
CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS

ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Dipartimento di Informatica, Università di Pisa - Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
e-mail address: bruni@di.unipi.it

Departamento de Computación, FCEyN, Universidad de Buenos Aires - CONICET. Pabellón I,
Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
e-mail address: hmelgra@dc.uba.ar

Dipartimento di Informatica, Università di Pisa - Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
e-mail address: ugo@di.unipi.it

ECS, University of Southampton, SO17 1BJ United Kingdom
e-mail address: ps@ecs.soton.ac.uk

Abstract. A quite flourishing research thread in the recent literature on component-
based systems is concerned with the algebraic properties of different classes of connectors.
In a recent paper, an algebra of stateless connectors was presented that consists of five
kinds of basic connectors, namely symmetry, synchronization, mutual exclusion, hiding
and inaction, plus their duals, and it was shown how they can be freely composed in series
and in parallel to model sophisticated “glues”. In this paper we explore the expressiveness
of stateful connectors obtained by adding one-place buffers or unbounded buffers to the
stateless connectors. The main results are: i) we show how different classes of connectors
exactly correspond to suitable classes of Petri nets equipped with compositional interfaces,
called nets with boundaries; ii) we show that the difference between strong and weak
semantics in stateful connectors is reflected in the semantics of nets with boundaries by
moving from the classic step semantics (strong case) to a novel banking semantics (weak
case), where a step can be executed by taking some “debit” tokens to be given back during
the same step; iii) we show that the corresponding bisimilarities are congruences (w.r.t.
composition of connectors in series and in parallel); iv) we show that suitable monoidality
laws, like those arising when representing stateful connectors in the tile model, can nicely
capture concurrency (in the sense of step semantics) aspects; and v) as a side result, we
provide a basic algebra, with a finite set of symbols, out of which we can compose all P/T
nets with boundaries, fulfilling a long standing quest.

1998 ACM Subject Classification: F.1.1; F.4.3.
Key words and phrases: C/E nets with boundaries; P/T nets with boundaries; connector algebras; tiles.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Roberto Bruni, Hernán Melgratti, Ugo Montanari, and Paweł Sobociński
Creative Commons

1

2 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

1. Introduction

A successful and widely adopted approach to modern software architectures is the so-called
component-based approach [42]. At its core, it is centred around three main kinds of el-
ements: processing elements (also called components), data elements and connecting ele-
ments (also called connectors). The main idea is to assemble heterogeneous and separately
developed components that exchange data items via their programming interfaces by syn-
thesising the appropriate “glue” code, i.e., by linking components via connectors. In this
sense, connectors must take care of all those aspects that lie outside of the scopes of individ-
ual components and for which the operating infrastructure is held responsible. Typically,
components and connectors are made available and assembled off-the-shelf. To favour their
re-usability, their semantic properties, including requirements and offered guarantees must
be unambiguously specified. Thus, connectors are first class entities and assessing rigorous
mathematical theories for them is of crucial relevance for the analysis of component-based
systems.

Connectors can live at different levels of abstraction (architecture, software, processes)
and several kinds of connectors have been studied in the literature [1, 26, 14, 11, 6]. Here
we focus on the approach initiated in [13] and continued in [14], where a basic algebra of
stateless connectors was presented. It consists of five kinds of basic connectors (plus their
duals), namely symmetry, synchronisation, mutual exclusion, hiding and inaction. The
connectors can be composed in series or in parallel and the resulting circuits are equipped
with a normal form axiomatization. These circuits are quite expressive: they can model
the coordination aspects of the architectural design language CommUnity [26] and, using in
addition a simple 1-state buffer, the classic set of “channels” provided by the coordination
language Reo [1] (see [2]).

In [49, 15] the aforementioned stateless connectors were presented in process algebra
form and given a subtly different operational semantics, emphasising the role of the algebra
of labels, in particular with a label 0 meaning inaction [49] and, in [15] with a monoidal
structure (of which 0 is the identity). Moreover, they were extended with certain simple
buffer components: one-place buffers in [49] and unbounded buffers in [15]. In both cases
close semantic correspondences were shown to exist with certain versions of Petri nets, called
nets with boundaries. They come equipped with left- and right-interfaces to be exploited
for composition. Interfaces are just plain lists of ports (not just shared places) that are used
to coordinate the firing of net transitions with the surrounding environment.

