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Abstract: The palladium-catalyzed direct arylation of azoles with (hetero)aryl halides is nowadays
one of the most versatile and efficient procedures for the selective synthesis of heterobiaryls. Although
this procedure is, due to its characteristics, also of great interest in the industrial field, the wide use of
a reaction medium such as DMF or DMA, two polar aprotic solvents coded as dangerous according
to environmental, health, safety (EHS) parameters, strongly limits its actual use. In contrast, the
use of aromatic solvents as the reaction medium for direct arylations, although some of them show
good EHS values, is poorly reported, probably due to their low solvent power against reagents and
their potential involvement in undesired side reactions. In this paper we report an unprecedented
selective C-5 arylation procedure involving anisole as an EHS green reaction solvent. In addition,
the beneficial role of benzoic acid as an additive was also highlighted, a role that had never been
previously described.
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1. Introduction

(Hetero)arylazoles are key structural cores frequently found in bioactive compounds [1–9]
and organic functional materials such as liquid crystals [10] and fluorescent dyes [10–15]. Due
to their widespread applications, the development of straightforward functional group-tolerant
synthetic methods that enable selective heteroaromatic elaboration under mild conditions
aroused considerable attention.

Among the methods able to functionalize azole scaffolds, the palladium-catalyzed
activation of Csp2-H bonds represents an attractive strategy for the direct elaboration of
their heteroaromatic core [2,4,16–28], since a pre-activation of both the coupling partners,
which is instead required in traditional metal-catalyzed cross-coupling protocols [29] such
as Suzuki–Miyaura [30–36], Migita–Stille [37–41], or Negishi [42–44] cross-couplings, is
unnecessary. Starting from the pioneering studies by Ohta [45,46] and by Miura [47],
synthetic procedures are now available that allow the direct arylation of several azoles,
including imidazoles [48–56], oxazoles [50,55,57–62], thiazoles [10,50,55,63,64], and pyra-
zoles [50,65–71]. These reactions are characterized by a wide tolerance towards almost
all the main functional groups, and thanks to the ubiquitous presence of C-H bonds they
find advantageous application in late-stage functionalization (LSF) protocols useful for
introducing molecular diversification in the last step of a synthetic sequence [72–74].

However, the presence of different reactive C-H bonds sometimes poses selectivity
issues, leading to the formation of regioisomeric monoarylation products and, sometimes,
to di- or triarylated azoles as side products.

Although the presence of one or more heteroatoms introduces a “native” differencing
of the diverse C-H bonds [75,76], directing the arylation towards the desired position on
the heteroaromatic ring is not simple considering the different operational mechanisms
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that have been suggested over time for these reactions. In fact, mechanistic hypotheses
related to the stage of activation of the C-H bond of the catalytic cycle, on which the
selectivity of the reaction depends, such as the classic aromatic electrophilic substitution via
electrophilic palladation [47,56], the deprotonation–metalation concerted (CMD) [77–80], or
non-concerted (n-CMD) [81,82], up to the most recent hypothesis of concerted electrophilic
metalation–deprotonation (e-CMD) [83], highlight how there are many factors that influence
the real reactivity of the C-H bonds of azoles.

To overcome this relevant issue, research has almost always been oriented towards an
optimization of the pre-catalyst/ligand system along with the search for the best inorganic
base, while the potential effect of the solvent on the outcome of the coupling has been
rarely discussed [84–87]. In fact, even in cases where a solvent screening has been reported,
no comment has been added to justify the different outcome of the arylation. This is
much more important if we consider the fact that direct arylation procedures, precisely
because of simple operating conditions and high chemoselectivity, can also be very useful
in the industrial field. In this regard, an analysis of the solvent used in direct C-5 arylation
reactions of 1,3-azoles, carried out by us in August 2022 using SciFindern, clearly shows
that the most used solvents are DMA and DMF (over 66% of the total) and that apart from
1,4-dioxane only a little more than 6% of the reactions were conducted in aromatic solvents,
therefore different from the polar aprotic ones (Figure 1).
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Figure 1. Type of solvents used in Pd-catalyzed direct arylation reactions (from SciFindern, Au-
gust 2022).

This analysis, despite its limitations, shows that the most widely used solvents, DMA
and DMF, are solvents that have been coded as dangerous according to environmental,
health, safety (EHS) parameters, while among the “green” EHS solvents only chlorobenzene
was employed, while the “green” anisole is totally absent (Figure 2) [88,89]. The sporadic
use of aromatic solvents as a reaction medium for direct arylations is probably related
to their low solvent power against reagents, and also to their potential involvement in
undesired side reactions.
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Over recent years we were interested in studies aimed to broaden the substrate scope
of the direct functionalization of azoles and, in particular, to develop efficient synthetic
protocols for the carbon–carbon bond forming reaction by selective palladium-catalyzed
Csp2-H bond activation of imidazole derivatives [48,50,52–56,90,91].

During these studies, we discovered that the outcome of the Pd-catalyzed arylation of
imidazoles with aryl bromides is deeply influenced by the nature of the reaction solvent.
Specifically, while it is well known that the Pd-catalyzed direct arylation of imidazoles
with aromatic halides selectively leads to C-5 monoarylation products when polar aprotic
solvents such as DMF (or DMA) are used as a reaction medium [23,47,50,52,56,90], we have
recently observed the preferential formation of C-2,5 double arylation products simply by
using xylene as the reaction solvent (Scheme 1) [48].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 2. Summarized environmental, health, and safety (EHS) score data label [88,89]. Solvent raws 
have been color-coded using a traffic light metric: green = recommended (few issues), yellow = 
problematic (some issues), red = hazardous (major issues). The higher the score, the more favorable 
the EHS profile of the solvent. 

