies to alleviate them is crucial to enhance their
performance and reliability. In this study, improvements in
NVH are dealt with by minimizing the harmonic amplitudes
of the LTE through appropriate ease-off modifications.

The relationship between LTE and micro-geometry has
been extensively demonstrated in the literature. Simon [11]
demonstrated how adjusting higher-order motions associ-
ated with the cradle radial setting and the modified roll
could decrease LTE. Similarly, Su et al. [12] proposed
a methodology to design a seventh-order transmission ra-
tio function based on rigid TCA assumptions. A numerical
test case demonstrated that this method could provide ad-
vantages in terms of transmission error under load. How-
ever, the effective values of the parameters representing the
seventh-order function are assumed to be known, and no
guidelines are provided for deriving them. Along the same
lines, [13] proposed an optimization framework to mini-
mize LTE. Here, higher-order motions associated with the
coefficients of the modified vertical and helical motions are
identified during the optimization process.

Several studies in the literature have proposed automatic
optimization methods to improve the performance of spi-
ral bevel gears during meshing. Mermoz et al. [14] used
accurate finite element analyses to carry out LTCA and de-
termine the contact pressure, which then served as the ob-
jective function minimized by the BOSS/Quattro commer-
cial optimization software. Similarly, Astoul et al. [15] also
used this methodology to minimize quasi-static transmis-
sion errors. However, both studies directly optimize a lim-
ited subset of machine settings, specifically the modified-
roll coefficients, which may not be ideal when starting from
a basic design that exhibits poor contact patterns.

Likewise, a recent study by Li et al. [16] uses finite
element analyses to perform multi-objective optimization,
wherein efficiency, contact pressure, and LTE are simul-
taneously minimized. Machine settings are selected as the
optimization variables following a sensitivity analysis.

However, it should be noted that the presented optimiza-
tion test case is somewhat questionable, as the LTCA is
carried out with just 10 Nm pinion torque (a very lightly
loaded tooth contact analysis).

Notably, the Particle Swarm Optimization-Gravitational
Search Algorithm (PSOGSA) [17] and the Fast Elitist
Nondominated Sorting Genetic Algorithm (NSGA-II) [18]
have been effectively utilized for optimizing and exploring
Pareto-optimal solutions in spiral bevel and hypoid gears.
However, it is widely recognized that these algorithms are
computationally expensive, especially in terms of number
of function evaluations to convergence (and the number of
iterations to convergence is often set a priori). Therefore,
to obtain solutions within reasonable time frames, these
solvers still need to be coupled with relatively simple and
approximate contact models.

The present study involves the automated optimization of
tooth flank topography using ease-off polynomial functions
to explore potential trade-offs between NVH and efficiency.
Initially, an EHL friction model is briefly presented, where
the entraining velocity is rigorously evaluated to estimate
the shear strain rate within the film. This model has already
been introduced and validated against experimental data
in [19, 20], specifically for a hypoid gearset with a 75W90
oil, but further improvements are described in the present
work. Other losses, such as windage, churning, and rolling
resistance, are excluded due to their limited dependence
on the tooth flank topography. The study uses the MIL-
L-23699 lubricant, which is a neopentyl polyol ester base
oil commonly used in aerospace applications such as gas
turbine engines and aircraft gearboxes.

Subsequently, the multi-objective optimization frame-
work previously described in [21] is briefly reviewed. To
ensure accurate LTCA analyses, the Calyx contact solver is
employed, although the methodology proposed in this work
may well be complemented by other contact analysis tools
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(i.e. Becal [22] or other general-purpose FEM software).
The optimizations are carried out by a relatively simple
direct-search algorithm (MATLAB’s patternsearch).
An important characteristic of this innovative framework is
that, despite utilizing ideal polynomial functions to steer
the optimization process, a tailored identification algorithm
is applied at each iteration to project the ease-off into the
set of deviations that can be actually manufactured, as pre-
sented in [21]. This approach offers the benefit of driving
the expensive optimization loop with a minimal number of
variables, while determining, with the embedded identifica-
tion algorithm, the most appropriate manufacturable flank
modifications from a relatively extensive set of machine-
tool settings.

To determine the boundaries of the Pareto front, single-
objective optimizations are initially carried out. Then, the
Pareto front is explored by solving additional multi-ob-
jective optimization problems. The contact patterns for all
points sampled on the Pareto front are also shown.

2 EHL friction coefficient model and
efficiency estimation

2.1 EHL friction

There are a number of factors that influence friction, such
as the lubrication regime (full film, mixed, boundary), the
behaviour of the lubricant with varying operating condi-
tions (temperature, pressure, shear rate) and the surround-
ing environment (the boundary conditions of the lubricated
contact).

