
Computational Mechanics
https://doi.org/10.1007/s00466-023-02366-z

ORIG INAL PAPER

Computational instability analysis of inflated hyperelastic thin shells
using subdivision surfaces

Zhaowei Liu1 · Andrew McBride2 · Abhishek Ghosh2 · Luca Heltai3 ·Weicheng Huang4 · Tiantang Yu1 ·
Paul Steinmann2,5 · Prashant Saxena2

Received: 29 March 2023 / Accepted: 28 June 2023
© The Author(s) 2023

Abstract
The inflation of hyperelastic thin shells is a highly nonlinear problem that arises in multiple important engineering applica-
tions. It is characterised by severe kinematic and constitutive nonlinearities and is subject to various forms of instabilities.
To accurately simulate this challenging problem, we present an isogeometric approach to compute the inflation and asso-
ciated large deformation of hyperelastic thin shells following the Kirchhoff–Love hypothesis. Both the geometry and the
deformation field are discretized using Catmull–Clark subdivision bases which provide the required C1-continuous finite
element approximation. To follow the complex nonlinear response exhibited by hyperelastic thin shells, inflation is simulated
incrementally, and each incremental step is solved using the Newton–Raphson method enriched with arc-length control. An
eigenvalue analysis of the linear system after each incremental step assesses the possibility of bifurcation to a lower energy
mode upon loss of stability. The proposed method is first validated using benchmark problems and then applied to engineering
applications, where the ability to simulate large deformation and associated complex instabilities is clearly demonstrated.

Keywords Hyperelastic shells · Stability analysis · Isogeometric analysis · Catmull–Clark subdivision surfaces · Shell
buckling

1 Introduction

Many important applications involve thin structures com-
posed of natural rubber, synthetic elastomers or soft bio-
logical tissue undergoing nonlinear and large reversible
deformations. The response of these systems is often char-
acterised by severe kinematic and constitutive nonlinearities
and is subject to various types of instabilities. An accurate,
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efficient and robust isogeometric approach is developed here
to simulate the various instabilities that can occur. The pro-
posed method can predict the mechanical behaviour of thin
shells with arbitrary geometry, and provide guidance for the
design and application of highly-deformable thin structures.

Modelling of slender structures, such as rods, membranes,
plates, and shells, that exhibit both material and geometric
nonlinearities is particularly challenging. In these struc-
tures, one or more characteristic dimensions are negligible
with respect to the others. They can be modelled as lower-
dimensional manifolds embedded in the three-dimensional
space with appropriate kinematic simplifications. In this
work, we consider the case of incompressible hyperelas-
tic thin shells, which can be regarded as two-dimensional
surfaces with a small thickness (membranes and plates are
a particular subcase of shell structures). Thin shells can
undergo large deformation, even when subjected to small
external loads, and their analysis requires careful considera-
tion of kinematic, constitutive, and geometric nonlinearities.
The simplest kinematic approximation for shell models is the
Kirchhoff hypothesis. This states that lines perpendicular to
themid-surface remain straight and perpendicular to themid-
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surface after deformation, thereby neglecting out-of-plane
shearing, and leading to thewell-establishedKirchhoff–Love
thin shell theory, which is governed by a fourth-order par-
tial differential equation. The resulting weak formulation of
the governing equation seeks for solutions in spaces where
the components of the Hessian have a bounded L2 norm.
This requires a discretization where approximations are at
least globally C1 continuous [77]. Traditional finite element
methods, based on Lagrange polynomials, only provide C0

continuity. The required continuity can be obtained using
more exotic finite element approximations, such as Argyris
finite element spaces on triangles [3] or their equivalent on
quadrilaterals [38]. Ivannikov et al. [35] adopted a TUBA (T-
Rex Unstructured Boundary-conforming Adaptive meshing)
family of plate finite elements to provide aC1 continuous dis-
cretization for the Kirchhoff–Love shell. Other alternatives
include the weak imposition of the required continuity using
discontinuous Galerkin methods [54] and meshless methods
[34, 43].

An alternative approach that guarantees C1 continuity
comes from the isogeometric paradigm, where the basis
functions of the finite element spaces are inspired by
computer-aided design (CAD) principles. One of the earliest
presentations of this approach was by Cirak et al. [18] who
developed a finite element formulation based on Loop subdi-
vision surfaces for Kirchhoff–Love thin shells. This was later
extended to hyperelastic thin shells by Cirak and Ortiz [17].
Subdivision surfaces are a mature CAD tool widely used in
the animation industry and for engineering design. One of
their strengths is that they guarantee global C1 continuity
for arbitrary control point topologies (including extraordi-
nary vertices, i.e., vertices on a surface shared by a number
of cells different from four, and hanging node vertices), and
allow for fast evaluation using standard cubic spline func-
tions in all ordinary patches (i.e., all patches where vertices
are shared exactly by four cells). Shell formulations based
on subdivision surfaces have been extended to applications
including fracture [19], shape optimisation [6, 14], fluid–
structure interaction [20], structural-acoustic analysis [15,
16, 45] and piezoelectricity [48]. The use of more general
non-uniform rational B-splines (NURBS) basis functions
in the finite element context was proposed by Hughes et
al. [32] in 2005. It was applied to linear elastic and, later,
hyperelastic thin shells by Kiendl et al. [40, 41]. This for-
mulation has been used to solve fluid–structure interaction
problems by coupling shell formulation with an isogeomet-
ric BEM formulation [28]. Takizawa et al. [65] derived a
hyperelastic thin shell formulation with isogeometric dis-
cretization, where the out-of-plane deformation mapping is
taken into account. Tepole et al. [67] developed an isoge-
ometric formulation of Kirchhoff–Love shells to analyse
biological membranes. Roohbakhshan and Sauer [60] also
used an isogeometric rotation-free shell formulation tomodel

soft tissues. Huynh et al. [33] studied the elastoplastic large
deformation behaviour of thin shell structures using the iso-
geometric approach. IGA has also been extensively applied
to analyse hyperelastic solids [8, 10, 22, 27]. An attractive
feature of subdivision surfaces is that they can be evaluated
using spline functions while retaining a simple polygonal
mesh data structure. They are also able to represent complex
geometries and permit extraordinary vertices which enables
local refinement and patch-conforming approximations, both
challenges for NURBS.

Buckling of thin structures has also been studied using
IGA shell formulations. Guo et al. [24] proposed an IGA
framework for the buckling analysis of trimmedelastic shells.
Verhelst et al. [69] presented a formulation of stretch-based
material models for isogeometric Kirchhoff–Love shells
which was used to simulate the tension wrinkling of a thin
sheet.