Over recent years we were interested in studies aimed to broaden the substrate scope 
of the direct functionalization of azoles and, in particular, to develop efficient synthetic 
protocols for the carbon–carbon bond forming reaction by selective palladium-catalyzed 
Csp2-H bond activation of imidazole derivatives [48,50,52–56,90,91]. 

During these studies, we discovered that the outcome of the Pd-catalyzed arylation 
of imidazoles with aryl bromides is deeply influenced by the nature of the reaction 
solvent. Specifically, while it is well known that the Pd-catalyzed direct arylation of 
imidazoles with aromatic halides selectively leads to C-5 monoarylation products when 
polar aprotic solvents such as DMF (or DMA) are used as a reaction medium 
[23,47,50,52,56,90], we have recently observed the preferential formation of C-2,5 double 
arylation products simply by using xylene as the reaction solvent (Scheme 1) [48]. 

 
Scheme 1. Influence of reaction solvent on the Pd-catalyzed direct arylation of 1-methylimidazole 
with 4-bromoanisole [48,90]. 

Intrigued by the influence of aromatic solvents on the reactivity of Csp2-H 
heteroaromatic bonds and by the good EHS parameters of aromatic solvents, as 
mentioned above, we started a study devoted to evaluating the influence of the aromatic 
solvents on the efficiency and the selectivity of the direct arylation of imidazoles and other 
azoles. In particular, in this paper we will discuss the possibility of achieving C-5 
selectivity in aromatic solvents, studying how the ratio between mono- and diarylated 
products changes in function of the nature of the aromatic solvent and of the electronic 
characteristic of aromatic bromide (Scheme 2). 

  

Scheme 1. Influence of reaction solvent on the Pd-catalyzed direct arylation of 1-methylimidazole
with 4-bromoanisole [48,90].

Intrigued by the influence of aromatic solvents on the reactivity of Csp2-H heteroaro-
matic bonds and by the good EHS parameters of aromatic solvents, as mentioned above, we
started a study devoted to evaluating the influence of the aromatic solvents on the efficiency
and the selectivity of the direct arylation of imidazoles and other azoles. In particular, in
this paper we will discuss the possibility of achieving C-5 selectivity in aromatic solvents,
studying how the ratio between mono- and diarylated products changes in function of
the nature of the aromatic solvent and of the electronic characteristic of aromatic bromide
(Scheme 2).
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Scheme 2. Pd-catalyzed direct arylation of 1,3-azoles with aryl bromides using aromatic solvents.

2. Results and Discussion

As discussed in the Introduction, the results obtained using xylene as an aromatic
solvent for the direct arylation of imidazoles showed a substantially lower selectivity
towards monoarylation, combined with a greater efficiency of coupling when electron-rich
aromatic bromides, such as 4-bromoanisole or 4-bromoaniline, were used as coupling
partners [48].

To verify the possible influence of the aromatic solvent on the efficiency and selectivity
of azole arylation, we started the study by evaluating the outcome of the coupling of
1-methyl-1H-imidazole (1a), chosen as the model azole, with aromatic bromides in four
different aromatic solvents: xylenes, anisole, chlorobenzene, and nitrobenzene. These
solvents have been selected because they all have a boiling point equal to or greater than
140 ◦C, the temperature at which we have decided to conduct the initial screening. As
coupling partners we chose three aromatic bromides, selected for their different electronic
characteristics: 4-bromoanisole (2a) (Hammett’s σp = −0.27 [92]), 4-bromotoluene (2b)
(Hammett’s σp = −0.17 [92]), and 1-bromo-4-nitrobenzene (2c) (Hammett’s σp = 0.78 [92]).
The screening was carried out using 5 mol% of Pd(OAc)2 as the palladium pre-catalyst, 2.0
equiv of K2CO3 as the base, 1.0 mmol of 1a, 3.0 equiv of bromides 2a–c, in 5.0 mL of the
aromatic solvent at 140 ◦C for 24 h (Scheme 3). To better highlight the possible effect of
individual solvents, we decided to carry out the screening under ligandless conditions.
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Scheme 3. First screening of aromatic solvents for the Pd-catalyzed direct arylation of 1-
methylimidazole 1a with aryl bromides 2a–c.

The results of the screening are summarized in Table 1, where the GLC yields of 3 and
4 along with the selectivity of the monoarylation vs. the diarylation are reported.

Examination of the data given in Table 1 shows that the use of anisole as the reaction
solvent allowed us to obtain selectively the monoarylated 5-arylimidazole 3, regardless of
the electronic nature of the aromatic bromides (Entries 10–12, Table 1). On the contrary,
the selectivity of 3 vs. 4 when the other three aromatic solvents were used seems to be
clearly influenced by the substituent present on the aromatic ring of bromides 2. In fact,
in nitrobenzene (Entries 1–3, Table 1), chlorobenzene (Entries 4–6, Table 1), and xylenes
(Entries 7–9, Table 1), the highest selectivity was observed with 1-bromo-4-nitrobenzene
(2c) (Entries 3, 6, and 9, Table 1), and the lowest when 4-bromoanisole (2a) (Entries 1, 4, and
7, Table 1) was used as a coupling partner. It is also worth mentioning that the selectivity of
3 vs. 4 is reversed using anisole as the reaction solvent (Entries 10–12, Table 1).