An EHL friction coefficient model similar to the one
described in [19] is proposed here. The model is briefly
reintroduced in this section, since there are some differences
compared to the previous implementation, particularly in
the load sharing function and in the rheological model of
the lubricant.

The friction coefficient f is determined based on a load
sharing factor between boundary and full-film lubrication
conditions, which is described by the function X.�/. It is
well known in the literature that f can be calculated using
the following equation:

f = fh.1 − X.�// + fb.X.�//: (1)

Here fh and fb are the friction coefficients related to the
hydrodynamic (full fluid) and the boundary lubrication con-
ditions, respectively. � is the ratio between the film thick-

ness h and the equivalent root-mean-square roughness of
the contacting body surfaces:

� =
hq

R2
q1 + R2

q2

(2)

Usually, the central film thickness hc is used, and Rq1 and
Rq2 are the root-mean-square roughnesses of the two sur-
faces.

Several expressions can be found for the load sharing
factor X.�/ in the literature. Differently from what has
been described in [19], the recent findings by Taylor and
Sherrington [23] are employed in this work. Their study
suggests a reverse S-shaped curve for X.�/, as represented
by the following formula:

X.�/ =
1

.1 + �k/a
(3)

According to [23], and based on experimental data from
several lubricant oils, the recommended values for k and a

here employed are 1.453 and 1.32, respectively.
The coefficient of boundary friction fb is considered

constant, and it has to be experimentally derived. Based on
data available in the literature [23], its value ranges from
0.1 to 0.14, depending on the employed lubricant oil. In
this work, a worst-case value of fb = 0.14 is assumed.

The mean value of fh can be obtained by dividing the
shear stress, � , by the mean contact pressure pm:

fh =
�

pm

(4)

In our framework, pm is obtained directly from contact
analysis tool for each contact zone.

The shear stress � is estimated according to the Bair-
Winer rheological model:

� = �L

�
1 − e

− �
�L

P��
: (5)

Here, �L is the limiting shear stress, � is the dynamic vis-
cosity, and the shear strain rate is approximated by P� = vs

hc
,

with �u being the sliding velocity between the two mating
teeth at their nominal contact point.

The limiting shear stress �L is derived for specific pres-
sure and temperature conditions according to the following
exponential relation [24]:

�L = �L0e
˛L.pm−pa/+ˇL. 1

T
− 1

T0
/ (6)
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The dynamic viscosity � variation with temperature T

and pressure p is described by the Roelands and modified
Barus formulas:

� = �0e
˛.pm−pa/; (7)

�0 = 6.31 � 10−5+G0.1+ T
135 /−S0

; (8)

The viscosity-pressure coefficient ˛ can be estimated as
follows:

˛ = m + nlog.�0/ (9)

To estimate the remaining coefficients in Eqs. (8), (7) and
(9), empirical data specific to the lubricant being used is
necessary. Table 1 contains the relevant data for the MIL-
L-23699 lubricant.

Different expressions for the evaluation of the central
film thickness can be found in the literature. Four differ-
ent lubrication regimes can be observed for nonconformal
contacts, depending on the elastic deformation of the bod-
ies and the variation of viscosity with pressure. The four
regimes are usually indicated as isoviscous-rigid IR, piezo-
viscous-rigid PR, isoviscous-elastic IE and piezoviscous-
elastic PE [25]. Bassani et al. [26] provided semi-empirical
formulas for the central film thickness for the more general
case in which the entraining velocity is not collinear with
any principal direction of the curvatures:

hcIR
=

128
�2
0u

2R2
eRs

F 2

�
0.131arctan

Rs

2Re

+ 1.683

�2�
1 +

2Re

3Rs

�−2

(10)

Table 1 Coefficients of the MIL-L-23699 oil

Coefficient Value

Limiting shear stress coefficients

�L0 7.59MPa

˛L 1.3338 � 10−9 Pa−1
ˇL 0ıC

T0 80 ıC

Thermal coefficients

ˇ S0
log�0+9.67
135+T0

k A − B.T0 + 273.1/ W
mK

A 0.1678 W
mK

B 0.0001094 W
K

Pressure-viscosity coefficients

S0 1.084

G0 3.45

m 2.609 � 10−8
n 6.485 � 10−9

hcPR
= 141

�1.25
0 ˛0.375u1.25R1.5

e

F 0.875

�
1 − e−0.0387

Rs
Re

�
(11)

hcIE
= 11.15

�0.66
0 u0.66R0.766

e

F 0.213E0.447

�
1 − 0.72e−0.28.