The inflation of thin structures made from rubber-like
materials has numerous important engineering applications,
including tyres, airbags, air springs, buffers, pneumatic actu-
ators [44], and soft grippers [25]. The large deformation of
inflated hyperelastic circular plates has been studied exten-
sively using semi-analytical approaches [1, 26, 62, 75].
The inflation of other axisymmetric thin structures, includ-
ing cylindrical [23, 39, 56, 59], spherical [2, 70, 74] and
toroidal [58, 66, 68] membranes, has also been investigated
semi-analytically. Holzapfel et al. [30] presented a general
formulation of thin incompressible membranes to investigate
biological tissues using the finite element method. Bonet
et al. [11] analysed hyperelastic membranes containing an
enclosed fluid with a finite element approach. Rumpel et al.
[61] also developed a finite element model for gas and fluid-
supported membrane and shell structures.

The inflation of hyperelastic membranes and thin shells
often involves different types of instabilities. Limit point
instability is one of the most common and widely studied
forms of instability in inflating thin structures. Upon infla-
tion up to a critical pressure, thin hyperelastic structures lose
stiffness and can undergo very large inflation with only a
small pressure increment [9, 12, 39, 47, 51, 63, 66]. Another
well-known instability of hyperelastic membranes and thin
shells is global buckling which breaks geometrical symme-
try. It manifests as a bifurcation from symmetric deformation
to asymmetric deformation in an inflated structure at a criti-
cal loading point. Koiter [42] pioneered a method to evaluate
the critical load to cause such instability by analysing the sec-
ond and higher variations of the total potential energy. This
method has been used to analyse the bifurcation of inflating
circular [7, 62], cylindrical [59], and toroidal [58, 66, 68]
membranes. In the nonlinear finite element method, onset of
instability can be checked by an eigenvalue analysis of the
stiffness (tangent) matrix after each load step. As the small-
est eigenvalue approaches zero, the structure is at a critical
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point of instability. Moreover, the eigenvector correspond-
ing to the near-zero eigenvalue provides information about
the tangent direction of the new solution correspondng to
potential loss of stability. By examining the eigenvector, it is
possible to determine whether the instability is a bifurcation
or a limit point. If the eigenvector breaks the symmetry of
the geometry, then it is a bifurcation, which may result in a
change in the configuration of the structure. The method of
using the eigenvector to check for instability and to induce
bifurcation was introduced by Wagner and Wriggers [71],
De Borst [21] and Wriggers and Simo [73].

Most of the aforementioned instability analyses of hyper-
elastic thin structures are limited to simple geometries,
and computations performed until the onset of bifurca-
tion. Rapid developments in manufacturing, soft robotics,
and biomedical engineering motivate the need to overcome
such restrictions. To this end, an incompressible nonlinear
hyperelastic thin shell formulation is implemented using
an isogeometric approach based on Catmull–Clark subdi-
vision surfaces. The proposed method is able to handle both
kinematic and constitutive nonlinearities of hyperelastic thin
shells with arbitrary geometry. We demonstrate that multi-
ple types of instability associated with the large deformation
of hyperelastic thin shells can be captured. Furthermore, we
are able to compute the important post-bifurcation response.
Specific attention is paid here to thin shells undergoing large
inflation and the various resulting instabilities including limit
point, and loss of symmetry bifurcations.

The manuscript is organised as follows. Section2 intro-
duces the notation and defines the various coordinate sys-
tems. Section3 introduces the thin shell formulation, where
Sects. 3.1 and 3.2 define the geometric definitions and kine-
matics of nonlinear Kirchhoff–Love thin shells, respectively.
Section3.3 presents the constitutive relations of incompress-
ible Mooney–Rivlin material adapted to the specific shell
formulation. Thereafter, Sect. 3.5 derives the governing equa-
tion of a nonlinear Kirchhoff–Love thin shell using the
principle of virtual work. Section4 introduces the Catmull–
Clark subdivision surfaces and discusses the implementation
details of the isogeometric nonlinear finite element method
for hyperelastic thin shell. In Sect. 5, the algorithm to simu-
late the nonlinear deformation of hyperelastic thin shells is
illustrated, and the difficulties in capturing the snap-through
and bifurcation bucklings of inflated hyperelastic thin struc-
tures are emphasised. Finally, four numerical examples are
presented: a circular plate problem validates the proposed
method, and the snap-through buckling of a spherical shell
is simulated with the results agreeing well with analytical
solutions. The third numerical example investigates the bifur-
cation of a toroidal thin shell, while the last simulates the
inflation of an airbag.

2 Notation

2.1 Brackets

Square brackets [ ] are used to group algebraic expressions.
Round brackets ( ) are used to denote the dependencies of a
function. If brackets are used to denote an interval, then ( )

stands for an open interval and [ ] is a closed interval. Curly
brackets { } are used to define sets.

2.2 Symbols

Avariable typeset in a normal weight font represents a scalar.
A bold weight font denotes a first- or second-order tensor. An
overline indicates that the variable is defined with respect to
the reference configuration. If absent, the variable is defined
with respect to the deformed configuration. A scalar variable
with superscript or subscript indices normally represents the
components of a vector or second-order tensor. Upright font
is used to denote matrices and vectors.

Indices i, j, k, . . . vary from 1 to 3, while α, β, γ, . . . ,
used to indicate surface variable components, vary from 1 to
2. Einstein summation convention is used throughout.

The comma symbol in a subscript represents a partial
derivative, for example, A,β is the partial derivative of A
with respect to the βth coordinate.

2.3 Coordinates

ci represent the basis vectors of an orthonormal system in
three-dimensional Euclidean space and x, y and z are its
coordinates. θ i denote the basis vectors in the local element
space and θ1, θ2 and θ3 are its coordinates. The three covari-
ant basis vectors for a surface point are denoted as ai , where
a1, a2 are tangential vectors and a3 is the normal vector.

3 Nonlinear Kirchhoff–Love shell
formulation

The proposed formulation for hyperelastic thin shell com-
bines the approaches of Cirak and Ortiz [17] and Kiendl et
al. [41]. Any differences with the theory presented here are
summarised at the end of each subsection.

3.1 Geometry

Consider a shell in its reference configuration occupying a
physical domain �̄ ⊂ R

3, as shown in Fig. 1. Each point
r̄ ∈ �̄ is mapped from the parametric domain defined by the
coordinate system {θ1, θ2, θ3}. The Kirchhoff–Love hypoth-
esis states that lines perpendicular to the mid-surface of
the thin shell remain straight and perpendicular to the mid-
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Fig. 1 A Kirchhoff–Love shell occupying a physical domain �̄. Each
point r̄ ∈ �̄ can be defined using quantities on the mid-surface �̄ on
the shell as r̄ = x̄ + θ3n̄

surface after deformation. Hence, assuming the shell has a
uniform thickness h̄ in the reference configuration, the point
r̄ in the shell-space can be defined using a point on the mid-
surface �̄, denoted x̄ ∈ �̄, and the associated unit normal
vector n̄ as

r̄ = x̄ + θ3n̄, (1)

where θ3 ∈ [−h̄/2, h̄/2].
Figure 2 shows the reference and the deformed configura-

tion of the mid-surface. Both configurations can be mapped
from the parametric domain of themid-surface. The points on
the mid-surface in the reference and the deformed configura-
tions are denoted by x̄ and x, respectively. The mid-surface
point in the deformed configuration x can be related to the
mid-surface point in the reference configuration x̄ as

x = x̄ + u, (2)

where u denotes the displacement. Moreover, the covariant
basis vectors in the mid-surface of the reference and the
deformed configuration are computed as