Intrigued by the fact that by using anisole as the reaction solvent we observed selective
arylation toward the monoarylated 3aa–ac products regardless of the electronic nature of
the bromides 2a–c (despite the 1:2 molar ratio being 1:3), and that the trend in selectivity
as a function of the electronic nature of the aryl bromide 2 was inverse to that found with
the other three aromatic solvents, we decided to start a new screening using anisole as the
reaction solvent, and choosing 1-bromo-4-nitrobenzene (2c) because it had given the worst
selectivity in the same solvent.
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Table 1. Screening of aromatic solvents 1.

Entry Solvent 2 R 3 Yield (%) 2 4 Yield (%) 2 Selectivity 3

1 Nitrobenzene 2a OMe 30 33 0.9
2 Nitrobenzene 2b Me 67 20 3.4
3 Nitrobenzene 2c NO2 65 18 3.6
4 Chlorobenzene 2a OMe 41 35 1.2
5 Chlorobenzene 2b Me 27 46 0.6
6 Chlorobenzene 2c NO2 60 8 7.5
7 Xylenes 2a OMe 20 38 0.5
8 Xylenes 2b Me 53 36 1.5
9 Xylenes 2c NO2 64 8 8.0

10 Anisole 2a OMe 40 6 6.7
11 Anisole 2b Me 60 12 5.0
12 Anisole 2c NO2 56 (43) 24 2.3

1 The reactions were carried out using imidazole 1a (1.0 mmol), aryl bromides 2a–c (3.0 equiv), Pd(OAc)2 (5 mol%),
K2CO3 (2.0 equiv) in 5.0 mL of deaerated aromatic solvent at 140 ◦C for 24 h, for all reactions the conversion of 1a
is greater than 95%. 2 GLC yield using biphenyl as internal standard; isolated yield is given in brackets. 3 The
selectivity is expressed as the ratio of GLC yield of 3 to GLC yield of 4.

To our surprise, the first results of the screening in anisole showed that the selectivity
of the reaction, conducted under the exact experimental conditions shown in Table 1, was
dependent on the commercial origin of anisole (Table 2).

Table 2. Direct arylation of 1-methylimidazole 1a with 1-bromo-4-nitrobenzene (2c) in anisole from
different suppliers 1.

Entry Supplier Cat. N. 3ac Yield (%) 2 4ac Yield (%) 2 Selectivity 3

1 Acros (AC) 15,392 56 24 2.3
2 Carlo Erba (CE) 422,677 49 40 1.2
3 Sigma-Aldrich (SA) 123,266 47 30 1.6

1 The reactions were carried out using imidazole 1a (1.0 mmol), aryl bromides 2a–c (3.0 equiv), Pd(OAc)2 (5 mol%),
K2CO3 (2.0 equiv) in 5.0 mL of deaerated anisole at 140 ◦C for 24 h, for all reactions the conversion of 1a is greater
than 95%. 2 GLC yield using biphenyl as internal standard. 3 The selectivity is expressed as the ratio of GLC yield
of 3 to GLC yield of 4.

To understand these selectivity results a GLC analysis of the different reaction solvents
was carried out. In detail, GLC-MS analysis of small aliquots of commercial anisole from
the three suppliers (Table 2) showed that in AC anisole methyl benzoate was present as an
impurity, in addition to 2-methylanisole (Figure 3).

The presence of this ester only in the AC anisole, together with the greater selectivity
observed in this specific solvent, has led us to think that this compound or, much more
likely, the benzoate analogue that can be formed in a basic environment, not strictly
anhydrous (the solvents were simply deaerated with argon), may have an important role
in the efficiency and selectivity of the reaction. It is in fact well known that aliphatic
carboxylic acids [93], such as pivalic acid or its salts, can effectively promote the selective
C-5 arylation of imidazoles and other azoles by means of a CMD mechanism [78–80,94].
In this circumstance, the alkyl carboxylate acts as a base-shuttle between the inorganic
base and the catalytically active palladium complexes, entering the coordination sphere of
the transition metal and favoring the extraction of the proton in the activation step of the
heteroaromatic C-H bond.

Therefore, assuming that the same role could be effectively played by benzoic acid in
an aromatic solvent such as anisole, we conducted a first test using SA anisole as solvent,
the purest of the three batches examined (Scheme 4).

As shown in Scheme 4, the addition of 30 mol% benzoic acid was beneficial to reaction
outcome. In fact, 3ac was recovered in 52% isolated yield, and the selectivity was substan-
tially identical to that found when AC anisole was used (compare Scheme 4 with Entry 12,
Table 1).
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using benzoic acid as an additive.

With the aim of further increasing the selectivity and yield of the monoarylation reac-
tion, we performed an additional screening using only 1.5 equiv of 1-bromo-4-nitrobenzene
(2c) (Table 3).