Rs
Re

/
2
�

�
(12)

hcPE
= 3.61

�0.68
0 ˛0.53u0.68R0.446

e

E0.087F 0.063

�
1 − 0.61e−0.73.

Rs
Re

/
2
�

�

(13)

Here, E is the equivalent elastic modulus, u is the en-
training velocity, and Re and Rs are the equivalent radii
of curvature, respectively, parallel and perpendicular to u.
The calculation of those quantities is detailed in the next
subsection. The proper lubrication regime is determined in
a practical way by taking the highest of the values given by
Eqs. (10)–(13).

Thermal effects are included using a reduced value for
the central film thickness. This is obtained via scaling it
by a dimensionless reduction factor ˚ , for which several
models are available in the literature. The one described
in [27] is employed in our model:

˚ =
1

1 + 0.1.1 + 8.33S0.83/L0.64
; (14)

where S = �u=u and L = ˇ �0u2

k
is the dimensionless

thermal loading parameter. Their values can be elicited from
Table1.

It should be emphasized that the equations introduced
within this section serve as preliminary estimations of the
lubricant film thickness and coefficient of friction. Of note-
worthy consideration, the thermal effects linked to high
sliding speeds are currently unaccounted for in the given
formulas.

2.2 Kinematic relationships at the contact point

In order to use the formulas presented in the previous sub-
section, it is necessary to calculate the entraining velocity u

and the slide-to-roll ratio S . The entraining velocity of the
lubricant is the relative velocity of the surface with respect
to the contact point, or vice versa. The overall entraining
velocity of the lubricant is the average of the entraining
velocities of the two mating surfaces.

Previous studies [20, 28] have presented formulas for
the entraining velocity that presume the availability of a lo-
cal orthogonal parametrization of surface coordinates [29].
This is usually too strong of an hypothesis and certainly
not very convenient when dealing with spiral bevel (and
hypoid) gears. Here, we set out to generalize the calcula-
tions of the entraining velocity. To this sake, we first intro-
duce the general equations that describe the contact point
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Fig. 1 Schematic representation of two contacting bodies

on the surfaces of two mating bodies, as shown in Fig. 1.
Given c1 = c1.˛1/ and c2 = c2.˛2/ in tangent contact, the
following two equations are satisfied:

(
d1 + c1 − d2 − c2 = 0

n1
�
b!1c1 + Pd1 − b!2c2 − Pd2

�
= 0.

(15)

Here, ˛1; ˛2 2 R2 represent the surface coordinates and
d1 and d2 mark the position of a generic point on the axis
of each mating surface. The first equation expresses coin-
cidence of the two surfaces at the contact point, while the
second is the equation of meshing. The symbol n1 denotes
the unit normal vector of surface 1 at the contact point,
while b!1 and b!2 are the spatial angular velocities (with
respect to the fixed frame S0) in their skew-symmetric ma-
trix representation.

To determine the contact point velocity, we differentiate
the system of Eqs. (15) with respect to time, which results
in the following linear system of equations in P̨ 1 and P̨ 2:

A

� P̨ 1
P̨ 2
�
= b; (16)

where

A =
�

c1;˛1 −c2;˛2

.b!1c1 − b!2c2/ n1;˛1 + n1Tb!1c1;˛1 −n1Tb!2c2;˛2

�
;

(17)

b =

� b!2c2 − b!1c1
−nT

1

�b!1b!2 − b!2
2

	
c2

�
; (18)

and

ci;˛i
=


ci;˛i1 ci;˛i2

�
; i = 1,2. (19)

Fig. 2 Reference frames of two contacting bevel gears with misalign-
ments .E; P; G; ˛/. Symbol ˙ denotes the shaft angle

We shall note that the terms in A and b have been ob-
tained by assuming Pd1 = Pd2 = Rd1 = Rd2 = 0 (which
is exact for mating gears) and Pb!1 ' Pb!2 ' 0 (which
is correct under the hypothesis of constant angular veloci-
ties). The scheme of two mating bevel gears are shown in
Fig. 2. It can be observed that d1 and d2 have the function
of incorporating possible misalignments or mounting errors
into the system. These errors are represented by the typical
.E; P; G; ˛/ parameters. The solution of Eq. (16) allows us
to obtain the velocity of the contact point as it moves over
the two surfaces as follows:

ue1 = c1;˛1 P̨ 1 (20)

ue2 = c2;˛2 P̨ 2: (21)

The overall entraining velocity then becomes:

ue =
1

2
.ue1 + ue2/ (22)

