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The interplay between electron- and ion-scale phenomena is of general interest for both laboratory

and space plasma physics. In this paper, we investigate the linear coupling between whistler waves

and slow magnetosonic solitons through two-fluid numerical simulations. Whistler waves can be

trapped in the presence of inhomogeneous external fields such as a density hump or hole where

they can propagate for times much longer than their characteristic time scale, as shown by

laboratory experiments and space measurements. Space measurements have detected whistler

waves also in correspondence to magnetic holes, i.e., to density humps with magnetic field minima

extending on ion-scales. This raises the interesting question of how ion-scale structures can couple

to whistler waves. Slow magnetosonic solitons share some of the main features of a magnetic hole.

Using the ducting properties of an inhomogeneous plasma as a guide, we present a numerical study

of whistler waves that are trapped and transported inside propagating slow magnetosonic solitons.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4717764]

I. INTRODUCTION AND AIMS

The study of the interplay between phenomena at ion

and at electron dynamical scales is crucial in order to under-

stand the physical mechanisms of basic plasma processes

such as energy dissipation and particle acceleration and heat-

ing in space and laboratory plasmas. Presently, multi-point

satellite measurements such as the Cluster satellites, by com-

bining space and time measurements, make it possible to

investigate simultaneously electron- and ion-scale phenom-

ena and to inspect stationary and propagating magnetic and

density structures.

An important example of coupling between ion- and

electron-scales is provided by the correlation that has been

found in space between whistler waves, which occur on the

electron-scales, and magnetic field depressions associated to

density humps that have typical scale lengths of the order of

the ion-scales, usually interpreted as non-propagating mirror

mode structures.1–5 On the other hand, whistler waves can

also interact with slowly propagating magnetohydrodynamic

structures involving both density and magnetic field modula-

tions. If the whistler waves become trapped inside such

structures, the problem arises how low frequency nonlinear

modes can act as carriers for higher frequency waves.

Whistler waves are electromagnetic right-handed polar-

ized waves that propagate nearly parallel to the ambient

magnetic field at frequencies in the range between the ion

and the electron cyclotron frequency.6 A known property of

whistlers is that in the presence of plasma inhomogeneities,

such as magnetic field aligned tubes of density enhancements

or depletions, their energy can be guided for long times with-

out being dispersed.7–10 Examples of such ducted propaga-

tion has been found in satellite observations in the Earth’s

magnetosphere11–13 and in laboratory plasmas.14

Magnetohydrodynamic waves also have been studied

for decades both in space and laboratory plasmas. Recently,

growing attention has been devoted to the study of oblique

slow magnetosonic solitary waves, namely, of coherent

structures at the ion-scale characterized by a density hump

and a magnetic field depression.15–18

Despite many studies of both magnetosonic and whis-

tler waves, their coupling has not been investigated in detail

and is yet poorly understood. In this paper, we investigate

the interaction between slow magnetosonic solitons and

whistler waves by using a two-fluid model. Using the duct-

ing properties of an inhomogeneous plasma as a guide, we

propose a new mechanism of ducting and transport of whis-

tler waves arising from a linear coupling with slow type

magnetosonic solitons. Such a mechanism could explain

spacecraft observations in the Earth’s magnetosphere,

namely, the recurrent detection of whistler waves correlated

to magnetic holes.

This paper is organized as follows: in Sec. II, we pres-

ent the two main problems of interest separately: the whis-

tler waves trapping and the slow mode solitary wave. In

Sec. II A, we treat the trapping of whistlers by an inhomoge-

neous magnetized plasma. The aim is to shed light on the

ducting process using an equilibrium configuration simpler

than the soliton solution. In this way, we can obtain quanti-

tative conditions to be used to estimate the ducting condi-

tions when the inhomogeneity is provided by the

magnetosonic soliton. In Sec. II B, we introduce the slow

mode solitary wave solutions of the two-fluid equations and

discuss the role that these configurations can have in trap-

ping whistler waves. In Sec. III, we describe the system of

equations of the two-fluid model used in our simulations,

the initial conditions, and the simulation parameters. In

Sec. IV, we investigate the trapping of whistler waves by

slow mode solitons numerically and present the results.

Finally, conclusions are discussed in Section V.a)Electronic mail: anna.tenerani@lpp.polytechnique.fr.

1070-664X/2012/19(5)/052103/10/$30.00 VC 2012 American Institute of Physics19, 052103-1

PHYSICS OF PLASMAS 19, 052103 (2012)

http://dx.doi.org/10.1063/1.4717764
http://dx.doi.org/10.1063/1.4717764


II. THEORETICAL BACKGROUND

A. Whistler wave trapping in magnetic and density
ducts

It has been shown7–10 that whistler waves propagating in a

cold magnetized plasma in the presence of inhomogeneities ax-

ially symmetric and transverse to the ambient magnetic field of

the plasma density can be channelled by these inhomogeneities

(density duct). The variation of the index of refraction caused

by the density inhomogeneity makes the wave trajectory bend

such that the average propagation is along the duct direction.

As a consequence, the wave becomes trapped by the duct.

In this section, we extend these results to the case where

both the equilibrium plasma density and magnetic field are

inhomogeneous in the plane perpendicular to the direction of

the magnetic field.

The aim of this analysis is to study the problem of whis-

tler wave trapping with a “simple” model. It will be used

later as a reference for a more complex one, adopted in the

numerical simulations, where the self consistent fields of the

soliton are viewed by the whistler as perturbations of the am-

bient equilibrium. In order to mimic the configuration of in-

terest (the slow mode soliton), we consider a plasma

equilibrium characterized by a density hump and a magnetic

field minimum, the magnetic hole.