āα = ∂ x̄
∂θα

, and aα = ∂x
∂θα

. (3)

Thus, the unit normal vectors in the two configurations are
defined by

n̄ = ā3 = ā1 × ā2
J̄

≡ ā3, and n = a3 = a1 × a2
J

≡ a3,

(4)

and J̄ and J are the respective mid-surface Jacobians given
by

J̄ = |ā1 × ā2|, and J = |a1 × a2|. (5)

Fig. 2 Position vectors in the reference configuration (x̄ ∈ �̄) of the
mid-surface and deformed configuration (x ∈ �) of the mid-surface
are related by the displacement vector u. �̄ is spanned by the covariant
basis {ā1, ā2} while � is spanned by the covariant basis {a1, a2}

The covariant components of the metric tensors for the
mid-surface points x̄ and x are respectively given by

āi j = āi · ā j , and ai j = ai · a j . (6)

The corresponding contravariant metric tensors āik and aik

are defined by

āik āk j = δij , and aikak j = δij , (7)

where δij denotes the Kronecker delta.
The thickness stretch λ3 for a finitely deformed shell is

defined by

λ3 = h

h̄
, (8)

where h(θ1, θ2) is the shell thickness in the deformed con-
figuration. We introduce a vector d combining the thickness
stretch and normal vector as

d = λ3a3, (9)

to write the position vector r of a point in the deformed
configuration of the shell-space as

r = x + θ3d, with x = x(θ1, θ2), d = d(θ1, θ2). (10)

Thus, the three-dimensional covariant basis vectors in the
shell-space of the reference and the deformed configurations,
respectively, follow as

ḡα = ∂ r̄
∂θα

= āα + θ3ā3,α, ḡ3 = ∂ r̄
∂θ3

= ā3, (11)
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and

gα = ∂r
∂θα

= aα + θ3d,α, g3 = ∂r
∂θ3

= d. (12)

The components of the covariant metric tensors in the shell-
space are given by

ḡi j = ḡi · ḡ j and gi j = gi · g j , (13)

and the contravariant components of themetric tensor at point
r follow as

ḡi j = ḡi · ḡ j and gi j = gi · g j , (14)

where ḡi and gi denotes the contravariant basis vectors in ref-
erence and deformed configuration of the shell-space defined
by

ḡi · ḡ j = δij and gi · g j = δij . (15)

The geometric definitions provided compare to those in
the literature as follows. Cirak and Ortiz [17] introduced a
stretch λ3 to capture the change of thickness, while Kiendl
et al [41] defined the third coordinate θ3 in terms of the
deformed thickness only introducing the thickness when pre-
senting the kinematics. The proposed method follows the
approach of Cirak and Ortiz.

3.2 Kinematics

The three-dimensional deformation gradient in the shell-
space is defined by

F = gi ⊗ ḡi . (16)

The corresponding right Cauchy-Green deformation tensor
follows as

C = FT · F = gi j ḡi ⊗ ḡ j , (17)

and its inverse is defined as

C−1 = F−1 · F−T = gi j ḡi ⊗ ḡ j . (18)

Thus, the components ofC−1 are the components of the con-
travariantmetric tensor defined inEq. (14).Upon substituting
Eq. (12) into (17), the right Cauchy-Green deformation ten-
sor can be expanded as

C = gαβ ḡα ⊗ ḡβ + λ23ḡ
3 ⊗ ḡ3 + [aα · d + θ3d,α · d]ḡα ⊗ ḡ3

+[aβ · d + θ3d,β · d]ḡ3 ⊗ ḡβ. (19)

The third and fourth terms are the components correspond-
ing to shear along the thickness direction. Since aα and n are
always perpendicular to each other, aα · d = 0. The term
θ3d,α · d = θ3λ3λ3,α can also be neglected. The change of
the thickness stretch with respect to the mid-surface coordi-
nates (λ3,α) is generally small for hyperelastic shells under
uniform inflation. This is commonly known as the long wave
assumption [50]. Furthermore, this term is multiplied by the
thickness coordinate θ3 which is also very small for thin
shells. Based on these arguments, we neglect the out-of-plane
shear terms to simplify the right Cauchy–Green deformation
tensor to

C = gαβ ḡα ⊗ ḡβ + λ23ḡ
3 ⊗ ḡ3. (20)

We note that this simplification may not be applicable for
shells with rapidly spatially varying thickness where large
loads may introduce localised deformation and instabilities
such as necking. However, we do not consider such problems
in this work.

Ignoring higher-order terms, the components of the
covariant metric tensors read

gαβ = aαβ − 2θ3bαβ, (21)

with the first and second fundamental forms of the mid-
surface of the deformed configuration

aαβ = aα · aβ and bαβ = aα,β · d = λ3aα,β · a3. (22)

Finally, the Green-Lagrange strain tensor can be expressed
as

E = 1

2
[C − I] = 1

2
[gαβ − ḡαβ ]ḡα ⊗ ḡβ + 1

2
[λ23 − 1]ḡ3 ⊗ ḡ3.(23)

Similar to Eq. (21), the components of the covariant metric
tensor in the reference configuration read

ḡαβ = āαβ − 2θ3b̄αβ, (24)

with the first and second fundamental forms of the mid-
surface of the reference configuration

āαβ = āα · āβ and b̄αβ = āα,β · ā3. (25)

Therefore, the Green–Lagrange strain tensor is expressed as

E =
[
εαβ + καβθ3

]
ḡα ⊗ ḡβ + 1

2
[λ23 − 1]ḡ3 ⊗ ḡ3, (26)

with the mid-surface strain and curvature

εαβ = 1

2
[aαβ − āαβ ] and καβ = [−bαβ + b̄αβ ], (27)
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corresponding to the stretching and bending strains, respec-
tively. The components of the right Cauchy-Green deforma-
tion and Green-Lagrange strain tensors are denoted as Ci j

and Ei j , respectively, in the following sections.
Cirak and Ortiz [17] preserved the partial derivative of λ3,

while the proposed method neglects this in accordance with
the long-wave assumption, which is similar to the approach
in [41].