As can be seen from Entry 1, Table 3, by reducing the aryl bromide to 1.5 equiv the con-
version of 1a remained high and the percentage of the diarylation product (4ac) decreased,
so 3ac was obtained with a GLC yield of 75% (72% isolated). A reduction in catalytic load-
ing to 2.5 mol% (Entry 2, Table 3) resulted in a slight decrease in conversion of 1a and GLC
yield of 3ac. Lowering the reaction temperature from 140 to 120 ◦C (Entry 3, Table 3) led to
a decrease in conversion of 1a and yield of 3ac. Carrying out the reaction in xylenes as the
reaction solvent (Entry 4, Table 3) gave a high conversion of precursor 1a but also a higher
amount of the diarylation product (4ac) than the reaction conducted in anisole, giving
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3ac in 63% yield. When other additives were tried, i.e., pivalic acid and phenol (Entries 5
and 6, Table 3), worse results in terms of 3ac yield were obtained. Tests were also carried
out with different kinds of phosphines as palladium ligands (tris(o-tolyl)phosphine, tri(2-
furyl)phosphine, tricyclohexylphosphine, and dppf), but in all cases the 3ac yields were
lower than that observed under ligandless conditions (Table S1, Supporting Information).

Table 3. Synthesis of 5-arylimidazole 3c by direct arylation of 1-methylimidazole (1a) with 1-bromo-
4-nitrobenzene (2c) in SA anisole using benzoic acid as additive.1

Entry Acidic Additive 1a Conv (%) 2 3ac Yield (%) 3 4ac Yield (%) 3

1 Benzoic acid 93 75(72) 14
2 4 Benzoic acid 87 71 10
3 5 Benzoic acid 56 35 1
4 6 Benzoic acid 90 63 22
5 Pivalic acid 75 35 12
6 Phenol 79 47 11

1 Unless otherwise stated, the reactions were carried out using imidazole 1a (1.0 mmol), 1-bromo-4-nitrobenzene
(2c) (1.5 equiv), Pd(OAc)2 (5 mol%), PhCOOH (30 mol%), K2CO3 (2.0 equiv) in 5.0 mL of deaerated SA anisole at
140 ◦C for 24 h. 2 GLC conversion of 1a vs. biphenyl 3 GLC yield using biphenyl as internal standard; isolated
yield is given in brackets. 4 The reaction was carried out using 2.5 mol% Pd(OAc)2. 5 The reaction was carried out
at 120 ◦C. 6 A commercial mixture of o- and p-xylene (xylenes) was used as the reaction solvent.

The satisfactory result obtained in the preparation of 3ac from 1a and 2c under the
experimental conditions summarized in Entry 1, Table 3 prompted us to extend this method-
ology to the selective synthesis of several 5-arylazoles in anisole as the reaction solvent.

In detail, performing the reaction in the presence of 5 mol% Pd(OAc)2, 30 mol%
benzoic acid, and 2.0 equiv K2CO3 in 5 mL of anisole under ligandless conditions, we were
able to recover the required 5-aryl substituted derivatives 3ac–3ec and 3aa–3aj in 40–72%
isolated yield after 24 h at 140 ◦C (Scheme 5).

Molecules 2022, 27, x FOR PEER REVIEW 8 of 17 
 

 

able to recover the required 5-aryl substituted derivatives 3ac–3ec and 3aa–3aj in 40–72% 

isolated yield after 24 h at 140 °C (Scheme 5). 

 

Scheme 5. Selective Pd-catalyzed direct arylation of azoles 1a–e with aryl bromides 2a–h. 

As can be seen from Scheme 5, the coupling also works efficiently when 1-benzyllim-

idazole (1b) and 1-phenylimidazole (1c) were used as partner of coupling with 1-bromo-

4-nitrobenzene (2c), giving the desired products 3bc and 3cc in 62 and 40% isolated yield. 

Satisfactory results were also obtained with 1-methylpyrazole (2d) and thiazole (2e), giv-

ing the products 3dc and 3ec with isolated yields of 55 and 61%, respectively. 

Subsequent tests were performed by varying the nature of the aryl bromide. In par-

ticular, the electron-rich bromides 4-bromoanisole (2a), 4-bromotoluene (2b), and 4-bro-

mothioanisole (2d) gave the respective 5-aryl products 3aa, 3ab, and 3ad in 72, 65, and 

43% isolated yields. Good results were also obtained with the electron-poor methyl 4-bro-

mobenzoate (2e), 1-bromo-4-(methylsulfonyl)benzene (2f), 4-bromobenzonitrile (2g), and 

3-bromopyridine (2h), which resulted in the respective products 3ae–3ah with isolated 

yields of 49, 53, 55, and 41%. In the end, the procedure was tested with the sterically hin-

dered bromides 2-bromobenzonitrile (2i) and 1-bromonaphthalene (2j), and it proved to 

be effective; products 3ai and 3aj, in fact, were obtained with yields of 50 and 40%. 

Further studies are required to elucidate the operative mechanism in aromatic sol-

vents. However, while it was demonstrated that in DMA a solvate complex with palla-

dium A seems to play an important role in the catalytic cycle [95], in an aromatic solvent 

having poorer coordinating ability azole-ligated organo-palladium intermediates B and C 

could be the active catalytic species (Figure 4) [96]. 

 

  
 

     
72% 62% 40% 55% 61% 

     

     
72% 65% 43% 49% 53% 

     

 
   

 

55% 41% 50% 40%  

 
Scheme 5. Selective Pd-catalyzed direct arylation of azoles 1a–e with aryl bromides 2a–h.