Model—We want to study the trapping properties of the

equilibrium magnetic field inhomogeneities in the framework

of a fluid model. Therefore, we consider the regime vth;e �
vphðvth;e and vph being the electron thermal velocity and the

whistler phase velocity, respectively), and we use the cold

dielectric tensor of a magnetized plasma, e. This simplification

is convenient because the cold dielectric tensor e includes the

basic effects of trapping, thanks to its dependence on the density

and the magnetic field strength (through the electron cyclotron

frequency xce). Assuming, for the sake of illustration, a two

dimensional spatial configuration and taking the gradients along

the magnetic field lines to be negligible on the scale of the whis-

tler wave length, the plasma can be represented in a slab geome-

try, with density and magnetic field gradients perpendicular to

the magnetic field direction. For the sake of clarity, we define

“magnetic hole” a fluid equilibrium with a density hump and a

magnetic field depression perpendicular to the equilibrium mag-

netic field, as distinguished from a “density duct” that only has

a perpendicular density inhomogeneity. This model allows us to

highlight the basic mechanism of the whistler wave trapping

and to obtain a quantitative estimate of the parameters to be

used in the simulations, such as the value of the whistler fre-

quency and the angle of propagation. We will show that a mag-

netic hole requires less strict conditions on the whistler wave

parameters than a density duct in order to trap whistler waves.

Let us consider a bump-like density profile in the x direc-

tion, perpendicular to the background magnetic field ByðxÞ,

which is taken to be directed along y. The background mag-

netic field has a minimum in correspondence to the density

hump. A sketch of this configuration is illustrated in Fig. 1:

the wave propagates in the (x, y) plane and is localized inside

the magnetic hole. As shown in Ref. 8, the set of the two-

fluid equations for a magnetized plasma can be arranged so

as to obtain the following system of equations for the electric

and magnetic fields, where a time dependence of the form

expð�ixtÞ has been assumed

rðr � EÞ � r2E ¼ x2

c2
ðe � EÞ; (1)

r � ðe � EÞ ¼ 0; (2)

B ¼ �i
c

x
r� E: (3)

Looking for spatial solutions of the form AðxÞ expðikkyÞ,
where kk � ky is the parallel wave vector, Eq. (1) can be

reduced to two coupled differential equations of second

order for the electric field components Ex and Ez, while the

third component Ey is obtained from Eq. (2). By rescaling

the variable w¼ x/L, where L is the typical length of the

large scale inhomogeneity such that ðc=xÞ=L� 1, the two

coupled equations for Ex and Ez can be solved by means of

the WKB approximation.8 We impose solutions of the form

AðwÞ ¼ BðwÞ exp iLx=c

ðw

qðw0Þdw0
� �

and retain only the terms to lowest order in ðc=xÞ=L. Note

that such a choice excludes the ducting mechanism described

in Ref. 19 where the whistler energy propagates in the form

of “surface waves” with frequency below the characteristic

frequency of bulk whistler waves. The perpendicular wave

vector k? � ðx=cÞq ¼ kx, for a given parallel wave vector kk
and frequency x, must satisfy the whistler dispersion relation

of a homogeneous plasma (in ion normalized units, see also

Sec. III) obtained in the limit xci < x < xce � xpe

k2
?;6ðxÞ ¼

1

2d2
e ðx=xceðxÞÞ2

k2
kd

2
e 1� 2

x
xceðxÞ

� �2
" #

� 2nðxÞ x
xceðxÞ

� �2

6 dekk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

e k2
k � 4nðxÞ x

xceðxÞ

� �2
s8<

:
9=
;: (4)

FIG. 1. Schematic representation of the trapping of whistler waves: the

wave propagates in the plane (x, y) containing the magnetic field and the

inhomogeneity direction and is localized inside the density hump. In

the case of a warm plasma, a magnetic field depression of the form ByðxÞ is

associated to the density enhancement.
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Equation (4) corresponds to the whistler dispersion relation

(see, for example, Ref. 20, Sec. 2.8) solved for the square of

the perpendicular wave vector k2
?, where k2

? þ k2
k ¼ k2. Note

that, using ion normalized units, d2
e ¼ ðme=mpÞ and

xce ¼ Bmp=me.

The whistler dispersion relation as expressed by Eq. (4)

for the complex variable k? shows that, for fixed kk and x,

there are two “branches” of the perpendicular wave vector

corresponding to the plus and minus sign, respectively (the

“upper” and the “lower” branch). For a solution given by a

real k?, we get a propagating whistler wave, while for an

imaginary k?, we get a purely evanescent (non propagating)

whistler wave. The transition within a given branch from

real to imaginary values is at the basis of the wave trapping

and is determined by the local values of the density n and of

the parameter x=xce.

The general WKB solution is given by a linear combina-

tion of the four wave solutions corresponding to the four pos-

sible wave vectors 6k?;6. Near the critical points, where

k2
?;6 ¼ 0 or k2

?;� ¼ k2
?;þ, the WKB approximation ceases to

be valid. An analytical continuation of the solution in the

complex x plane around these points is therefore necessary

in order to extend the solution to all its domain of validity.

The complex x plane is divided into different portions by the

so called Stokes and anti-Stokes lines, which radiate out

from the critical points.21 When a Stokes line radiating from

a turning point of a given branch is crossed, the two solutions

of the given branch, say, the ones corresponding þk?;� and

to �k?;�, are coupled, corresponding to the reflection of a

given wave when approaching a turning point. In an similar

way, when a Stokes line radiating from a conversion point is

crossed, the coupling between the two branches, for exam-

ple, þk?;þ and þk?;�, occurs. The coupling between the two

branches leads, for instance, to the leakage of a propagating

wave, again approaching a turning point. Because of the cou-

pling with the other branch at the conversion point, a fraction

of the wave energy continues to propagate past the turning

point.8 The coefficients of reflection or conversion are expo-

nentially small if the critical points are far from the real axis.