Petri nets [45] are frequently used both in theoretical and applied research to specify
systems and visualise their behaviour. On the other hand, process algebras are built around
the principle of compositionality: their semantics is given structurally so that the behaviour
of the whole system is a function of the behaviour of its subsystems. As a consequence, the
two are associated with different modelling methodologies and reasoning techniques. This
paper improves and extends the results of [49, 15], which were initial and fragmented in
the two aforementioned papers. Our results bridge the gap between the Petri net theory
and process algebra by showing very close semantic correspondence between a family of
process algebras based on connectors on the one hand and a family of nets with boundaries
on the other. Still, we want to stress out the fact that our operators for composition of
systems and interaction are fundamentally different to those traditionally considered by
process algebraists.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 3

As usual, in the case of Condition/Event systems (C/E nets), each place can contain
a token at most, and transitions compete both for resources in their presets and their
postsets—two transitions that produce a token at the same place cannot fire together. In the
case of Place/Transition systems (P/T nets), each place can contain an unbounded number
of tokens, arcs between places and transitions are weighted, with the weights defining how
many tokens are produced/consumed in each place by a single firing of the transition, and
the firing of a transition is allowed also when some tokens are already present in its post-
set. In both cases, ports of the interface can be connected to transitions to account for the
interactions with the environment when a transition fires.

We focus on the step semantics, where (multi)sets of transitions can fire at the same
time. In the case of P/T nets we consider two different kinds of semantics: an ordinary
firing semantics in which a concurrently enabled multiset of transitions can fire together, as
well as a second semantics in which any multiset of transitions can fire together when the
number of tokens consumed from each place does not exceed the number of tokens available
at the beginning plus those that are produced. This means that not all of the transitions
are necessarily enabled at the start: by analogy with the bank system, we can consider that
the multiset of transitions is enabled by each place in the net initially taking some “loan”
tokens that are given back after the firing. Because of this analogy we will refer to this
semantics as the banking semantics. The weak semantics resembles the firing condition for
P/T nets with a/sync places proposed in [32, 33, 34], in which tokens in a/sync places can
be produced and consumed at the same execution step.

In the case of C/E nets we also consider two different kinds of semantics: in the strong
one, non-interfering sets of enabled transitions can fire at the same time; in the weak one,
multisets of transitions can fire at the same time, as for P/T nets, as long as the capacity of
places is not exceeded after the firing. Still, several alternatives are also possible, depending
on the order in which the tokens are assumed to be consumed and produced during the step.
For example, if we assume that first all transitions consume the tokens and then new tokens
are produced, we have a step semantics that is more liberal than the strong one, but stricter
than the weak one. Essentially, the possible different semantics are those studied for nets
with (place) capacities in [21], when regarding C/E nets as P/T nets with capacity one for
all places. All the alternatives are discussed in Remark 6.3, and the results presented in
this paper smoothly extend to each variant.

On the process algebra side, we call Petri calculus the calculus of connectors accounting
for C/E nets and P/T calculus the one accounting for P/T nets. Quite surprisingly, we show
that the same set of stateless connectors is needed to deal with C/E nets with boundaries
and with P/T nets with boundaries. The difference is the use of one-state buffers for C/E
nets and unbounded buffers for P/T nets. Our studies also show that the correspondence
results between connectors and nets carry over the preferred model of coordination, just
depending on the absence or presence of a simple rule (called (Weak)) for composing consec-
utive steps of the operational semantics, using a natural monoidal structure on the set of
labels. Remark 6.3 shows that the different semantics for C/E nets can be easily classified
by changing the operational semantics rules for one-state buffers.