As can be seen from Scheme 5, the coupling also works efficiently when 1-benzyllimida-
zole (1b) and 1-phenylimidazole (1c) were used as partner of coupling with 1-bromo-4-
nitrobenzene (2c), giving the desired products 3bc and 3cc in 62 and 40% isolated yield.
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Satisfactory results were also obtained with 1-methylpyrazole (2d) and thiazole (2e), giving
the products 3dc and 3ec with isolated yields of 55 and 61%, respectively.

Subsequent tests were performed by varying the nature of the aryl bromide. In
particular, the electron-rich bromides 4-bromoanisole (2a), 4-bromotoluene (2b), and 4-
bromothioanisole (2d) gave the respective 5-aryl products 3aa, 3ab, and 3ad in 72, 65,
and 43% isolated yields. Good results were also obtained with the electron-poor methyl
4-bromobenzoate (2e), 1-bromo-4-(methylsulfonyl)benzene (2f), 4-bromobenzonitrile (2g),
and 3-bromopyridine (2h), which resulted in the respective products 3ae–3ah with isolated
yields of 49, 53, 55, and 41%. In the end, the procedure was tested with the sterically
hindered bromides 2-bromobenzonitrile (2i) and 1-bromonaphthalene (2j), and it proved
to be effective; products 3ai and 3aj, in fact, were obtained with yields of 50 and 40%.

Further studies are required to elucidate the operative mechanism in aromatic solvents.
However, while it was demonstrated that in DMA a solvate complex with palladium A
seems to play an important role in the catalytic cycle [95], in an aromatic solvent having
poorer coordinating ability azole-ligated organo-palladium intermediates B and C could be
the active catalytic species (Figure 4) [96].
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Moreover, the fact that the observed reactivity of azoles parallels that of classical
electrophilic aromatic substitution (EAS) [97], and that higher efficiency was obtained
when benzoic acid was added, an electrophilic concerted metalation–deprotonation (e-CMD)
mechanistic pathway [83] seems to be the most plausible among the various mechanistic
hypotheses formulated for the palladium-catalyzed direct arylation of azoles.

3. Materials and Methods
3.1. General Information

Melting points were recorded on a hot-stage microscope (Reichert, Wien, Austria,
Thermovar). Precoated silica gel PET foils (Sigma-Aldrich, St. Louis, MI, USA) were used
for TLC analyses. GLC-FID analyses were performed on a Dani (Milan, Italy) GC 1000 chro-
matograph equipped with a PTV injector, using an Agilent (Santa Clara, USA) J&W DB-1
column (15 m× 0.25 mm× 0.25 µm) and recorded with a Dani DDS 1000 data station. GLC-
MS analyses were recorded with an Agilent 6890N gas chromatograph interfaced with an
Agilent MS5973 mass detector, using an Agilent J&W DB-5ms (30 m × 0.25 mm × 0.25 µm)
column. Purifications by flash chromatography were performed using Merck 60 silica gel.
1H-NMR and 13C-NMR spectra were recorded at 400 and 100 MHz, respectively, with a Jeol
(Tokyo, Japan) 400 spectrometer referring chemical shifts to the residual solvent signal. The
following notation was used to report NMR spectra: s = singlet, d = doublet, dd = double
doublet, t = triplet, dt = double triplet, q = quadruplet. All the commercially available
reagents and solvents were used as received.

3.2. Procedure for the Screening of the Aromatic Solvents for the Pd-Catalyzed 5-Arylation of
1-Methyl-1H-imidazole (1a) with Aryl Bromides 2a–c

Pd(OAc)2 (11.2 mg, 0.05 mmol), aryl bromide (2a–c) (3.0 mmol), if solid, and K2CO3
(276 mg, 2.0 mmol) were placed in a reaction vessel. The reaction vessel was fitted with a
silicon septum, evacuated, and backfilled with argon. This sequence was repeated twice.
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The selected deaerated solvent (5 mL), aryl bromide 2 (3.0 mmol), if a liquid, and 1-methyl-
1H-imidazole (1a) (82 mg, 80 µL, 1.0 mmol) were then added successively under a stream
of argon by syringe. The resulting mixture was stirred under argon for 24 h at 140 ◦C.
After cooling to room temperature, the crude reaction mixture was diluted with DCM and
AcOEt, biphenyl was added as internal standard, and the resulting mixture was analyzed
by GLC and GC–MS. The results of this screening are summarized in Tables 1 and 2.

3.3. Procedure for the Screening of the Reaction Conditions for the Pd-Catalyzed 5-Arylation of
1-Methyl-1H-imidazole (1a) with 1-Bromo-4-Nitrobenzene (2c) in Anisole (SA)

Pd(OAc)2 (11.2 mg, 0.05 mmol), additive (30 mol%), 1-bromo-4-nitrobenzene (2c)
(303 mg, 1.5 mmol), and K2CO3 (276 mg, 2.0 mmol) were placed in a reaction vessel. The
reaction vessel was fitted with a silicon septum, evacuated, and backfilled with argon. This
sequence was repeated twice. The selected deaerated solvent (5 mL) and 1-methyl-1H-
imidazole (1a) (82 mg, 80 µL, 1.0 mmol), were then added successively under a stream of
argon by syringe. The resulting mixture was stirred under argon for 24 h at the selected
temperature. After cooling to room temperature, the crude reaction mixture was diluted
with DCM and AcOEt, biphenyl was added as internal standard, and the resulting mixture
was analyzed by GLC and GC–MS. Table 3 summarizes the results of this screening.