In this section, we consider only the trapping of whistler

modes due to the presence of turning points on the real axis,

where k2
?;6 ¼ 0. For simplicity, the conversion between dif-

ferent branches will be neglected here, assuming that the

square root in Eq. (4) does not vanish on the real axis. More-

over, in order to look for solutions given by propagating

waves or evanescent waves, we assume that k2
?;6 is real,

which means that the perpendicular wave vector is real (i.e.,

k2
?;6 > 0) or imaginary (i.e., k2

?;6 < 0). These assumptions

correspond to the following condition:

k2
k >

4nðxÞ
d2

e

x
xceðxÞ

� �2

: (5)

From Eqs. (4) and (5), it follows that the upper branch cannot

be trapped in a magnetic hole (neither in a density duct).

Indeed, k2
?;þ is everywhere positive for frequencies x=xce

< 1=2, and thus, the wave propagates in all regions. If

x=xce > 1=2, then k2
?;þ is positive when k2

kd
2
e > n=

½xce=x� 1�. If this condition is satisfied inside the magnetic

hole, it is satisfied outside the magnetic hole as well, since

n(x) has lower values outside than inside the magnetic hole,

and vice versa for the function xceðxÞ. Then, also in this

range of frequencies, the wave propagates in all regions. We

can therefore focus only on the lower branch k?;�.

With the same reasoning as above, we see that the lower

branch can be trapped in a magnetic hole (or in a density

duct) only for frequencies x=xce < 1=2. Indeed, for frequen-

cies x=xce > 1=2, the perpendicular wave vector corre-

sponding to the lower branch is imaginary everywhere while

for x=xce < 1=2, the perpendicular wave vector is real when

k2
k <

n=d2
e

xce=x� 1
; (6)

while it is imaginary when

k2
k >

n=d2
e

xce=x� 1
: (7)

To summarize, for frequencies x=xce < 1=2, trapping is

possible in a magnetic hole (and in a density duct) if the par-

allel wave vector satisfies Eq. (5) everywhere (which means

that k? is either imaginary or real), and satisfies Eq. (6)

inside the magnetic hole, giving a propagating wave, and Eq.

(7) outside the magnetic hole, giving an evanescent wave.

Since we are interested in whistler modes trapped into the

magnetic hole, from now on we consider only the lower

branch in the frequency range x=xce < 1=2 and drop the

subscript “–”. For the sake of clarity we define nin and nout

the density calculated at the center of the magnetic hole

(thus in correspondence to the minimum of the magnetic

field and to the density maximum) and outside the magnetic

hole (where the medium is homogeneous), respectively. By

analogy, we define the frequencies xin
ce and xout

ce , the electron

cyclotron frequency calculated at the center and outside the

magnetic hole, respectively. In this way, the trapping condi-

tion for the lower branch in a magnetic hole can be written

as follows:

kin f < kk < ksup; (8)

where

kin f ðxÞ ¼ max
4nin

d2
e

x
xin

ce

� �2
" #1=2

;
nout

d2
e

1

xout
ce =x� 1

� �1=2

8<
:

9=
;
(9)

and

ksupðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nin

d2
e

1

xin
ce=x� 1

s
: (10)

In Fig. 2, we show a graphical representation of the portions

in the parameter space (x=xin
ce; kk) corresponding to real val-

ues of k?, calculated at the center (solid lines) and outside

(dashed lines) the channel provided by the magnetic hole

or the density duct. Red and black lines correspond to the
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right-hand-side of Eqs. (5) and (6), respectively. The

left panel corresponds to a plasma equilibrium with a mag-

netic hole (DB=B ¼ jBin � Boutj=Bout ¼ 0:3 and Dn=n
¼ jnin � noutj=nout ¼ 0:37) and the right panel to a density

duct with the same density inhomogeneity than the magnetic

hole (DB=B ¼ 0 and Dn=n ¼ 0:37). Referring to Fig. 2, left

panel, the points (x=xin
ce; kk) lying in the portion aþ b and

bþ c correspond to a propagating wave in the region inside

and outside the channel, respectively. The intersection b of

these two regions corresponds to the untrapped modes, as

they propagate both inside and outside the channel. The

trapped modes are those corresponding to the portion a,

where k? is real inside and imaginary outside the channel.

The maximum angle hmaxðxÞ of trapped modes for a given

frequency is determined by kinf , and by the corresponding

k?ðx; kinf Þ

hmaxðxÞ ¼ arctan
k?ðx; kinf Þ

kinf

� �
: (11)

A comparison between the magnetic hole, left panel in

Fig. 2, and the density duct, right panel in Fig. 2, shows that

the presence of magnetic variations (magnetic hole) leads to

less strict trapping conditions. Indeed, for an equal density

variation, the portion of trapped modes in a channel provided

by both density and magnetic inhomogeneities is larger than

in a channel formed only by a density inhomogeneity. In

addition, the maximum angle of trapping (not shown here)

results to be higher.

B. Slow magnetosonic solitons acting as carriers of
whistler wave energy

We are interested in slow mode solitary waves because,

as it will be explained in the following, they can trap whistler

waves, similarly to magnetic holes. In addition, since solitary

waves propagate almost unchanged, they provide an efficient

channel that not only confines but also transports whistler

energy at the typical soliton propagation speed.

Magnetosonic solitons are nonlinear one dimensional

perturbations propagating in a warm plasma, obliquely to the

equilibrium magnetic field.15,18,22 Solitons are characterized

by magnetic field and density perturbations in phase (fast

solitons) or in opposition of phase (slow solitons). Solitary

waves propagate with a constant profile and arise when the

nonlinear terms are balanced by the dispersion terms. In a

two-fluid model, the required dispersion, which gives rise to

magnetosonic solitons, is given by the Hall term and the

electron inertia. Nonetheless, for non-perpendicular propaga-

tions, the Hall term dominates the dispersion and the typical

scales of solitons are �di. It can be shown that at some level

of approximation, the system of two-fluid equations can be

reduced to a Korteweg-de Vries equation,22 which has soli-

tary wave solutions.