The surface contact points cj, tangential vectors cj;˛j , and
normals nj (j = 1,2) required in Eq. (16) can be obtained at
each time step and contact zone through post-processing of
the LTCA data. Additionally, the principal curvatures Kx

and Ky and their corresponding directions �x and �y for
the equivalent contact can also be extracted.
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Finally, to obtain the radius of curvature Re along the
entraining direction and along the side-leakage direction
Rs , the angle � between �x and ue can be determined by:

� = arctan
��
ueT �y

	
=
�
ueT �x

		
(23)

which can then be used to transform the principal radii of
curvature:

Re =
�
Kxcos

2� + Kysin
2�
	−1

Rs =
�
Kxsin

2� + Kycos
2�
	−1

:
(24)

2.3 Frictional power losses estimation

The friction coefficient computed using Eq. (1) represents
the mean coefficient of friction for a mating tooth pair over
the instantaneous contact zone. Although for the determi-
nation of such friction coefficient the sliding and entraining
velocities are evaluated at the mean contact point, power
loss estimation requires that the sliding velocity field is
considered over the entire contact zone. To achieve this,
sliding velocities and normal loads applied to each cell of
the computational grid are extracted from the simulation
post-process data. The computational grid is the local sur-
face mesh employed by the FEA solver to compute contact
pressures (through the Boussinesq solution for an elastic
half-space), as shown in Fig. 3. The frictional power loss
at the i-th timestep and at the k-th contact zone, associated

Basic Data
Initial guess

identification

Patternsearch

polling

Worker 2

Worker N

Identification

module

LTCA and 

post-process

Scalarized 

achieviement

Worker 1

Mesh size 

< tol
yes

no

Optimal sol. 

Increase

mesh size

Reduce 

mesh size

yes

no

EHL friction

Fig. 4 Flowchart of the parallelized micro-geometry optimization framework

Principal contact point

l-th mesh grid

Fig. 3 Schematic representation of the surface mesh grid employed by
the simulation tool. The lubrication properties are evaluated by com-
puting the kinematic properties at the principal contact point of the
instantaneous contact zone, whereas the power losses account for the
sliding speeds and normal forces at all the individual cells of the grid

with a friction coefficient fik , is then estimated as the sum
of the products of the sliding velocities vsikl

and the normal
loads Fikl for all Nk cells within the contact zone:

Pik = fik

NkX
l

vsikl
Fikl : (25)

3 Optimization andPareto-front exploration

This section introduces the framework for optimizing the
micro-geometry of face-milled spiral bevel gears. The op-
timization pipeline for the micro-geometry is depicted in
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Fig. 4, outlining the steps presented in the next sections.
The framework utilizes MATLAB interfaced with a FEA-
based contact solver to launch an analysis and subsequently
post-process the results, as initially described in [21].

The main components of the pipeline are the following:

1. definition of the initial geometry and the optimization
variables;

2. identification of the machine-tool settings which generate
the closest flank modifications described by the polyno-
mial ease-off;

3. description of the interface between the optimizer and the
LTCA simulation;

4. post-processing of the LTCA simulation results for the
calculation of objective functions and constraints.

The LTCA solver, by being finite element-based, is
known to be computationally expensive, especially when
employed in automatic optimizations. Furthermore, numer-
ical noise caused by the discretization of the underlying
problem would hamper its direct use in gradient-based
optimizers.

To overcome both limitations at once, the (direct search)
patternsearch algorithm, from the MATLAB’s Opti-
mization Toolbox, has been employed with parallel calls
to LTCA simulations. At each iteration, a complete poll is
performed in parallel, exploring the variable space along
all its directions, thereby significantly reducing the op-
timization time. It is important to note, however, that
patternsearch is designed as a local minimizer. Dur-
ing the exploration of the Pareto-front within a multi-
objective optimization scenario (presented in the numerical
section), our expertise guided the choice of initial guesses
to ensure that a satisfactory solution is obtained by the
optimizer, particularly for the initial single-objective mini-
mizations. Subsequently, the initial guesses were provided
by averaging the solutions found during the Pareto-front
exploration.

3.1 Initial gear geometry generation and
optimization variables

The surface geometry generation is a well-established topic
in the gear literature. Pioneered by Litvin [30], mathemati-
cal tools to simulate the envelope surface between the grind-
ing tool and the working blank, borrowed from differen-
tial geometry, have been extensively described and applied.
Nonetheless, to make this step more systematic and ele-
gant, the Lie Group method borrowed from robotics [31]
has been employed to parameterize the face-milling gear
generation.