3.4. Procedure for the Screening of the Reaction Scope for the Pd-Catalyzed 5-Arylation of Azoles
(1a–e) with Aryl Bromides (2a–j) in Anisole (SA)

Pd(OAc)2 (11.2 mg, 0.05 mmol), benzoic acid (36 mg, 0.30 mmol), azole 1 (1 mmol),
if solid, aryl bromide 2 (1.5 mmol), if solid, and K2CO3 (276 mg, 2.0 mmol) were placed
in a reaction vessel. The reaction vessel was fitted with a silicon septum, evacuated, and
backfilled with argon. This sequence was repeated twice. Anisole (5 mL), azole 1 (1 mmol),
if liquid, and aryl bromide 2, if liquid, were then added successively under a stream
of argon by syringe. The resulting mixture was stirred under argon for 24 h at 140 ◦C.
After cooling to room temperature, the crude reaction mixture was diluted with DCM and
AcOEt. The resulting mixture was analyzed by GLC and GC–MS and concentrated under
reduced pressure and the residue purified by flash chromatography on silica gel. This
procedure was used to prepare compounds 3ac–3aj and 3bc–3ec. For the product 3aa and
3ab the reaction was carried out with 1.0 mmol of the aryl bromide 2 and 1.5 mmol of
1-Methyl-1H-imidazole (1a). The results are summarized in Scheme 5.

3.4.1. 1-methyl-5-(4-nitrophenyl)-1H-imidazole (3ac)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 1-bromo-4-nitrobenzene (2c) (Scheme 5) was purified by flash chromatography on
silica gel with a mixture of DCM and MeOH (93:7) as eluent to give 3ac as a yellow-orange
solid, (145 mg, 72%), m.p. 165–167 ◦C (lit. m.p. 169–171 ◦C) [50]. ESI-MS m/z 204 [M+H]+.
EI-MS, m/z (%): 203 (100), 173 (19), 130 (17), 103 (16), 89 (32). 1H NMR (400 MHz, CDCl3) δ
8.32–8.28 (m, 2H), 7.61–7.55 (m, 3H), 7.27 (s, 1H), 3.76 (s, 3H). The spectral properties of this
compound are in agreement with those previously reported [50].

3.4.2. 1-benzyl-5-(4-nitrophenyl)-1H-imidazole (3bc)

The crude reaction product obtained by the coupling reaction of 1-benzyl-1H-imidazole
(1b) with 1-bromo-4-nitrobenzene (2c) (Scheme 5) was purified by flash chromatography
on silica gel with a mixture of DCM and MeOH (95:5) as eluent to give 3bc as an orange
solid, (173 mg, 62%), m.p. 108–109 ◦C (lit. m.p. 106–108 ◦C) [98]. ESI-MS m/z 280 [M+H]+.
EI-MS, m/z (%): 91 (100), 279 (46), 65 (10), 280 (9), 92 (8). 1H NMR (400 MHz, CDCl3) δ
8.24–8.16 (m, 2H), 7.67 (s, 1H), 7.49–7.41 (m, 2H), 7.40–7.24 (m, 4H), 7.04–6.97 (m, 2H), 5.23
(s, 2H). The spectral properties of this compound are in agreement with those previously
reported [98].
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3.4.3. 5-(4-nitrophenyl)-1-phenyl-1H-imidazole (3cc)

The crude reaction product obtained by the coupling reaction of 1-phenyl-1H-imidazole
(1c) with 1-bromo-4-nitrobenzene (2c) (Scheme 5) was purified by flash chromatography
on silica gel with a mixture of toluene and ethyl acetate (80:20) as eluent to give 3cc as a
yellow solid, (106 mg, 40%), m.p. 155–156 ◦C (lit. m.p. 162–164 ◦C) [99]. ESI-MS m/z 266
[M+H]+. EI-MS, m/z (%): 265 (100), 191 (19), 266 (17), 165 (16), 192 (15). 1H NMR (400 MHz,
CDCl3) δ 8.15–8.07 (m, 2H), 7.77 (d, J = 1.0 Hz, 1H), 7.48–7.43 (m, 4H), 7.30–7.26 (m, 2H),
7.25–7.17 (m, 2H). The spectral properties of this compound are in agreement with those
previously reported [100].

3.4.4. 1-methyl-5-(4-nitrophenyl)-1H-pyrazole (3dc)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-pyrazole
(1d) with 1-bromo-4-nitrobenzene (2c) (Scheme 5) was purified by flash chromatography
on silica gel with a mixture of dichloromethane and acetone (98:2) as eluent to give 3dc
as a yellow solid, (112 mg, 55%), m.p. 85–86 ◦C (lit. m.p. 75–77 ◦C) [50]. ESI-MS m/z 204
[M+H]+. EI-MS, m/z (%): 203 (100), 173 (20), 204 (12), 103 (11), 89 (10). 1H NMR (400 MHz,
CDCl3) δ 8.37–8.29 (m, 2H), 7.64–7.59 (m, 2H), 7.57 (d, J = 2.0 Hz, 1H), 6.43 (d, J = 2.0 Hz,
1H), 3.95 (s, 3H). The spectral properties of this compound are in agreement with those
previously reported [50].