Let us consider a soliton moving in the positive x direc-

tion in a homogeneous magnetized plasma at rest, with equi-

librium quantities defined as follows:

B ¼ B0 ¼ ðB0x;B0y; 0Þ ui;e ¼ ð0; 0; 0Þ

n ¼ n0 Pi;e ¼ P0;

where ui;e and Pi;e are the ion and electron velocity and pres-

sure, respectively, n is the density, and B is the magnetic

field. The angle of propagation of the soliton is defined as

the angle between the direction of propagation, namely the x
direction, and the equilibrium magnetic field B0. For future

convenience, in order to define the soliton direction of propa-

gation, we will use the angle u0, taken as the complementary

angle to the angle of propagation, thus defined as

u0 ¼ arctanðB0x=B0yÞ. An explicit solitary solution of the

two-fluid system of equations is obtained in Ref. 22 in the

weakly nonlinear approximation. Both fast and slow solitons

are found. Here we consider only the slow mode, as this

mode has density and magnetic field in opposition of phase.

The slow mode solitary solution depends on the amplitude of

the perturbation A, on the angle u0, on the temperature and

on the Alfvén speed which, in the homogeneous region, is

equal to one in our units. The effects of the temperature enter

through the sound speed cs and the slow magnetosonic phase

speed vp0, and determines the velocity of propagation of the

soliton and its width. Equations (12) and (13) represent the

total magnetic field and the total density of the plasma,

defined as the values of the homogeneous equilibrium

plus the fluctuations associated to the soliton, Btot ¼ B0

þBsol; ntot ¼ n0 þ nsol

(a) (b)

FIG. 2. Plot of the curves which bound the region in

the parameter space (x=xin
ce; kk) corresponding to

real values of k?;�. Solid and dashed lines are calcu-

lated in correspondence to the region inside and out-

side the channel, respectively. Red (straight) and

black (curved) lines correspond to the right-hand-

side of Eqs. (5) and (6), respectively. The portions

aþ b and bþ c correspond to real values of k? inside

and outside the inhomogeneous region, respectively.

The portion “a” corresponds to the trapped modes.

Left panel: plasma equilibrium with a magnetic

hole; right panel: plasma equilibrium with a density

hump on a uniform magnetic field.
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ntot ¼ 1þ nsol; Bx;tot ¼ sin u0;

By;tot ¼ cos u0 þ
ðv2

p0 � c2
s Þ

cos u0

" #
nsol; (12)

where

nsol /
A

cos h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

12lðu0;P0Þ

r
x

� � : (13)

The other plasma quantities are given explicitly in

Appendix A, including the expression for the function

lðu0;P0Þ. Quantities are normalized to asymptotic equilib-

rium values outside the soliton.

According to this theoretical analysis, the propagation

speed of the soliton is V0 ¼ vp0 þ A=3 and the typical

width is ‘ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12l=A

p
. The function l, which determines

the width of the soliton, is a growing function of the tem-

perature, ranging from values smaller than, or of the order

of, di to values much greater than di. Note that for the

slow mode vp0 < cs. Thus, from the last of Eqs. (12),

which defines Btot
y , it follows that the magnetic field per-

turbation is in opposition of phase with the density pertur-

bation. The analytical solution for the slow soliton is valid

as long as the propagation is not parallel (u0 ¼ p=2) in

which case l equals zero (if cs < 1) or infinity (if

cs > 1).22

To summarize, the main features of slow mode solitons

are as follows: they carry a density hump perturbation asso-

ciated to a magnetic field depletion and propagate obliquely

with respect to the background equilibrium magnetic field

at speeds, which are much smaller than that of whistler

waves (greater than unity). This inhomogeneous system,

which can be represented by an oblique solitary perturba-

tion moving in a homogeneous plasma at rest, is more com-

plicated than the magnetic hole discussed previously,

which instead has purely perpendicular gradients with

respect to the magnetic field. Nevertheless, as a first

approximation, it is possible to consider the soliton pertur-

bation superposed to the background equilibrium as a local

and instantaneous magnetic hole for whistlers that are

injected inside the soliton.

III. MODEL EQUATIONS, INITIAL CONDITIONS,
AND PARAMETERS

In order to describe numerically the trapping and trans-

port of whistlers by solitary waves in a magnetized plasma,

we use a quasi neutral adiabatic two-fluid model. The set of

equations for ions and electrons, with labels i and e, respec-

tively, are normalized using as characteristic quantities the

ion mass density nmi, the Alfvén velocity va ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnmi

p
,

and the collisionless ion skin depth di ¼ c=xpi. With this

choice d2
e ¼ me=mi and xce ¼ B=d2

e . The two-fluid model

equations, in dimensionless form, are

@n=@tþr � ðnUÞ ¼ 0; (14)

@Se;i=@tþr � ðSe;iue;iÞ ¼ 0; Se;i ¼ Pe;in
1�C; (15)

@ðnUÞ=@t¼�r�½nðuiuiþd2
e ueueÞþðPeþPiþB2=2�BBÞ�;

(16)

ð1� d2
er2ÞE ¼� ue � B� ð1=nÞrPe

� d2
efui � B� ð1=nÞrPi þ ð1=nÞ

r � ½nðuiui � ueueÞ�g; (17)

ue ¼ U� j=n; ui ¼ Uþ d2
e j=n; U ¼ ui þ d2

e ue; (18)

r� E ¼ �@B=@t; j ¼ r� Bþ ẑjext
z : (19)

In these equations, E and B are the electric and magnetic

field, ui;e is the ion (or electron) velocity, j is the current,

jext
z ẑ is an external forcing current used to inject whistlers,

Pi;e is the pressure of ions and electrons, and C is the adia-

batic index. The equations above are obtained by combining

the ion and electron fluid equations. In particular, the gener-

alized Ohm’s law, given by Eq. (17), is obtained by subtract-

ing the electron momentum equation from the ion

momentum equation and we assumed constant density n � 1

in the electron inertia term on the left hand side.23

The dimensions of the simulation box, Lx and Ly, and

the resolution of the grid, dx and dy, are chosen in order to

find a compromise between the different time and length

scales at play. Ly is chosen in order to let the whistler wave

train propagate for several tens of x�1
ci , without reaching the

boundaries. Lx is chosen in order to contain the soliton,

which is wider or of the order of di and moves at a speed

V � 0:1. Finally, the mesh size must resolve the whistler

wavelength. In Table I, we report the parameters of the simu-

lation box. The ion to electron mass ratio is fixed to

mp=me ¼ 100.