3.3 Constitutive relations

The Piola–Kirchhoff stress tensor is a conjugate variable to
the Green–Lagrange strain tensor. It is defined in terms of
the covariant base vectors in the reference configuration as

S = Si j ḡi ⊗ ḡ j . (28)

The components of the total differential of the Piola-
Kirchhoff stress tensor, i.e., the elastic stiffness tensor, can
be computed using the chain rule as

dSi j = ∂Si j

∂Ekl
dEkl = 2

∂Si j

∂Ckl
dEkl = C

i jkl dEkl , (29)

where C
i jkl are the components of the fourth-order elastic

stiffness tensor C.
We are concerned with incompressible hyperelastic solids

in this work. The incompressibility constraint is given by

det(F) = 1. (30)

The Piola-Kirchhoff stress tensor for incompressible hyper-
elastic solids [29] is expressed as

Si j = 2
∂W

∂Ci j
− p̃Ci j , (31)

whereCi j are the covariant components of theCauchy-Green
strain tensor C, while Ci j are the contravariant components
of C−1. For the present shell formulation, Ci j = gi j and
Ci j = gi j as defined in Eq. (17) and (18), respectively. The
Lagrange multiplier p̃ enforcing incompressibility is identi-
fied as the hydrostatic pressure within the hyperelastic solid.
The three-dimensional constitutive equations presented can
be simplified to two dimensions by using the plane stress
condition for thin shells (S33 = 0) coupled with the incom-
pressibility constraint (30). This allows one to analytically
determine the Lagrange multiplier p̃. Thereafter, the general
expression of the stress tensor and the fourth-order elastic
tensor can be derived. The detailed derivations for applying
the plane stress conditions can be found inAppendixA.1. The
hyperelastic solid is modelled using theMooney–Rivlin con-
stitutive law and the explicit expression of the stress tensor
and elastic tensor components are provided inAppendixA.2.

3.4 Stress resultants for thin shells

The thin shell formulation considers a three-dimensional
solid as a two-dimensional surface with a thickness. Thus,
the internal forces arise as the stress resultants integrated
through the thickness. These are decomposed into the normal
force n̂ and the bending moment m̂, with their components
calculated from the Piola–Kirchhoff stress as

nαβ =
∫ h̄

2

− h̄
2

Sαβ Jc dθ
3, and mαβ =

∫ h̄
2

− h̄
2

Sαβθ3 Jc dθ
3,

(32)

where

Jc = |[ḡ1 × ḡ2] · ḡ3|
|[ā1 × ā2] · ā3| (33)

denotes the change of the in-plane Jacobian along the thick-
ness direction. Based on (26) and (27) for Eαβ , their total
differentials are calculated as

dnαβ =
[∫ h̄

2

− h̄
2

Ĉ
αβγ δ Jc dθ

3

]
dεγ δ +

[∫ h̄
2

− h̄
2

Ĉ
αβγ δθ3 Jc dθ

3

]
dκγ δ,

(34a)

dmαβ =
[∫ h̄

2

− h̄
2

Ĉ
αβγ δθ3 Jc dθ

3

]
dεγ δ

+
[∫ h̄

2

− h̄
2

Ĉ
αβγ δ

[
θ3

]2
Jc dθ

3

]
dκγ δ, (34b)

where Ĉαβγ δ denotes the in-plane components of the fourth-
order elastic tensor, the details of which are provided in
"Appendix A.2".

3.5 Virtual work principle

The virtualwork principle is applied to determine the govern-
ing equations for the nonlinear thin shell theory. This states
that

δWint − δWext = 0, (35)

where the internal virtual work is given by

δWint =
∫

�̄

[
nαβδεαβ + mαβδκαβ

]
d�̄, (36)

and the external virtual work by

δWext = ĥ
∫

�

biδui d� + ĥ
∫

St
τiδui dSt , (37)
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with

ĥ =
∫ h

2

− h
2

Jc dθ
3. (38)

Here, bi denotes the components of the body force. The com-
ponents τi are prescribed tractions at the boundary St ∈ ∂�,
where ∂� = ∅ for enclosed geometries. For convenience,
the internal virtual work is integrated in the reference config-
uration, while the external virtual work is calculated in the
deformed configuration.

4 Numerical implementation

4.1 Catmull–Clark subdivision surfaces

The fundamental idea of subdivision surfaces is to gener-
ate a smooth surface by repeatedly refining a coarse control
grid using a subdivision scheme that generalises bi-cubic uni-
formB-spline knot insertion. For arbitrary initialmeshes, this
schemegenerates limit surfaces that areC2 continuous every-
where except at extraordinary vertices where they guarantee
a C1 limiting surface. For regular vertices, the limit surface
generated by the Catmull–Clark subdivision scheme is iden-
tical to a bi-cubic B-spline surface. Figure3a shows a patch
of a subdivision surface with its control grid for regular ver-
tices. The grid divides the parametric domain of the surface
patch into nine elements, see Fig. 3b. The surface point x̄ in
the central element can be interpolated using a tensor product
of two cubic B-splines with 16 control points as

x̄(θ1, θ2) =
15∑
a=0

Ña(θ
1, θ2)Pa, (39)

where Pa is the ath control point and Ña denotes the corre-
sponding local base function for the element which is defined
by

Ña(θ
1, θ2) = Na%4(θ

1)N�a/4�(θ2),

here �•� is themodulus operator and%denotes the remainder
operator which gives the remainder of the integer division.

As a result of the tensor-product nature, each vertex in a
subdivision surface control grid is connected with only four
elements. One defines the number of elements connected as
the ‘valence’ of the vertex. A regular vertex in a Catmull–
Clark surface control grid has a valence of 4. However,
contrary toNURBSsurfaces,Catmull–Clark subdivision sur-
faces can handle irregular cases where the valence of a vertex
is not equal to 4. Thus it allows one to handle complex geom-
etry with arbitrary topology. These vertices are known as

‘extraordinary vertices’ and require a different algorithm for
the evaluation of the limiting surface, introduced in [64]. In
the numerical implementation, a reduction of convergence
rates has been observed around extraordinary vertices [46],
but the convergence rate can be improved by reparameterisa-
tion [37, 72, 76]. Catmull–Clark subdivision surfaces display
C1 continuity at extraordinary vertices [57], otherwise they
possessC2 continuity. Therefore, Catmull–Clark subdivision
surfaces provide an adequate C1 continuous discretisation
to satisfy the requirement of the Galerkin formulation of
Kirchhoff–Love shells,where the test and trial functionsmust
be in the Hilbert space H2(�) [18].

4.2 Discretisation and linearisation

The displacement of the mid-surface is discretised using
Catmull-Clark subdivision bases as shape functions, that is

u =
nb∑
A=1

N AuA, (40)

where nb is the total number of basis functions and is equal to
the total number of the control points, N A is the basis function
corresponding to the Ath control point.We note here that A is
the global index of the control point.uA denotes the Ath nodal
displacement vector with three components corresponding to
threeCartesian coordinates denoted as uA

i , leading to the total
number of degrees of freedom to interpolate u equal to 3nb.
The derivative of u with respect to the r th degree of freedom
is denoted as

δru = ∂u
∂ur

= N Aci , (41)

where the degree of freedom index r ∈ [1, 3nb], can be
expressed as r = 3[A − 1] + i . Thus, ur denotes the i th

component of uA and ci are the orthonormal basis vectors.
Thus the derivative of the strain components εαβ and καβ

with respect to the r th degree of freedom can be expressed as

δrεαβ = 1

2
[δraα · aβ + δraβ · aα],

δrκαβ = −λ3[δraα,β · a3 + aα,β · δra3] − δrλ3[aα,β · a3].
(42)

The derivatives of aα and aα,β are easily expressed using
the first and second derivatives of the basis functions as