3.4.5. 5-(4-nitrophenyl)thiazole (3ec)

The crude reaction product obtained by the coupling reaction of thiazole (1e) with
1-bromo-4-nitrobenzene (2c) (Scheme 5) was purified by flash chromatography on silica gel
with a mixture of toluene and ethyl acetate (80:20) as eluent to give 3ec as a yellow solid,
(126 mg, 61%), m.p. 142–143 ◦C (lit. m.p. 139–141 ◦C) [50]. ESI-MS m/z 207 [M+H]+. EI-MS,
m/z (%): 206 (100), 176 (26), 148 (20), 133 (27), 89 (53). 1H NMR (400 MHz, CDCl3) δ 8.88
(s, 1H), 8.33–8.22 (m, 2H), 8.23 (s, 1H), 7.77–7.72 (m, 2H). The spectral properties of this
compound are in agreement with those previously reported [50].

3.4.6. 5-(4-methoxyphenyl)-1-methyl-1H-imidazole (3aa)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 1-bromo-4-methoxybenzene (2a) (Scheme 5) was purified by flash chromatogra-
phy on silica gel with a mixture of DCM and MeOH (96:4) as eluent to give 3aa as a white
solid, (135 mg, 72%), m.p. 77–78 ◦C (lit. m.p. 73–75 ◦C) [50]. ESI-MS m/z 189 [M+H]+.
EI-MS, m/z (%): 188 (100), 173 (82), 145 (17), 189 (12), 174 (10). 1H NMR (400 MHz, CDCl3)
δ 7.49 (s, 1H), 7.34–7.27 (m, 2H), 7.03 (s, 1H), 7.00–6.93 (m, 2H), 3.85 (s, 2H), 3.63 (s, 2H). The
spectral properties of this compound are in agreement with those previously reported [50].

3.4.7. 1-methyl-5-(p-tolyl)-1H-imidazole (3ab)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 1-bromo-4-methylbenzene (2b) (Scheme 5) was purified by flash chromatography
on silica gel with a mixture of DCM and MeOH (95:5) as eluent to give 3ab as a yellow
oil, (112 mg, 65%). ESI-MS m/z 173 [M+H]+. EI-MS, m/z (%): 172 (100), 171 (17), 130
(16), 144 (14), 173 (13). 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 1H), 7.30–7.22 (m, 5H),
7.07 (d, J = 1.1 Hz, 1H), 3.65 (s, 3H), 2.40 (s, 3H). The spectral properties of this compound
are in agreement with those previously reported [50].

3.4.8. 1-methyl-5-(4-(methylthio)phenyl)-1H-imidazole (3ad)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 1-(4-bromophenyl)(methyl)sulfane (2d) (Scheme 5) was purified by flash chro-
matography on silica gel with a mixture of DCM and MeOH (94:6) as eluent to give 3ad as
a white solid, (88 mg, 43%), m.p. 71–73 ◦C. ESI-MS m/z 205 [M+H]+. EI-MS, m/z (%): 204
(100), 189 (63), 205 (13), 190 (8), 162 (7). 1H NMR (400 MHz, CDCl3) δ 7.48 (s, 1H). 7.30–7.25
(m, 4H), 7.05 (s, 1H), 3.62 (s, 3H), 2.49 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.12, 138.60,
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132.99, 128.81, 128.04, 126.53, 126.41, 32.55, 15.63. Elemental analysis calcd. for C11H12N2S:
C, 64.67; H, 5.92; N, 13.71; found C, 64.71; H, 5.91; N, 13.69.

3.4.9. methyl 4-(1-methyl-1H-imidazol-5-yl)benzoate (3ae)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with methyl 4-bromobenzoate (2e) (Scheme 5) was purified by flash chromatography
on silica gel with a mixture of DCM and MeOH (96:4) as eluent to give 3ae as a white
solid, (106 mg, 49%), m.p. 128–130 ◦C. ESI-MS m/z 217 [M+H]+. EI-MS, m/z (%): 216
(100), 185 (78), 217 (14), 89 (13), 130 (12). 1H NMR (400 MHz, CDCl3) δ 8.12–8.07 (m, 2H),
7.55 (s, 1H), 7.50–7.46 (m, 2H), 7.20 (s, 1H), 3.94 (s, 3H), 3.72 (s, 3H). The spectral properties
of this compound are in agreement with those previously reported [101].

3.4.10. 1-methyl-5-(4-(methylsulfonyl)phenyl)-1H-imidazole (3af)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 1-bromo-4-(methylsulfonyl)benzene (2f) (Scheme 5) was purified by flash chro-
matography on silica gel with a mixture of DCM and MeOH (95:5) as eluent to give 3af
as a white solid, (130 mg, 53%), m.p. 189–190 ◦C. ESI-MS m/z 237 [M+H]+. EI-MS, m/z
(%): 236 (100), 173 (33), 157 (26), 89 (18), 130 (17). 1H NMR (400 MHz, CDCl3) δ 8.01–7.97
(m, 2H), 7.61–7.58 (m, 2H), 7.57 (s, 1H), 7.21 (s, 1H), 3.73 (s, 3H), 3.09 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ 140.65, 139.50, 135.47, 131.68, 130.03, 128.67, 128.07, 44.62, 33.02. Ele-
mental analysis calcd. for C11H12N2O2S: C, 55.92; H, 5.12; N, 11.86; found C, 55.97; H, 5.13;
N, 11.88.