As initial condition, we consider a slow mode solitary

wave centered in the simulation domain and superposed to a

homogeneous magnetized plasma at rest. Oblique whistlers,

as explained in the following, are injected artificially in the

simulation box, during the initial phase, in correspondence to

the soliton. In order to do this, we make use of an oscillating

forcing current lasting over a characteristic time s. In Fig. 3,

we show a schematic view of the system. The dashed lines

indicate the region filled by the soliton moving in the posi-

tive x direction with velocity V; Bin
tot is the total magnetic

field at the center of the soliton, forming an angle u with the

y axis, and k is the whistler wave vector. In particular, when

TABLE I. Parameters of the injected whistler mode, of the simulation box

and the characteristic width of the soliton ‘.

x0 x0=xin
ce h Lx Ly dx dy ‘

Sim. 1 2.37 0.03 �0.198 24p 160p 0.08 0.1 2

Sim. 2 2.37 0.03 0.6 24p 60p 0.08 0.04 2

Sim. 3 2.37 0.03 1.25 24p 60p 0.08 0.04 2

Sim. 4 8 0.1 �0.198 24p 60p 0.08 0.04 2

Sim. 5 8 0.1 0.6 24p 60p 0.08 0.04 2

Sim. 6 8 0.1 1.3 24p 60p 0.08 0.04 2

Sim. 7 3 0.04 �0.24 24p 160p 0.08 0.1 13

Sim. 8 3 0.04 0.3 24p 120p 0.08 0.08 13

Sim. 9 3 0.04 0.6 24p 240p 0.08 0.16 13
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whistlers are generated inside the soliton, the subscripts “?”

and “k” of the wave vector refer to the total magnetic field

Bin
tot at the center of the soliton. Outside the soliton, the total

magnetic field reduces to the equilibrium magnetic field B0,

forming an angle u0 with the y axis.

The analytical form of the fields representing the soliton

superposed to the homogeneous equilibrium at the initial

time is given in Appendix A. The parameters of the soliton,

listed in Table II, are chosen in order to have a narrow soli-

ton with a width ‘ of the order of the ion skin depth (simula-

tions 1 to 6) or a wider soliton with ‘ of the order of several

ion skin depths (simulations 7 to 9).

To our knowledge, the numerical stability of the approx-

imate solutions discussed in Sec. II has never been investi-

gated. Therefore, before considering the full problem

including the injection of the whistlers, we tested the stabil-

ity of the soliton solutions numerically. Our results show that

they are well stable in the range of propagation angles

u0 ¼ 0:57� 0:17 and of typical variations with respect to

the equilibrium nsol � 0:02� 0:8; jBy;solj=B0y � 0:01� 0:5.

They propagate at the expected velocity maintaining almost

unchanged their initial profile over times t � 1000, until they

exit from the simulation box.

In Fig. 4, we show two examples of quasi perpendicular

(u0 ¼ 0:17) magnetosonic solitons propagating along the x
axis at three different times up to t � 1000. The red lines

represent the density profile ntot and the black lines the mag-

netic field By;tot. In the left panel, we represent a narrow,

strong amplitude soliton (Dn=n � 0:9) and in the right panel

a wider and weaker soliton (Dn=n � 0:2). Notice that the ini-

tial soliton profile slightly modify during the temporal evolu-

tion, especially for large amplitude solitons, since the

analytical profile is not an exact solution of the two-fluid sys-

tem. For the sake of clarity, we indicate with a subscript

“tot” the quantities resulting from the sum of the homogene-

ous background equilibrium plus the soliton perturbations.

These large scale variation fields can be considered as the

“inhomogeneous equilibrium” supporting the whistler

waves.

Finally, we generate small amplitude oblique whistlers

with frequency x0 and propagating at an angle h with respect

to the total magnetic field direction with an external forcing

current. The external forcing is spatially confined inside the

soliton and is applied during a characteristic time scale s by

means of a current along the z axis, Jext
z (see Eq. (19)), given

by

Jext
z ðx; y; tÞ / e�ðy

0=‘J
yÞ

2

e�ðx
0=‘J

xÞ
2

e�t=scosðx0tÞ; (20)

where x0 and y0 are defined as follows:

x0 ¼ x cosðhþ uÞ � y sinðhþ uÞ;

y0 ¼ x sinðhþ uÞ þ y cosðhþ uÞ:

The length scales ‘J
y and ‘J

x satisfy ‘J
y � ‘J

x and ‘J
x is of the

order of the width of the soliton. Moreover, ‘J
xky0 & 1, where

ky0 is the wave vector of whistlers along the rotated direction

FIG. 3. Schematic view of the system. The dashed lines indicate the region

filled by the soliton moving in the positive x direction with velocity V; Bin
tot

is the total magnetic field at the center of the soliton, forming an angle u
with the y axis, and k is the whistler wave vector, which forms an angle h
with the magnetic field Bin

tot. Outside the soliton, the equilibrium magnetic

field B0 forms an angle u0 with the y axis.