In order to clearly describe the machine-tool setting iden-
tification algorithm, it is necessary to reintroduce the fun-
damental mathematical concepts involved in describing the

Fig. 5 Tool settings that define the grinding wheel section profile. Pro-
file arcs: (I) Edge fillet, (II) Toprem Blend, (III) Spherical radius and
(IV) Flankrem blend

family of tool motions and the well-known equation of
meshing. Fig. 5 shows the cross section profile of the grind-
ing wheel. The tool surface points are defined by pt .xt ; �; �/

and the associated normals by nt .xt ; �; �/, where .�; �/ are
the surface variables and xt are the tool settings that de-
fine its shape. The envelope family of tool surfaces (and its
normals) during motion can be expressed as follows1:

pg.x; �/ = ggt.xm; '/pt .xt ; �; �/

ng.x; �/ = ggt.xm; '/nt .xt ; �; �/
; (26)

The homogeneous transformation matrix ggt.xm; '/ 2
SE.3/ maps the tool reference frame fT g to the gear blank
frame fGg, according to the Gleason UMC hypoid gener-
ator shown in Fig. 6, and ' represents the cradle rotation.
The vector xm includes all the machine settings.

The points of the tool family belong to the envelope
surface if the equation of meshing is satisfied:

f .x; �/ = nt .xt ; �; �/T bV t
gt .xm; '/pt .xt ; �; �/ = 0. (27)

Here, bV t
gt .xm; '/ 2 se.3/ is the homogeneous form of

the body twist that describes the rigid-body velocity of fT g
with respect to fGg, with components expressed in frame
fT g. With � =



� � '

�T
, we compactly represent the

enveloping triplet.
To optimize the micro-geometry, ease-off modification

surfaces are described by polynomials pe.u; vI c/ expressed
as:

pe.u; vI c/ = S.u; v/T c: (28)

Specifically, shape functions S.u; v/ [32] are used to con-
struct a quartic polynomial. A vector c is constructed from
nine coefficients, each corresponding to a node, as shown

1 Here points and vectors are expressed in homogeneous coordinates.
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Fig. 6 Schematic of the Gleason UMC hypoid generator

z

R

Fig. 7 Polynomial ease-off used to drive the optimization, represented
in the zR axial plane of the blank. The optimization variables c repre-
sent the nodal values of the quartic element employed to describe the
ease-off

in Fig. 7. This vector is used to define the shape of the
tooth flank modification, and it is employed as the vector
of optimization variables. However, only eight of the nine
coefficients are actually used as optimization variables: the
9-th node is kept fixed (at zero) to avoid tooth thickness
variations.

After sampling the polynomial over a 11 � 22 grid of
N = 242 points, the ease-off values are mapped onto the
zR axial plane of the tooth flank, as in Fig. 7.

The ease-off hi at the i -th point of the grid then defines
a target grid point according to the following equation:

p�
i = pg.x; �i / + hing.x; �i /; .i = 1; :::; N / (29)

This target grid is then used to identify the machine-tool
settings x� that generate the best-fit envelope surface, as
described in the following section.

3.2 Machine-Tool Settings Identification

In a previous study [21], we demonstrated the benefits of
using a sparse formulation variant of [33] to describe the
nonlinear programming (NLP) problem of identifying the
machine-tool settings required to obtain a given tooth flank
modification. This approach offered benefits in terms of
both robustness and computational efficiency. The compu-
tational efficiency was so remarkable that it allowed the
identification step to be integrated directly into the opti-
mization loop, immediately preceding the LTCA simula-
tion.

We briefly introduce here the algorithm formulation. The
identification is framed as the following constrained non-
linear least-squares problem (NLP):

min
x;�;h

1

2
hT h

s.t.

8̂
<̂
ˆ̂:

:::

p.�i ; x/ + n.�i ; x/hi − p�
i = 0

f .�i ; x/ = 0
:::

.i = 1; :::; N /

(30)

where:

� x =


xt xm

�T
is the vector of machine-tool settings;

� �i =


�i �i 'i

�T
is the triplet at the i-th point (of N )

of the pinion tooth surface;
� h is the vector of the residuals (deviations) between the

basic flank surface and the target surface; hi defines the
i-th component (positive for material removal);

� p.�i ; x/ and n.�i ; x/ are the generic position and normal
vectors of the family of the tool surfaces during motion;

� f .�i ; x/ is the equation of meshing associated with the
i -th point.

The CasADi framework [34] is used to create efficient sym-
bolic expressions for the NLP problem and its gradients.
The interior-point algorithm IPOPT [35], directly inter-
faced with CasADi, is employed as back-end solver.
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3.3 MOO problem

The micro-geometry design is formulated as a multi-ob-
jective optimization problem according to the method de-
scribed in [36]:

min
c2F f.x

�.c//; (31)

where f =


f1 f2

�T
is the vector of the two nonlinear

objectives that need to be simultaneously minimized, and c
are the polynomial coefficients introduced previously. In the
present paper, the trade-offs between NVH performances
and efficiency losses are sought. Therefore:

� f1.x�.c// = RMS .HLTE.x�.c///, root mean square of
the first three harmonics of the loaded transmission error
(LTE) (in 	rad);

� f2.x�.c// = eL.x�.c//, efficiency loss (in percentage
points).