δraα = N A
,αci , δraα,β = N A

,αβci . (43)

The derivatives of the normal vector δra3 and the thickness
stretch δrλ3 can be found in Appendix A. The derivatives of
the internal and external virtual work with respect to the r th

degree of freedom are given by

123



Computational Mechanics

Fig. 3 a An example patch of a Catmull-Clark subdivision surface. b The parametric domain of the patch and the corresponding bases functions

δrWint =
∫

�̄

[
nαβδrεαβ + mαβδrκαβ

]
d�̄,

δrWext = ĥ
∫

�

biδr ui d�,

(44)

where the boundary traction contribution has been ignored
for simplicity. The global residual vector R is defined by

R = Fint − Fext, (45)

where Fint and Fext are two global vectors with 3nb com-
ponents each, with r th components δrWint and δrWext,
respectively. The system is in equilibrium when the resid-
ual vector R = 0. The global tangential stiffness matrix K of
size 3nb × 3nb has entries in r th row and sth column given
by

Krs = δsδrWint − δsδrWext, (46)

where

δsδrWint =
∫

�̄

[
δsn

αβ δrεαβ + nαβ δsδrεαβ + δsm
αβ δrκαβ

+mαβ δsδrκαβ

]
d�̄

δsδrWext = ĥ
∫

�

δsbi δr ui d�,

(47)

and

δsn
αβ =

[∫ h̄/2

−h̄/2
Ĉ

αβγ δ Jc dθ
3

]
δsεγ δ

+
[∫ h̄/2

−h̄/2
Ĉ

αβγ δθ3 Jc dθ
3

]
δsκγ δ

δsm
αβ =

[∫ h̄/2

−h̄/2
Ĉ

αβγ δθ3 Jc dθ
3

]
δsεγ δ

+
[∫ h̄/2

−h̄/2
Ĉ

αβγ δ
[
θ3

]2
Jc dθ

3

]
δsκγ δ, (48)

and

δsδr εαβ = 1

2
[δraα · δsaβ + δraβ · δsaα],

δsδrκαβ = −δsλ3[δraα,β · a3 + aα,β · δra3]
− λ3[δraα,β · δsa3 + δsaα,β · δra3 + aα,β · δsδra3]
− δsδrλ3[aα,β · a3] − δrλ3[δsaα,β · a3 + aα,β · δsa3].

(49)

The second derivative of the normal vector δsδra3 and δsδrλ3
are computed and detailed in the Appendix A. It is important
to note that for inflated thin shells, the external load Fext is
a follower load and is thus a function of the displacements.
Hence the load increment must consider the deformation of
the geometry and the term δsδrWext is included in the tan-
gential stiffness matrix. For example, if the external load is a
uniform pressure inside an enclosed hyperelastic thin shell,
the first variation of the external virtual work with respect to
the degrees of freedom is given by

δrWext =
∫

�

p[a3 · δru] d�, (50)

where d� = J d�̄. Using expression (70) allows the second
derivative of the external virtual work with respect to the
degrees of freedom to be derived as

δsδrWext =
∫

�̄

p [[δsa1 × a2 + a1 × δsa2] · δru] J̄−1 d�̄.

(51)

Here, the pressure p is considered as an external load, and
the global vector Fext must be regenerated for each load step.
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5 Large deformation and associated
instabilities

5.1 Nonlinear solution algorithm

The inflated thin structures considered are incompressible
hyperelastic shells under uniform inflating pressure. The
inflation of such soft and thin structures causes large defor-
mations and a highly nonlinear mechanical response. The
hyperelastic shell formulation involves both kinematic and
constitutive nonlinearities.

Figure 4 provides a flowchart illustrating the algorithm
adopted for such nonlinear problems. Since the mechani-
cal response of the hyperelastic shell structures is nonlinear
and can be quite complex, the problem is solved incremen-
tally and an arc-length method is employed [36]. For each
increment, the Newton–Raphson method is used to solve the
nonlinear system of equations. It begins with an initial guess
of the global nodal displacement vector u0. The linearised
system of equations are formulated to solve the global vector
of the incremental nodal displacements �u and the incre-
mental load factor�κ (see Fig. 4). For eachNewton iteration,
the displacement is updated until the L2 norm of the residual
vector is less than a tolerance which is set as 0.01% of the
initial norm of the residual vector.

5.2 Limit point instability

The inflation of a hyperelastic thin shell induces insta-
bility due to the highly nonlinear mechanical response. The
most well-known instability phenomenon for inflated mem-
branes/shells is snap-through. Figure5a shows a plot of the
enclosed volume against the internal pressure of an ideal
hyperelastic shell. The structure has large initial stiffness
when the internal pressure is relatively low and thus appears
difficult to inflate. With the increase of internal pressure,
the enclosed volume changes accordingly, and the structure
gradually loses its stiffness. When the pressure approaches
the limit point, the structure dramatically loses its stiffness,
undergoes very large inflation and jumps to a newequilibrium
state. For a thin shell with imperfections, snap-through may
occur prior to reaching the limit point. In order to capture the
non-uniqueness in the solution for structures exhibiting post-
buckling behaviour, a path-following and branching method
is used to compute the relationship between pressure and
volume.

5.3 Bifurcation from the principal solution

For a closed hyperelastic shell with initial geometric sym-
metry, the inflated structure will remain symmetric until the
internal volume exceeds a critical value, whereafter the struc-
ture may lose symmetry under a small perturbation. This is

due to the non-uniqueness of the solution of the nonlinear
problem and the total energy for the non-symmetrical state
being lower than that of the symmetric state. The point where
the solution curve differs is called the bifurcation point and
is shown in Fig. 5b. The bifurcation phenomenon is widely
observed in mechanical experiments due to manufactur-
ing imperfections and perturbations. However, numerically
simulating bifurcation instability is difficult because it is a
sudden change in a highly nonlinear problem. Moreover,
a slight change in the geometry or material property may
significantly affect the critical point at which the bifurca-
tion occurs. The proposed method to determine bifurcation
assesses the stiffness matrix of the structure after solving
each load increment. An accompanying eigenvalue analysis
is performed by solving

[K̃ − λeI]ue = 0, (52)

where K̃ is the reduced tangent matrix after applying the
essential boundary conditions for eliminating the rigid body
motion and rotation, λe is an eigenvalue, I denotes an iden-
tity matrix with the same size as K̃, and the corresponding
eigenvector is denoted by ue. Only the smallest few eigen-
values are critical as they dominate the instability reponse.
If the smallest eigenvalue of the stiffness matrix is nearly
zero, the solution of the next load increment may switch to
another solution branch. In the present work, the correspond-
ing eigenvector is used as the initial guess for the next load
step in order to perturb the structure and induce the bifur-
cation. It is noteworthy that the eigenvector is a normalised
vector, which needs to be scaled in order to serve as a dis-
placement perturbation. The choice of the scaling factor is
important: if the factor is too small, the solution will still
follow the original path, and if the factor is too large, the
system of equations will be difficult to solve. This method
is embedded in the nonlinear algorithm and coloured in red
in Fig. 4.