TABLE II. Parameters of the solitons.

A P0i;e u0 ‘ Bin
y;tot nin

tot u V xin
ce

Sim. 1–6 0:073 0.05 0.17 � 2 0.847 1.873 0.198 0.09 86.4

Sim. 7–9 0:035 0.5 0.17 � 13 0.694 1.181 0.240 0.12 71.4

(a) (b)

FIG. 4. Examples of slow magnetosonic solitons at

three different times: the black lines (depletions)

represent the magnetic field By;tot and the red lines

(humps) the density ntot. In the left panel we re-

present a narrow, strong amplitude soliton

(Dn=n � 0:9) and in the right panel a wider and

weaker soliton (Dn=n � 0:2). Notice that the initial

soliton profile slightly modify during the temporal

evolution, especially for large amplitude solitons,

since the analytical profile implemented as initial

condition is not an exact solution of the two-fluid

system.
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y0, so that we can inject inside the soliton almost plane

waves. The injected whistlers have indeed wave vectors

within a narrow cone centered in correspondence with the

mode that we expect according to the chosen values of fre-

quency x0 and angle h. The parameters of the forcing and

thus of the injected whistlers, listed in Table I, are chosen

making use of the trapping conditions discussed in Sec. II A.

In particular, we use as reference the maximum trapping

angle defined by Eq. (11). The maximum angle of trapping

at a given frequency x0, that we define as hx0

max, allows us to

choose the frequency x0 and the angle h properly in order to

inject a specified whistler mode that we expect to be trapped

or not.

IV. TRAPPING OF WHISTLER WAVES BY SLOW
MAGNETOSONIC SOLITONS: NUMERICAL RESULTS

In this section, we show, by means of numerical simula-

tions, that whistlers can be trapped and transported away by

a slow magnetosonic soliton. Even if a slow soliton propa-

gating in a homogeneous magnetized plasma is more compli-

cated than the so called magnetic hole, as a first

approximation the same properties of whistler ducting apply,

and the trapping conditions found for the magnetic hole dis-

cussed in Sec. II A are therefore a good reference when ask-

ing which whistler modes can be trapped by the soliton.

We have investigated the slow magnetosonic ducted and

unducted regime of whistler modes by varying the typical

width of the soliton. Here, we report two different typical

cases: a narrow soliton of width ‘ � 2. k�1 and a wider sol-

iton of width ‘ � 13 > k�1 (in units of di), where k is the

whistler wave vector estimated for a given frequency and

propagation angle from the two-fluid cold dispersion relation

(see Eq. (B1) in Appendix B). A list of the parameters used

in the simulations for the “small” and “large” soliton is listed

in Table II. The wider soliton has a weaker density hump but

a stronger magnetic field depression than the narrow one.

The injected whistler modes fluctuate at low frequencies

(x0 � 0:1xin
ce) or high frequencies (x0 � 0:1xin

ce) with

different angles of propagation ranging from h� hx0

max to

h > hx0

max. In the following, we focus on two simulations,

namely, Sim. 1 for the narrow soliton and Sim. 7 for the

wide soliton, to show the trapping of whistlers.

In these simulations, the injected whistlers have fre-

quency x0 � 0:03 xin
ce and x0 � 0:04 xin

ce, respectively. They

are injected along the y axis, slightly oblique with respect to

the local total magnetic field, forming an angle h ¼ �0:198

and h ¼ �0:24, respectively, then satisfying jhj � hx0

max. The

forcing current oscillates at the center of the simulation do-

main and switches off exponentially on a characteristic time

shorter with respect to that of the soliton propagation. In this

way, the forcing generates two finite size wave packets in the

(x,y) plane propagating away from the source region in the

two opposite directions, namely, in the positive y direction

(upward) and in the negative y direction (downward). The

two wave packets propagate upward or downward, respec-

tively, and remain spatially confined along the inhomogene-

ous x direction in correspondence to the soliton, following its

displacement along x. This is shown in Fig. 5 by the contour

plots of the x component of the magnetic field bx of the whis-

tler waves in the simulation domain when the current has

switched off and the wave packets are well developed. The

profile of the soliton is represented (not in scale) by black

lines, and the dashed line corresponds to the soliton at time

t¼ 0. The left panel represents the two wave packets at time

t¼ 100, for the narrow soliton. In the middle panel, we show

the propagation of the same wave packets as injected in

Sim. 1, but in a homogeneous equilibrium, i.e., with B0y ¼
Bin

y;tot ¼ 0:847 and n0 ¼ nin
tot ¼ 1:873. We see that in the ab-

sence of the soliton, the injected wave packets spread out

during propagation. Finally, the right panel shows the wave

packets at time t¼ 60, for the wide soliton. To summarize,

our simulations provide evidence that the waves, initially

injected inside the soliton structures, propagate along the

duct provided by the soliton, upward or downward, advected

at the same time in the perpendicular x direction by the soli-

ton. The whistlers are thus confined and transported by the

slow soliton over times much larger than their typical time

scale.

FIG. 5. Contour plot of the x component of the whistler magnetic field bx. The profile of the soliton is represented by the black lines. The dashed line repre-

sents the soliton at time t¼ 0. Left panel: trapping of whistlers in Sim. 1 at time t¼ 100. Middle panel: the whistler wave packets in the entire space domain at

t¼ 30 as in Sim. 1 but in the absence of the soliton. Right panel: trapping of whistlers in Sim. 7 at time t¼ 60. Notice that in these and in the following pictures,

the length scales along the x and y axes are different.
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We consider now two simulations, Sim. 3 and Sim. 6

where we inject highly oblique whistlers with h > hx0

max. In

this case, the waves escape outside the solitons. An example

is shown in Fig. 6, left panel, where we show the contour of

bx and the profile of the soliton at time t¼ 16 in the case of

Sim. 6. Here, the injected whistlers are at high frequency

(x0 � 0:1xin
ce) and at an angle of propagation h ¼ 1:3.