While the Petri calculus relies on a finite set of symbols and rules, one possible drawback
of the P/T calculus is that it requires a finite scheme of rules, that are parametric on some
natural numbers. Then, we show that by using the tile model [27] this limitation can
be overcome and P/T nets can be modelled using a finite set of symbols and tiles. The
technical key to achieve the main result is the functoriality of the monoid of observations

4 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

w.r.t. the so-called vertical composition of tiles. To be more precise, since interfaces are
lists of ports and we want to observe, at each port, how many steps are performed and how
many tokens are exchanged during each step, we take lists of sequences of natural numbers
as observations. Since we want to deal with a finite set of symbols, we represent any natural
number n as the sequence of symbol 1 of length n. Notably, the observation 0 is just the
identity of the category of observations. Roughly, the functoriality law of the monoid of
observations establishes that observations at different ports are not necessarily “aligned” or
synchronised. Yet, in the strong case, we want to separate the tokens exchanged in one step
from the tokens exchanged at the next step. This is achieved by introducing an additional
symbol τ as a separator and we show that it can be used to align independent sequences
by a default policy.

Overall, the Petri calculus and tile model provide small, basic algebras of nets, out of
which we can build any C/E and P/T nets with boundaries compositionally. As discussed in
the section on related work, this result provides our personal answer to a long-standing quest
for the universal algebra, both sound and complete, of nets. Although we are aware that
the constants we start from reduce nets to their very basic atoms and hence their algebra is
very fine grained and cannot provide by itself the right level of abstraction for manipulating
complex systems, we argue that one can still look for building suitable “macros” as derived
operators on our basic atoms and then work in the corresponding subalgebra. Note also
that the only forms of composition we rely on are the parallel and sequential compositions
that constitute essential operations and should always be present. We think the key novel
issue in our setting is a simple but powerful notion of interface, that exposes “pending arcs”,
unlike classical approaches, where places and/or transitions are exposed. Additionally, it
allows to attach many competing pending arcs to the same port.

Origin of the work. In [49] the fourth author employed essentially the same stateful ex-
tension of the connector algebra to compose Condition-Event (C/E) Petri nets (with con-
sume/produce loops). Technically speaking, the contribution in [49] can be summarised
as follows. C/E nets with boundaries are first introduced that can be composed in series
and in parallel and come equipped with a bisimilarity semantics. Then, a suitable instance
of the wire calculus from [48] is presented, called Petri calculus, that models circuit dia-
grams with one-place buffers and interfaces. The first result enlightens a tight semantics
correspondence: it is shown that a Petri calculus process can be defined for each net such
that the translation preserves and reflects the semantics. The second result provides the
converse translation, from Petri calculus to nets. Unfortunately, some problems arise in the
latter direction that complicate a compositional definition of the encoding: Petri calculus
processes must be normalised before translating them, via a set of transformation rules that
add new buffers to the circuit (and thus new places to the net). The difference between the
work in [49] and the results presented in this paper are: i) by improving the definition of
C/E nets with boundaries we simplify the translation from Petri calculus to nets, avoiding
the normalisation procedure and giving a compositional encoding; ii) the weak semantics
is novel to this paper. The idea of composing nets via boundaries made of ports was novel
to [49].

In [15] the first three authors exploited the tile model to extend the correspondence re-
sult of [49] to deal with P/T nets with boundaries, providing an elegant and compositional
translation from the relevant tile model to P/T nets that neither involves normalising trans-
formation, nor introduces additional places. During the preparation of this full version, we

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 5

realised that since the τ observations were not considered there, the semantics addressed
in the correspondence was the weak one, not the strong one. As a consequence, the main
theorem, stating the correspondence in both directions, worked in one direction only (from
nets to tiles) and not in the opposite direction (tiles allowed for more behaviours than nets).
The difference between the work in [15] and the results presented in this paper are: i) we
changed the arity of the symbol for modelling tokens (from arity (1, 1) to (0, 1)) because we
found it more convenient in many proofs (but the change has no consequences whatsoever
on the overall expressiveness of the model); ii) we fixed the correspondence theorems for
the strong case by introducing the τ observations (only one basic tile needs to be adjusted);
iii) we fixed the correspondence theorems for the weak case by finding a more compact and
elegant presentation of the P/T net semantics (in terms of multisets of transitions instead of
processes). Incidentally the idea of the banking semantics for our weak coordination model
originated from the tile semantics in [15].