The following nonlinear constraint needs to be satisfied:

g1.x�.c// = max.proot; ptip; pheel; ptoe/ − pedge � 0

g2.x�.c// = pmax − ptol � 0
(32)

The constraints ensure that edge-loading is avoided by spec-
ifying that the contact pressure values at the tooth edges
(root, tip, heel, and toe) must not exceed a certain threshold
pedge. The maximum contact pressure is not accounted for
in the objective vector. However, to take account of the ma-
terial limitations in terms of pitting load carrying capacity,
its maximum value is restrained by the tolerance ptol in the
second nonlinear constraint of Eq. (32).

To guarantee manufacturability of the tooth flank modifi-
cations, the previously described identification is performed
before the LTCA step. This is highlighted by the depen-
dency of the objectives and constraints on x�.c/: these are
the identified machine-tool settings x� associated with the
ease-off represented by specific c values. As a matter of
fact, while the optimization is guided by the polynomial
coefficients c, only the identified machine-tool settings x�
are fed back to the LTCA software to re-generate the ge-
ometry and to carry out the analysis, at each iteration.

The approach described in [36] is adopted to reformulate
the problem as a single-objective optimization problem via
a scalarizing achievement function s W R3 � R3 ! R and

to enforce the constraints through an exact penalty formu-
lation:

min
c2Bs.f.x�.c//Ief/ + 


2X
k=1

�
max.gk.x�.c//; 0/

	
(33)

where Eef is the selected reference point and 
 is the
penalty coefficient. The design variables are bounded to
a reasonable set B to better guide the optimization solver.
The following non-differentiable achievement function is
employed:

s.f.x�.c//Ief/ =

max

 
fi .x�.c// − ef i

f
(nad)

i − f
(id)

i

!
+ �1

2X
i=1

 
fi .x�.c// − ef i

f
(nad)

i − f
(id)

i

!
(34)

In Eq. (34), f (id)
i and f

(nad)
i represent the ideal and the nadir

values of the objectives. They are respectively the lower and
the upper bounds of the Pareto front and can be obtained
by minimizing the two objectives individually. Importantly,
they allow to properly normalize the objectives. A small
augmentation parameter �1 (usually � 10−4) is used to
avoid obtaining weakly Pareto-optimal solutions.

Compared to the more traditional weighting methods
used in similar optimizations, Eq. (34) allows non-convex
portions of the Pareto front to be explored. For further de-
tails, the reader is referred to [36].

It is important to remark that the optimization meth-
ods proposed here revolve on simulating only the nominal
operating conditions in terms of speed, torque and mis-
alignments. Different load cases may significantly steer the
corresponding misalignments which can result in sub-opti-
mal meshing conditions. To properly account for different
operating loads, further steps are necessary, as highlighted
for example in [37].

4 Numerical test case

The spiral bevel gear set used in this study is described
in Table 2, which provides the main data about its macro-
geometry. The optimization focuses on the operating con-
ditions of the drive side and, as such, the ease-off functions
are utilized to modify the pinion’s concave flank.

Before proceeding to the optimization, the machine-tool
settings are derived to define a virtual conjugate gearset,
which operates under the specified misalignments, accord-
ing to the methods outlined in [21]. The machine-tool set-
tings that are associated with the concave flank of the con-
jugate pinion are listed in Table 3.
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Table 2 Macro-geometry data for the spiral bevel gearset under study