6 Numerical examples

Four numerical examples are presented to illustrate the pro-
posed method. The numerical formulation is implemented
using the finite element library deal.II [4, 5]. We first solve
the benchmark problem of the inflation of a Mooney–Rivlin
circular plate to validate the method and demonstrate its
accuracy. The inflation of a spherical shell is then simu-
lated for both neo-Hookean and Mooney–Rivlin materials
and validated against analytical solutions. This problem also
demonstrates the ability of the arc-length method to follow
a nonlinear path and capture the limit point instability. Next,
the inflation of a Mooney–Rivlin toroidal shell is computed.
Here, in addition to the limit point instability, we capture
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Fig. 4 Algorithm for solving
the nonlinear hyperelastic thin
shell formulation

the bifurcation point and the post-bifurcation response of the
toroidal shell. Finally, the ability of the proposed method
to model the large and complex deformation of an arbitrary
geometry is demonstrated by computing the inflation of an
airbag modelled using a Saint Venant–Kirchhoff constitutive
law. All computations are performed using dimensionless
quantities.

6.1 Circular plate inflated with uniform pressure

The first example considered is a circular inflated hyperelas-
tic plate. The plate is simply supported and the pressure is
considered to be a uniform load which is always perpendicu-
lar to the deformedmid-surface of the plate. Thus the pressure
is a follower load and it is a function of the deformation. This
problem was first analysed in [55] and has become a bench-
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Fig. 5 Representative volume-pressure plots for hyperelastic thin shells illustrating two types of instabilities: a Snap-through and b Bifurcation

Fig. 6 a The initial control grid and the limit surface of the circular plate. b The deformed shape of the circular plate when dimensionless inflating
pressure p = 35

mark problem for incompressible hyperelastic shells [17, 31,
53]. Figure6a shows the initial control grid with 80 elements
and the limit surface of the circular plate. The radius of the
plate is 7.5 and the thickness is 0.5. The material parame-
ters for the Mooney–Rivlin model are c1 = 80μ, c2 = 20μ,
where μ is the shear modulus. We define the dimensionless
pressure p = P/μ, where P is the real pressure. Figure6b
shows the deformed domain for p = 35.

The converged numerical result is obtained after two uni-
form refinements (1440 elements) and is compared with the
literature in Fig. 7. The result has a slight offset compared to
Hughes and Carnoy [31] and Cirak andOrtiz [17], and agrees
perfectly with the recent work by Nama et al. [53], whose
shell theory is similar to [41] and was applied to problems
in biomechanics. This numerical example demonstrates the
ability of the proposed method to solve a problem combining
both membrane and bending deformations.

Fig. 7 Variation of the inflating pressure pwith themaximumdisplace-
ment (max(|u|)) for the inflation of a circular plate. Comparison of the
solution based on the present formulation with those presented in the
literature
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6.2 Inflation of a spherical balloon

The second example considered is the inflation of a spheri-
cal balloon, which was analytically studied in Section 6.3 of
[29]. It is a widely used benchmark problem for hyperelastic
shell formulations [13, 17, 41]. Figure8a shows the geometry
for the spherical balloon. The balloon is inflated with uni-
form pressure applied from the inside. For an incompressible
Mooney–Rivlin model, the analytical solution of the internal
pressure of the balloon is

p = 4h̄

R̄

[
c1[λ−1 − λ−7] − c2[λ−5 − λ]

]
, (53)

where R̄ is the radius of the spherical shell in the reference
configuration and h̄ is the undeformed thickness.We take the
values R̄ = 10 and h̄ = 0.1. For the spherical hyperelastic
shell, the stretching of the mid-surface is the same in all
directions, thus λ1 = λ2 = λ. Due to the incompressibility
constraint, the thickness stretch can be computed as λ3 =
1/

√
λ.

Figure 8b shows the control mesh with 192 elements com-
prising one-quarter of the hemisphere used for the numerical
simulation. As indicated, symmetry boundary conditions are
applied to three edges by constraining the corresponding
degrees of freedom. Two sets of material parameters are
tested for this example. The parameters for the first case are
c1 = 0.5μ and c2 = 0, where μ = 4.225 × 105. When c2
is set to zero, the constitutive model reduces to an incom-
pressible neo-Hookean. The second case of parameters is
c1 = 0.4375μ and c2 = 0.0625μ, thus c1/c2 = 7. Figure9
shows that the numerical results for both tests perfectly agree
with the analytical solutions.

For the first case, the internal pressure of the spherical
balloon reaches the limit point when λ = 1.38. If the volume
of the balloon keeps increasing, the internal pressure grad-
ually decreases. However, in the second case, the internal
pressure will first decrease after the limit point and then rise
again, exceeding the pressure at the limit point. The complex
nonlinear response of the structure is captured by the arc-
length method. Figure9 also shows the inflated profiles of
the spherical balloon for both cases and the internal pressure
values are indicated with the colouring. If the two balloons
are inflated using pressure control, the neo-Hookean balloon
will “explode” when it is pressurised beyond the limit point,
because that is the maximum pressure it can withstand. The
Mooney–Rivlin balloon may undergo a sudden and large
deformation at the limit point due to the increased pressure
and reach a new equilibrium state. This is the snap-through
phenomenon which is normally considered as an instability
of the structure. With the nonlinear algorithm and arc-length
method, the proposed formulation can easily capture this phe-
nomenon numerically even for complex structures.

6.3 Loss of symmetry during the inflation of a
toroidal thin shell

This example considers the bifurcation of an inflated toroidal
thin shell. A torus is the simplest example of a genus 1 ori-
entable surface. Toroidal membranes and shells are widely
applied in engineering applications such as tyres, air springs,
soft grippers and inflated actuators. The bifurcation instabil-
ity (loss of symmetry) of a toroidal membrane is examined
semi-analytically in [68]. Here, a similar problem is analysed
numerically for a thin shell.

The structure is modelled as an enclosed hyperelastic thin
shell and the inflation is simulated. The internal pressure of
the thin shell is applied incrementally as an external force and
the displacements are solved by using the Newton–Raphson
method for each load step. After the deformed equilibrium
state is achieved for each load step, an eigenvalue analysis of
the stiffness matrix, as introduced in Sect. 5.3, is performed
to check stability. When the stiffness matrix has nearly
zero eigenvalues, the structure is in an unstable state where
sudden geometric changes may occur to achieve a lower
energy state. The eigenvector corresponding to the nearly
zero eigenvalue indicates the direction of the possible sudden
change. If it breaks the original symmetry of the structure,
the inflated toroidal thin shell will bifurcate to a new non-
symmetric branch.A control gridwith 256 elements shown in
Fig. 10a renders a limit mid-surface of the toroidal thin shell
shown in Fig. 10b. The minimum bounding box for the limit
surface is [−10.6522, 10.6522] × [−1.80474, 1.80474] ×
[−10.6522, 10.6522]. It is a relatively slender torus and its
aspect ratio is approximately 4.9. The thickness of the shell
is set to 0.01 and the same material parameters c1 and c2
as for the spherical balloon example in Sect. 6.2 are adopted
here.