3.4.11. 4-(1-methyl-1H-imidazol-5-yl)benzonitrile (3ag)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 4-bromobenzonitrile (2g) (Scheme 5) was purified by flash chromatography on
silica gel with a mixture of DCM and MeOH (95:5) as eluent to give 3ag as a yellow solid,
(101 mg, 55%), m.p. 146–147 ◦C (lit. m.p. 148–151 ◦C) [50]. ESI-MS m/z 184 [M+H]+. EI-MS,
m/z (%): 183 (100), 155 (14), 184 (13), 128 (11), 114 (10). 1H NMR (400 MHz, CDCl3) δ
7.74–7.70 (m, 2H), 7.57 (s, 1H), 7.53–7.50 (m, 2H), 7.22 (s, 1H), 3.73 (s, 3H). The spectral
properties of this compound are in agreement with those previously reported [50].

3.4.12. 3-(1-methyl-1H-imidazol-5-yl)pyridine (3ah)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 3-bromopyridine (2h) (Scheme 5) was purified by flash chromatography on silica
gel with a mixture of DCM and MeOH (95:5) as eluent to give 3ah as a pale green oil,
(65 mg, 41%), ESI-MS m/z 160 [M+H]+. EI-MS, m/z (%): 160 (11), 159 (100), 158 (9), 131 (32),
104 (10). 1H NMR (400 MHz, CDCl3) δ 8.61–8.58 (m, 1H), 8.55–8.51 (m, 1H), 7.67–7.63 (m,
1H), 7.50 (s, 1H), 7.34–7.29 (m, 1H), 7.09 (s, 1H), 3.62 (s, 3H). The spectral properties of this
compound are in agreement with those previously reported [90].

3.4.13. 2-(1-methyl-1H-imidazol-5-yl)benzonitrile (3ai)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 2-bromobenzonitrile (2i) (Scheme 5) was purified by flash chromatography on
silica gel with a mixture of DCM and MeOH (95:5) as eluent to give 3ai as a yellow solid,
(91 mg, 50%), m.p. 153–155 ◦C (lit. m.p. 156–158 ◦C) [102]. ESI-MS m/z 184 [M+H]+.
EI-MS, m/z (%): 183 (100), 155 (31), 129 (27), 156 (20), 182 (19). 1H NMR (400 MHz, CDCl3)
δ 7.79 (ddd, J = 7.7, 1.4, 0.6 Hz, 1H), 7.67 (td, J = 7.7, 1.4 Hz, 1H), 7.60 (s, 1H), 7.51 (td,
J = 7.7, 1.2 Hz, 1H), 7.44 (ddd, J = 7.7, 1.2, 0.6 Hz, 1H), 7.24 (s, 1H), 3.64 (s, 3H). The spectral
properties of this compound are in agreement with those previously reported [102].

3.4.14. 1-methyl-5-(naphthalen-1-yl)-1H-imidazole (3aj)

The crude reaction product obtained by the coupling reaction of 1-methyl-1H-imidazole
(1a) with 1-bromonaphthalene (2j) (Scheme 5) was purified by flash chromatography on
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silica gel with a mixture of DCM and MeOH (95:5) as eluent to give 3aj as an orange solid,
(94 mg, 45%), m.p. 140–144 ◦C. ESI-MS m/z 209 [M+H]+. EI-MS, m/z (%): 208 (100), 207 (36),
166 (20), 153 (19), 180 (15). 1H NMR (400 MHz, CDCl3) δ 7.95–7.89 (m, 2H), 7.67–7.63 (m,
2H), 7.56–7.43 (m, 4H), 7.16 (s, 1H), 3.42 (s, 3H). The spectral properties of this compound
are in agreement with those previously reported [103].

4. Conclusions

In conclusion, in this work, we developed a simple and efficient ligandless Pd-
catalyzed selective C-5 direct arylation of imidazoles and other azoles with aryl bromides,
using anisole as the reaction solvent. In fact, with the aim of verifying the possible influence
of aromatic solvents on the efficiency and selectivity arylation of azoles, having good
environmental, health, safety (EHS) parameters, we started a study with 1-methyl-1H-
imidazole (1a), chosen as the model azole, and aromatic bromides in four different solvents:
xylenes, anisole, chlorobenzene, and nitrobenzene. After this preliminary screening, we
discovered a high C-5 selectivity in anisole; specifically, when the anisole used was from a
specific supplier, and we observed that in this solvent ethyl benzoate was present as an
impurity. This has led us to think that this compound or, much more likely, the benzoate
analogue that can be formed in a basic environment, not strictly anhydrous, may have an
important role on the efficiency and selectivity of the reaction. Therefore, assuming that
the same role could be effectively played by benzoic acid, we conducted a test with the
addition of 30 mol% benzoic acid and this was beneficial to reaction outcome, increasing
the monoarylation selectivity. So, after a final fine-tuning of the conditions, we found that
by performing the reaction in the presence of Pd(OAc)2 as a pre-catalyst, benzoic acid as an
additive, and K2CO3 as a base in anisole, we recovered several 5-aryl substituted azoles
in 72–40% isolated yield after 24 h at 140 ◦C. Further studies on the interesting role of
aromatic solvents in direct arylation reactions and on their role in the reaction mechanism
are undergoing.
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