Setting Value

Torque (pinion) 400Nm

Speed (pinion) 3000rpm

Hypoid offset 0mm

Shaft angle 90ı

Transmission ratio 1.722

Hand (pinion) Right

Pin. number of teeth 18

Gear number of teeth 31

Spiral angle 34ı

Outer cone distance 98.29mm

Facewidth 35mm

Pin. pitch angle 30.14ı

Gear pitch angle 59.86ı

Misalignments

E −0.0980mm

P 0.0840mm

G −0.0250mm

˛ 3.0351E-04 rad

Table 3 Initial machine-tool settings for the conjugate pinion

Setting Value

Tool settings

Point radius Rcnv
p1 67.523mm

Blade angle ˛cnv
B1 14.63ı

Blade type Curved

Spherical radius �cnv
B1 3000mm

Edge radius �cnv
E1 1.200mm

Flankrem type None

Flankrem depth d cnv
F 1 –

Flankrem radius �cnv
F –

Toprem type None

Toprem depth d cnv
T 1 –

Toprem radius �cnv
T –

Machine settings

Radial Setting R0 67.278mm

Cradle angle q0 50.788ı

Blank offset E0 −3.629mm

Machine root angle �0 27.563ı

Sliding base B0 0.615mm

Machine center to back D0 −2.796mm

Ratio of roll m 1.956

Modif. roll 2C −0.052

Modif. roll 6D −0.105

Modif. roll 24E −2.546

Modif. roll 120F −14.961

The optimization variables are the c coefficients de-
scribed previously. The following machine-tool settings are
selected to identify manufacturable tooth flank modifica-
tions prior to the LTCA step:

� all the tool settings excluding: edge radius, Toprem angle,
Flankrem angle (see Fig. 5);

� the following zero-th degree coefficients: R0, q0, E0, S0

and D0;
� modified roll coefficients up to the 4-th order: m, C , D,

E;
� modified radial motion coefficients up to the 4-th order:

R1, R2, R3, R4;

a

b

c

Fig. 8 Optimal solution corresponding to the minimum of eL. a Con-
tact pressure pattern: the sliding velocity pattern is overlayed to high-
light the concentration of contacts near the instantaneous axis of rota-
tion. b Optimal manufacturable ease-off (achieved via new machine-
tool settings). c Residual error after identification of the polynomial
ease-off
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� modified helical motion coefficients up to the 4-th order:
H1, H2, H3, H4.

Since the ease-off function used for optimization is a quartic
polynomial, using machine settings associated with higher-
degree motions may not be worthwhile.

The constraints are defined to enforce the maximum
contact pressure to be below 1600MPa (i.e., ptol =
1600MPa) and below 450MPa at the tooth edges (i.e.,
pedge = 450MPa).

a

b

c

Fig. 9 Optimal solution associated to the minimum of RMS .HLTE/.
a The contact pressure pattern is spread over the whole tooth surface.
The requirement of minimizing the LTE does not map distinctively into
a predictable contact pattern shape. b Optimal manufacturable ease-off
(achieved via new machine-tool settings). c Residual error after identi-
fication of the polynomial ease-off

4.1 Single objectiveminimizations

The two single-objective minimizations are carried out first.
This step is fundamental when dealing with objectives with
different units of measurements and/or different scales.

The solution obtained by minimizing the efficiency loss
eL, shown in Fig. 8, features a contact pattern (Fig. 8a)
that is localized around the trace of the instantaneous axis
of rotation on the tooth surface. Further localization of the
contact patterns is limited by the maximum allowable con-
tact pressure ptol = 1600MPa. It is worth noting that a peak
value pmax = 1595MPa was registered, which indeed com-
plies with the introduced pressure constraint.

Fig. 8b shows a contour plot of the optimal manufac-
turable ease-off, defined as x�.c/, at the solution. In Fig. 8c,
the difference between optimal ease-off associated with c
and optimal manufacturable ease-off x�.c/ (after machine-
tool setting identification has been completed) is illustrated.
The picture remarks the importance of the embedded iden-
tification step (see Fig. 4). If the identification process had
been performed post-optimization as a secondary step, the
discrepancy of the registered error in the range of 5 to 15
micrometers could have significantly affected the resultant
contact pattern, due to the potential deviation of the iden-
tified parameters from the optimal values obtained through
the optimization process.

It is worth also noting that, despite minimizing energy
losses, the eL solution is associated with a higher friction
coefficient (see the lower � values in Fig. 11) and possibly
with a higher risk of pitting caused by an increased chance
of contacts among surface asperities.

On the contrary, as shown in Fig. 9a, the solution mini-
mizing LTE is spread over the whole tooth surface. In this
case, the requirement of minimizing LTE does not map
distinctively into a predictable contact pattern shape. This
brings about the chance that multiple contact patterns share
the same performance in terms of LTE minimization with
the associated drawback of multiple local minima. Fig. 9b
and c illustrate again the importance of the embedded iden-
tification step to minimize the risk of potential deviations
when performing machine-tool setting identification as an
afterthought.

The significant disparity in frictional losses between two
single-objective solutions lies in the different averaged slid-
ing velocities, which are calculated by taking a weighted
average with respect to the local contact pressure over the
instantaneous contact zones. This is highlighted in Fig. 10.

4.2 Pareto front exploration

As a last step, we demonstrate that the proposed frame-
work allows to systematically explore distinct multi-objec-
tive optimal solutions by simply selecting different values
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Fig. 10 Comparison of the averaged sliding velocities of the contact
zones over the meshing cycle between the two single-objective solu-
tions.