Figure 11a shows the evolution of the internal pressure
against the enclosed volume for the toroidal thin shell mod-
elledwithCatmull-Clark subdivision surfaces.When the thin
shell is inflated to the limit point, the stiffness matrix has a
pair of nearly zero eigenvalues whose corresponding eigen-
modes are orthogonal and they are both non-symmetric. One
of the eigenmodes is shown in the figure. The limit point is
the earliest point at which bifurcation is likely to occur. The
eigenmode is used to perturb the structure in the following
load steps and a bifurcated solution is branched off from the
principal solution. Fig. 11b indicates that the toroidal shell
bifurcates to a non-symmetric branchwith lower total energy.
The inflated shapes of the toroidal thin shell for both branches
are selectively plotted in Fig. 12.

6.4 Inflation of an elastic airbag

In the final example, we consider the problem of inflation of
an elastic airbag. Due to the non-convex energy functional,
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Fig. 8 a Geometrical setting of a spherical balloon in the reference and
deformed configurations, showing only half of the cross-section. b The
mesh of a quarter of the hemisphere (one-eighth of the full sphere) is

used for the numerical test and the symmetry assumption is adopted by
constraining the corresponding degree of freedom for the edges shown
in the figure

Fig. 9 Variation of the inflation pressure against the in-plane stretch
values (λ1, λ2). The numerical and analytical stretch-pressure curves
for the inflated balloons (Case 1: neo-Hookean model, c1 = 0.5μ
and c2 = 0; Case 2: Mooney–Rivlin model, c1 = 0.4375μ and
c2 = 0.0625μ, where μ = 4.225 × 105 ). Excellent agreement is
observed between the analytical and numerical solutions for both mate-

rial models. The inflated profiles of the two cases are shown to the
right. A full undeformed balloon is shown uncoloured (grey) for both
cases and the deformed profiles for increasing load steps are shown as
hemispheres. The colour indicates the value of internal pressure. For the
second case, the balloon may experience snap-through during inflation

Fig. 10 A smooth toroidal
surface is modelled with a
relatively coarse control grid. a
The control grid with 256
elements. b The limit surface of
the toroidal thin shell
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Fig. 11 Numerical computation
of the variation of the applied
pressure against the enclosed
volume for the inflated toroidal
thin shell is plotted in (a). In this
case, bifurcation occurs
immediately after the solution
reaches the limit point. The
asymmetric eigenmode at the
bifurcation point is also shown.
b The total energy of the
bifurcated non-symmetric
branch has lower total energy
than the principle branch

this is a highly nonlinear problem and is widely considered
a classic example to study complex deformation of mem-
branes and thin shells [13, 17, 49, 52]. Due to the closely
distributed multiple local minima, the computational solu-
tion to this problem is challenging. The numerical result is
very sensitive to the computation parameters such as the ini-
tial load step, step size, element sizes and initial guesses. We
present this numerical example to showcase the ability of the
proposedmethod to capture complex deformation alongwith
inflation. A subdivision surface with 256 (16× 16) elements
is generated using a control mesh for a square plate in order

to model a half airbag. Symmetry boundary conditions are
applied to the four edges by constraining their degrees of
freedom corresponding to the displacements in z-direction
and the in-plane rigid body motion is also eliminated. The
constitutive relation selected for this problem is the Saint
Venant-Kirchhoff model as the airbag textile is often consid-
ered as inextensible. This strain energy density function is
expressed as

W (E) = E ν

2[1 + ν][1 − 2ν] [tr(E)]2 + E

2[1 + ν]E : E. (54)
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Fig. 12 Deformed shapes of the toroidal thin shell during inflation for both principal (a, b) and bifurcated c, d solutions are shown. The locations
of the deformation states A1, A2, B1, B2 in the pressure-volume curves are indicated in Fig. 11a

The Young’s modulus and Poisson’s ratio are set as E =
5 × 108 and ν = 0.4, respectively. The length of the side of
the square airbag is 1 and its thickness is set to 0.001. The
airbag is inflated by incrementally increasing the pressure
until the inflating pressure reaches the value p = 5000. Due
to the highly nonlinear nature of the problem, we observe a
bifurcation in the solution very close to the reference con-
figuration. As a result, the initial load step determines the
solution branch. Figure13a shows the final deformed shape
of the airbag for the casewhen the internal pressure p0 = 200
is selected as the first load step. If p0 increases to 500, the
final deformed shape of the airbag is different, as shown in
Fig. 13c. The complex deformations seen in Fig. 13a, c are
easily captured with our thin shell formulation.

7 Summary and conclusions

An isogeometric approach for the analysis of inflated hypere-
lastic thin shell structures has been proposed. TheKirchhoff–
Love hypothesis has been followed to develop the thin shell
formulation. An incompressible Mooney–Rivlin model has
been adopted to describe the constitutive behaviour of the
material. Based on the principle of virtual work, the weak
form of governing equations was formulated. The complex
nonlinear response of the inflated hyperelastic thin shell
has been numerically simulated with the aid of the arc-

length method combined with a Newton–Raphson iterative
approach to solve for displacements and internal pressure
incrementally. Both the geometry and deformation field are
discretised using the Catmull–Clark subdivision bases and
a finite element framework with C1 continuity is estab-
lished. Two types of global instabilities of the inflated thin
shell structures can be simulated, namely snap-through and
bifurcation. The proposed method was first validated by con-
sidering the inflated circular plate benchmark problem. A
numerical example of an inflated spherical shell further ver-
ified the formulation analytically. Moreover, the example
demonstrated the ability of the proposed method to predict
the snap-through phenomenon of hyperelastic shells with
enclosed volumes. Thereafter, a toroidal hyperelastic thin
shell was simulated to investigate the bifurcation of solu-
tion from a principal symmetric mode. After solving the
displacements for each inflation increment, the eigenvalues
of the stiffness matrix were checked, and the structure per-
turbed with the eigenvector if the corresponding eigenvalue
approaches zero, thus inducing bifurcation. The numerical
simulation shows that the toroidal thin shell analysed in
the present work may lose its symmetry when the inflation
reaches its limit point. Finally, a highly nonlinear problem of
inflation of an airbag has been simulated to demonstrate the
ability of the proposed method to capture complex states in
finitely deformed thin shells.
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Fig. 13 Results for the simulation of inflation of a square airbag mod-
elled using a St.Venant–Kirchhoff constitutive model at an internal
pressure of p = 5000. Due to the lack of convexity of the energy
functional for such a nonlinear problem, The solution of the inflated

airbag is not unique. Two deformed shapes are shown here, where a, b
are for the initial load pressure p0 = 200, while c, d are for p0 = 500.
The two deformed airbags have a similar total energy of 1.13×106 and
1.16 × 106, respectively

The numerical examples demonstrate the challenges that
are encountered in the simulation of the mechanical response
of thin shells due to strong kinematic and constitutive
nonlinearities. Even though the proposed formulation and
numerical implementation are able to capture complex defor-
mation states, care must be taken when selecting the initial
loading values, arc-length parameters, and the scaling factor
used in the eigenvalue analysis.
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A Appendix

A.1 Plane stress condition for thin-shells

Based on the Kirchhoff–Love assumption for thin shells, we
neglect the shear strain components thereby writing the var-
ious components of Cauchy–Green deformation tensor and
its inverse as

Cαβ = gαβ, Cα3 = C3α = 0 and C33 = g33 = λ23,

(55a)
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Cαβ = gαβ, Cα3 = C3α = 0 and C33 = g33 = λ−2
3 .