These results are in good agreement with the ducting

theory. However, the model used in our numerical study is

far richer than the reference model of the magnetic hole

(Sec. II A), and there are important effects that can modify

the trapping conditions.

First of all, even if we neglect the displacement of the

soliton, there is a finite perturbation in the plasma velocity of

the form UðxÞ (see Eqs. (A4) and (A5) in Appendix A). The

presence of the fluid velocity introduces an asymmetry in the

system, due to the Doppler effect, between wave packets

propagating upward and downward, ky > 0 and ky < 0,

respectively. Second, there are gradients along the total mag-

netic field, which can drive whistlers outside the soliton even

if trapping conditions are satisfied. In the case of the mag-

netic hole, kk and x are fixed quantities, while for the soliton

x and ky are constant, but the parallel wave vector varies as

the whistler propagates inside the soliton. As a consequence,

while the whistler propagates towards the edge of the soliton,

kk can approach the value kinf (as defined in Sec. II A, see

also Fig. 2, left panel), thus allowing the whistler to become

untrapped. An example is given in Fig. 6, right panel, which

refers to Sim. 9. In this simulation, only the lower wave

packet is trapped while the upper wave packet is guided out-

side the soliton. An interpretation of Sim. 9 can be given in

terms of geometrical optics. Since the soliton moves along

the x axis at a speed V � 0:1 much smaller than the whistler

phase velocity (greater than unity), as a first approximation,

we neglect the displacement of the soliton. Because of the

Doppler shift, the frequency x0 measured in the simulation

is given by

x0ðk; xÞ ¼ xðk; xÞ þ k � UðxÞ; (21)

where xðk; xÞ is the whistler two-fluid dispersion relation in

a plasma at rest obtained in the cold limit (see Eq. (B1) in Ap-

pendix B). The dispersion relation xðk; xÞ is given in terms of

ky and kx and the density and magnetic field profiles are given

by n ¼ 1þ nsol and B ¼ B0 þ Bsol, respectively. In the

framework of the geometrical optics, the contours of x0 in the

plane ðkx; xÞ for fixed ky represent the orbits of the whistler

wave packet. The solution of the Hamiltonian system

@x
@x
¼ � k

:

xðtÞ;
@x
@kx
¼ x

: ðtÞ

gives the evolution of the wave vector and the trajectory of

the wave packet. In Fig. 7, we show the contours of x0 as

defined in Eq. (21) obtained using the soliton profile of

Sim. 9. The wave vector ky can be estimated from the forcing

frequency and injection angle taking into account the Dopp-

ler shift, giving ky � 1:3 and ky � �1:7. The contours in Fig.

7 show that the orbit corresponding to x0 ¼ 3 is open for the

wave packet propagating upward while it is closed for the

wave packet propagating downward. A Fourier analysis of

the x component of the magnetic field in Sim. 9 confirms that

the wave vectors with jkyj � 1:7 are trapped inside the soli-

ton. Similar results are obtained for Sim. 2 and Sim. 8.

However, because of the movement along the x axis, the

soliton behaves as a “moving mirror,” thus causing the fre-

quency of the injected whistler to change with time. We

qualitatively estimate the shifted frequency after the first

reflection at the soliton edge x
0
0 ¼ x0 � 2k � V. The change

in frequency could cause the wave to become evanescent.

An example is given by Sims. 4 and 5 in a high frequency

whistler regime (x � 0:1 xin
ce) and using a narrow soliton. In

these simulations, only the upper wave packet is trapped, as

expected, while after the first reflection at the left boundary

of the soliton, the lower wave packet becomes evanescent.

FIG. 6. Contour plot of the x component of the whistler magnetic field bx, with the profile of the soliton represented by the black lines. The dashed line corre-

sponds to the soliton at t¼ 0. Left panel: Sim. 6 at time t¼ 16, corresponding to a high frequency, highly oblique whistler that escapes from the narrow soliton.

Middle panel: Sim. 4 at time t¼ 30, corresponding to a high frequency whistler that is trapped only in the upward direction while the downward wave packet

becomes evanescent after one reflection. Right panel: Sim. 9 at time t¼ 60, corresponding to an upward whistler that escapes outside the soliton while the

downward wave packet is trapped. The periodic boundary conditions cause the waves approaching the upper (lower) boundary of the simulation box to appear

in the lower (upper) boundary.
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Fig. 6, middle panel, refers to Sim. 4 and shows the contour

of bx and the profiles of the soliton at time t¼ 30 (solid line)

and t¼ 0 (dashed line). In this simulation, the lower wave

packet has a wave vector ky estimated to ky � �5 (in agree-

ment with the Fourier spectrum of the simulation results).

The solution of the Hamiltonian equations for the wave

packet with initial conditions xð0Þ ¼ 0; kxð0Þ ¼ 0 gives wave

packet reflected at nearly dx � �1:5 from the center of the

soliton with kx � 25 (in agreement with the small scales

which form in the x direction at the edge of the soliton). In

this point, the reflected frequency is estimated as

x
0
0 � x0 � 2kxV � 3:5, which is below the minimum fre-

quency calculated in correspondence to the edge of the soli-

ton for ky � �5, explaining why the lower wave packet does

not propagate after reflection.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have shown that whistler waves can be

efficiently trapped and advected across the magnetic field

lines by oblique magnetosonic slow solitons with typical

scale length of the order or greater than the ion inertial

length. Oblique slow solitons carry a quasi perpendicular

density perturbation that is anti-correlated to the magnetic

field perturbation, and since the propagation velocity of these

solitons is much smaller than the phase velocity of whistlers,

they can be viewed by whistlers as quasi stationary inhomo-

geneities. The soliton plasma density and magnetic field

inhomogeneities then act as a true wave guide during whis-

tler propagation. As a result, whistlers can be confined in

correspondence to magnetic field depletions associated to

density humps (magnetic holes), as we have shown for fre-

quencies x < xce=2. Due to the presence of the magnetic

field inhomogeneity, less strict conditions are required for

trapping with respect to a channel provided by only a density

variation. The possibility to advect whistlers marks an im-

portant difference with respect to the case where whistlers

have been associated to non-propagating mirror modes. Nu-

merical results based on a two-fluid model are in good agree-

ment with theoretical expectations.