Fig. 11 Comparison of the lambda ratio over the meshing cycle be-
tween the two single-objective solutions

Fig. 12 Scaled Pareto front for
the two conflicting objectives
RMS .HLTE/, root mean square
of the first three harmonics of the
loaded transmission error (LTE)
(�rad), [vertical axis] and eL,
efficiency loss (%), [horizontal
axis]

pMax = 1595 MPa

pMax = 1273 MPa

pMax = 1472 MPa

pMax = 1484 MPa

pMax = 1536 MPa

pMax = 1466 MPa

P1

P2

P3

P4

P5
P6

for the reference point ef. Fig. 12 displays the explored
Pareto front, which includes the solutions from the previ-
ous single-objective optimizations, labeled P1 and P6, as
well as four additional Pareto-optimal solutions, namely
the points P2; :::; P5. Quantitative values of the solutions
are provided in Table 4.

Notably, Pareto solutions P2 and P3, despite belonging
to a concave region of the front, have been correctly deter-
mined by our procedures. This clearly indicates the advan-
tage of the employed scalarized achievement function de-
fined in Eq. (34) rather than the typical weighting method,
which would have been unable to obtain such solutions.
Moreover, solution P5 is nearly dominant over P6, with
a significant reduction of � 0.135% in efficiency losses
(from 0.890% to 0.755%) and only a negligible increase in
RMS.HLTE/ (from 0.76
rad to 1.23
rad).

It is worth noting that simultaneous minimization of
maximum contact pressure (pmax) and efficiency losses
(eL) would have resulted in a qualitatively similar Pareto
front, indeed confirming their conflicting nature. Intuitively,
contact pattern localization to minimize efficiency losses
leads inevitably to higher maximum contact pressure.
However, the same cannot be concluded when consider-
ing RMS.HLTE/ and pmax. Their correlation appears to
be more subtle and unpredictable as the minimum of the
RMS.HLTE/ is not necessarily associated with conjugate
mating surfaces, since elastic tooth contact and bending
deflections play a significant role.

If preventing gear pitting is a major concern, P6 could be
the best solution, although it presents significant efficiency
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Table 4 Detailed properties of the found Pareto-optimal solutions

Pareto pt. ref. pointef eL RMS.HLTE/ pmax

P1 – 0.680% 34.92�rad 1595MPa

P2 Œ0.707,30.64� 0.710% 30.26�rad 1536MPa

P3 Œ0.733,26.36� 0.727% 17.63�rad 1484MPa

P4 Œ0.759,22.08� 0.738% 7.65�rad 1466MPa

P5 Œ0.785,17.80� 0.755% 1.23�rad 1472MPa

P6 – 0.890% 0.76�rad 1273MPa

losses. Solutions P2 to P5 provide a good compromise be-
tween efficiency, LTE, and contact pressures. However, P1

may pose an increased risk of gear pitting, but it may be the
optimal solution for gears with very good surface finish and
advanced heat treatments, since it maximizes efficiency.

5 Conclusions

In this paper, an automatic methodology to explore Pareto-
optimal designs of bevel gears has been presented. Con-
current minimization of two conflicting objectives, namely
NVH level and frictional losses, was demonstrated. In the
first part, a semi-empirical model to estimate frictional
power losses under elasto-hydrodynamic lubrication was
described, which has been coupled to a state-of-the-art
loaded tooth contact analysis tool to obtain accurate pre-
dictions of the instantaneous load during meshing. The
automatic design relied on a multi-objective optimization
approach, where the design variables are represented by
few coefficients of a polynomial basis employed to de-
fine the tooth flank ease-off topography. Manufacturability
constraints were considered by a properly devised mech-
anism that allows to project the polynomial modifications
onto the feasible set of the machine-tool envelopes. The
frictional losses were evaluated with the aforementioned
model, whereas the NVH level was measured by the loaded
transmission error, directly available from the simulation
tool. The contact pressures, limited by the material prop-
erties, were properly included as nonlinear constraints in
the optimization problem from the outset. Application to
a test case involving the design of a spiral bevel gearset
has revealed that our methodology allows the designer to
find multiple Pareto-optimal solutions in a systematic and
automatic manner. We believe that the availability of a tool
that can present a range of solutions, enabling the designer
to choose the most appropriate one based on the unique
requirements of the given application, represents a signif-
icant advancement in the design of robust, low-noise, and
highly efficient gears.

Future research will be devoted to obtaining robust so-
lutions which also account for multiple operating loads and
corresponding misalignments.
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