(55b)

Using equation (29), wewrite the in-plane stress components
Sαβ as

Sαβ = 2
∂W

∂Cαβ

− p̃Cαβ, (56)

For thin shells, the plane stress condition S33 = 0 results in

S33=2
∂W

∂C33
− C33 p̃=0, with C33 = λ23, C

33 = λ−2
3 .

(57)

Thus p̃ can be explicitly determined as

p̃ = 2
∂W

∂C33
C33 = 2λ23

∂W

∂C33
. (58)

Due to the plane-stress condition above, p̃ = p̃(Ci j ) thus
can be considered as a function of the strain tensor E or the
right Cauchy–Green deformation tensor C. Thus the total
derivative of the Piola–Kirchhoff stress tensor is now written
as

d

dE

(
S (E, p̃(E))

) = ∂S
∂E

+ ∂S
∂ p̃

∂ p̃

∂E
= 2

∂S
∂C

+ 2
∂S
∂ p̃

∂ p̃

∂C
.

(59)

Upon comparison with Eqs. (29) and (56) and using (58),
one can write the explicit expression for the in-plane compo-
nents of the fourth-order tensor C as (see [41] for a detailed
derivation)

C
αβγ δ = 4

∂2W

∂Cαβ∂Cγ δ

− 2
∂ p̃

∂Cγ δ

Cαβ − 2
∂ p̃

∂Cαβ

Cγ δ

− p̃[CαβCγ δ − CαγCβδ − CαδCβγ ], (60)

where, the partial derivative of the Lagrange multiplier can
be calculated from Eq. (58) as

∂ p̃

∂Cαβ

= 2
∂2W

∂C33∂Cαβ

λ23. (61)

The derivatives of in-plane stress components are expressed
as

dSαβ = 2
∂Sαβ

∂Cγ δ

dEγ δ + 2
∂Sαβ

∂C33

dE33 = C
αβγ δ dEγ δ + C

αβ33 dE33. (62)

Furthermore, the plane stress condition requires the incre-
mental stress in the thickness direction to vanish, that is

dS33 = C
33αβdEαβ + C

3333dE33 = 0. (63)

This relation can be used to explicitly calculate the differen-
tial strain component dE33 = −C

33αβdEαβ/C3333 and upon
substituting it into Eq. (62), the in-plane tangent tensor Ĉ is
modified as

Ĉ
αβγ δ = C

αβγ δ − C
αβ33

C
33γ δ

C3333 , (64)

where

C
αβ33 = 4

∂2W

∂Cαβ∂C33
− 2

∂ p̃

∂C33
Cαβ

− 2
∂ p̃

∂Cαβ

C33 − p̃[CαβC33]. (65)

The partial derivative of the Lagrange multiplier with respect
to C33 is given as

∂ p̃

∂C33
= 2

∂2W

∂C2
33

λ23 + 2
∂W

∂C33
. (66)

Thus Eq. (65) can be computed explicitly as

C
αβ33 = −Cαβ

[
6

∂W

∂C33
+ 4

∂2W

∂C2
33

λ23

]
. (67)

Similarly, the other two terms in Eq. (64) are

C
33γ δ = −Cγ δ

[
6

∂W

∂C33
+ 4

∂2W

∂C2
33

λ23

]
,

C
3333 = −λ−2

3

[
6

∂W

∂C33
+ 4

∂2W

∂C2
33

λ23

]
, (68)

and therefore a closed form expression for Ĉαβγ δ is obtained
by substituting (67) and (68) in Eq. (64).

A.2 Incompressible Mooney–Rivlin material

Due to incompressibility, the volume of the shell remains
unchanged, that is

∫

�̄

h̄ d�̄ =
∫

�

λ3h̄ d�, (69)

where d� = J d�̄ and J is the in-plane Jacobian, which is
expressed as

J = |a1 × a2|
|ā1 × ā2| = J

J̄
. (70)
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Thus the thickness stretch is the inverse of in-plane Jacobian,
that is

λ3 = J −1 = |ā1 × ā2|
|a1 × a2| . (71)

This strain energy density per unit undeformed volume for a
Mooney–Rivlin material model is expressed as

W (C) = c1[I1 − 3] + c2[I2 − 3], (72)

where I1 and I2 are the first and second invariants of C,
defined as

I1 = tr(C) = λ21 + λ22 + λ23 and

I2 = 1

2

[
tr(C)2 − tr(C2)

]
= λ−2

1 + λ−2
2 + λ−2

3 . (73)

If c2 = 0, the model reduces to neo-Hookean. We explic-
itly provide the derivatives of the strain energy density for
subsequent reference as

∂W

∂Cαβ

= c1ḡ
αβ + c2[Cγ δ ḡ

γ δ ḡαβ − ḡαγCγ δ ḡ
δβ ],

∂W

∂C33
= c1 + c2[Cγ δ ḡ

γ δ − λ23],
∂2W

∂Cαβ∂Cγ δ

= c2 ḡ
γ δ ḡαβ − c2

2
[ḡαγ ḡβδ + ḡαδ ḡβγ ],

∂2W

∂Cαβ∂C33
= c2 ḡ

αβ,
∂2W

∂C2
33

= 0. (74)

A.3 Variations of normal vector and thickness
stretch

To simplify the expression, one denotes the normal vector as

a3 = J−1ã3. (75)

where

ã3 = a1 × a2. (76)

Then, the first and second derivatives of the normal vector
are computed as

δra3 = J−1δr ã3 − J−2[δr J ]ã3,
δsδra3 = J−1[δsδr ã3] − J−2[δsδr J ]ã3 − J−2[δr J ][δs ã3]

−J−2[δs J ][δr ã3] + 2J−3[δr J ][δs J ]ã3, (77)

where

δr ã3 = δra1 × a2 + a1 × δra2,

δr J = a3 · δr ã3,

δsδr ã3 = δra1 × δsa2 + δsa1 × δra2,

δsδr J = J−1 [
δsδr ã3 · ã3+δr ã3 · δs ã3−[δr ã3 · a3][δs ã3 · a3]

]
.

(78)

Due to the incompressibility constraint of the material, the
thickness stretch can be expressed as

λ3 = |ā1 × ā2|
|a1 × a2| = J̄ J−1, (79)

whose first and second derivatives are expressed as

δrλ3 = − J̄ [J ]−2δr J ,

δsδrλ3 = − J̄
[
−2[J ]−3δs J δr J + [J ]−2δsδr J

]
.

(80)
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