Slow solitons, acting as non-linear waves’ carrier for

whistlers, provide an efficient mechanism to confine whistler

energy in space, thus avoiding the spreading of the wave

packets, and to transport the whistler energy across magnetic

field lines at the soliton typical speed. The model we propose

is related to situations often encountered in space plasmas

and could explain multi-point Cluster spacecraft observa-

tions in the Earth’s magnetosphere. The mechanism of whis-

tler trapping that we have discussed relies on the

“inhomogeneous, slow nature” of the wave carrier, that is,

the plasma density and magnetic field strength inhomogene-

ities are anti-correlated and quasi perpendicular to the back-

ground magnetic field and the velocity of propagation is

smaller than the whistler phase velocity. We finally note that

other solitonic structures, propagating slowly with respect to

the whistler wave packet, could in principle play the same

role in trapping and advecting the whistlers, thus explaining

space observations often showing whistler waves in corre-

spondence to local minimum or maximum of the large scale

magnetic field and density, respectively. Moreover, this

mechanism applies to any magnetic field configuration corre-

sponding to a magnetic field depletion (with density hump),

as long as the inhomogeneity is (quasi) perpendicular to the

magnetic field. In addition to magnetosonic solitons and sim-

ilar structures, the magnetic field associated to a current

sheet, as it is found for instance in magnetic reconnection in

the presence of a nonzero guide field, provides an important

example of such configurations. This is of particular interest

since it has been suggested that whistler waves are emitted

during magnetic reconnection.24 In this case, the channel

provided by the inhomogeneity can in principle act as a

guide for the emitted whistlers.
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FIG. 7. Contours of the whistler dispersion relation in the rest frame of the

soliton, x0ðk; xÞ ¼ xðk; xÞ þ k�UðxÞ, in the ðkx; xÞ plane with the parame-

ters of Sim. 9. The upper panel refers to the upward wave packet, which has

ky � 1:3, and the lower panel to the downward wave packet, which has

ky � �1:7. Whistler wave packets with a given ky evolve moving along the

orbits at constant frequency. In Sim. 9 the frequency is x0 ¼ 3 that corre-

sponds to an open orbit for the upper wave packet and to a closed orbit for

the lower wave packet.
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APPENDIX A: INITIAL CONDITIONS FOR SLOW
MAGNETOSONIC SOLITONS

Below the initial conditions are given in the numerical

code corresponding to a slow solitary wave.22 Quantities are

normalized to asymptotic equilibrium values outside the soliton

nsol ¼
A=a

cos h2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð12lÞ

p
x�
; n ¼ 1þ nsol;

Pe;i ¼ P0e;ið1þ CnsolÞ; (A1)

Bx ¼ sin u0; By ¼ cos u0 þ
ðv2

p0 � c2
s Þ

cos u0

" #
nsol; (A2)

Bz ¼ �
1

vp0

ðd�2
e � 1Þ
d�2

e

v2
p0ðv2

p0 � C2
s Þ

ðv2
p0 � sin2 u0Þ

sin u0

cos u0

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð12lÞ

p
tan h½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð12lÞ

p
x� nsol; (A3)

Ux ¼ vp0 nsol; Uy ¼ �
ðv2

p0 � c2
s Þ

vp0

" #
sin u0

cos u0

; (A4)

Uz � ui;z ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð12lÞ

p ðv2
p0 � c2

s Þðv2
p0 d2

e � sin u2
0Þ

cos u0ðv2
p0 � sin u2

0Þ

� tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð12lÞ

p
x�nsol; (A5)

where c2
s ¼ CðPe0 þ Pi0Þ is the sound speed in normalized

units and

l ¼
vp0 ðv2

p0 � c2
s Þ

4d�2
e ½v2

p0 � ð1þ c2
s Þ=2� 1� ðd

�2
e � 1Þ2 sin2 u0

d�2
e ðv2

p0 � sin2 u0Þ

" #
;

(A6)

a ¼
3ðv2

p0 � c2
s sin2 u0Þþðv2

p0 � sin2u0Þ½c2
s þ C2ðPe0 þ Pi0Þ�

4vp0½v2
p0 � ð1þ c2

s Þ=2� ;

(A7)

v2
p0 ¼

1

2

�
ð1þ c2

s Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2

s Þ
2 � 4 c2

s sin2 u0

q �
: (A8)

APPENDIX B: TWO-FLUID COLD DISPERSION
RELATION

By linearizing the set of two fluid equations given by

Eq. (14)–(19) in the cold limit x=k	 vth;e ðvth;e is the elec-

tron thermal speed), we get the following dispersion relation

for whistler waves propagating in a homogeneous magne-

tized plasma at rest, at an angle h with respect to the equilib-

rium magnetic field:

x2 ¼ 1

2

v2
ak2

ð1þ d2
e k2Þ2

ð1þ d2
e k2Þð1þ cos2hÞ þ k2

n
cos2h

� �

þ 1

2

v2
ak2

ð1þ d2
e k2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ d2

e k2Þ2ð1� cos2hÞ2 þ 2ð1þ d2
e k2Þ k

2

n
cos2hð1þ cos2hÞ þ cos4h

k4

n2

r( )
: (B1)

In Eq. (1), va ¼ B=
ffiffiffi
n
p

is the Alfvén velocity in normalized

units.
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