The definition of the P/T calculus is also a novel contribution of this paper. Its main
advantages are: i) in the strong case, it can be seen as the natural extension of the Petri
calculus (where only 0 and 1 are observed) to deal with P/T nets (where any natural
number can be observed); ii) the extension to the weak case relies on exactly the same rule
as the Petri calculus ((Weak)); iii) it offers a convenient intermediate model for proving the
correspondence between the tile model and the P/T nets with boundaries.

Roadmap. The content of this paper is of a rather technical nature but is self-contained, in
the sense that we do not assume the reader be familiar with nets, process algebras, category
theory or tile model. As it may be evident by the above introduction, this work addresses
the expressiveness of connectors models along several dimension: i) semantics, we can move
from the strong view (“clockwork” steps) to the weak view (that matches with banking
semantics); ii) models, we can move from C/E nets to P/T nets; iii) algebras, we can move
from the Petri calculus and P/T calculus to instances of the tile model.

The first part of the paper is devoted to two categories of nets with boundaries, C/E
nets and P/T nets. The transitions of the composed net are minimal synchronisations (see
Definitions 3.2 and 4.3) of transitions of the original nets. To each model of net we assign
a labelled semantics, in the case of P/T nets we study both a strong semantics and a weak
semantics that captures the banking semantics of P/T nets. The key results (Theorem 3.8
for C/E nets and Theorem 4.9 for P/T nets) are that labelled transitions are compatible
with composition of nets. These results guarantee that (labelled) bisimilarity of nets is
always compositional.

Next we study the process algebraic approaches. First the Petri calculus, with a strong
and weak semantics. The important result is Proposition 6.7 which states that both strong
and weak bisimilarity is a congruence with respect to the two operations. Next we extend the
Petri calculus with unbounded buffers, obtaining the P/T calculus, again with appropriate
strong and weak semantics. We then develop enough theory of the calculi to show that they
are semantically equivalent to their corresponding model of nets with boundaries. Our final
technical contribution is a reformulation of the P/T calculus in the tile framework.

Structure of the paper. In detail, the paper is structured as follows: Section 2 fixes the
main notation and gives the essential background on C/E nets and P/T nets. Section 3
introduces C/E nets with boundaries, together with their labelled semantics. Section 4
introduces P/T nets with boundaries, under both the strong and weak labelled semantics.

6 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

In Section 5 we show that both the models are actually monoidal categories and that there
are functors that take nets to their underlying processes—bisimilarity classes with respect
to the labelled semantics. Section 6 introduces the Petri calculus, fixing its syntax, its
strong and weak operational semantics and the corresponding bisimulation equivalences.
P/T calculus, introduced in Section 7, extends the Petri calculus by allowing unbounded
buffers and by generalising the axioms of the Petri calculus to deal with natural numbers
instead of just 0 and 1. In Section 8 we translate process algebra terms to nets; these
translations are easy because there are simple nets that account for the basic connectors
and so our translations can be defined compositionally. In Section 9 we develop enough
of the process algebra theory thats allow us to give a translation from net models to the
process algebras. All the translations in Sections 8 and 9 both preserve and reflect labelled
transitions. Section 10 recasts the P/T calculus within the tile model. First, some essential
definition on the tile model are given. Then, an instance of the tile model, called Petri
tile model, is introduced. In the strong case the tile model includes a special observation
τ that is used to mark a separation between the instant a token arrives in a place and the
instant it is consumed from that place. In the weak case, the τ are just (unobservables)
identities, so that the same token can arrive and depart from a place in the same step. The
main result regarding the tile model shows that the Petri tile calculus is as expressive as the
P/T calculus and therefore, by transitivity, as the P/T nets with boundaries. Section 11
accounts for the comparison with some strictly related approaches in the literature. Finally,
some concluding remarks are given in Section 12.

2. Background

For n ∈ N write n
def
= {0, 1, . . . , n− 1} for the nth ordinal (in particular, 0

def
= ∅). For sets

X and Y we write X + Y for {(x, 0) | x ∈ X} ∪ {(y, 1) | y ∈ Y }. A multiset on a set X is
a function X → N. The set of multisets on X is denoted MX . We shall use U ,V to range
over MX . For U ,V ∈ MX , we write U ⊆ V iff ∀x ∈ X : U(x) ≤ V(x).

We shall frequently use the following operations on multisets:

∪ :MX ×MX →MX : (U ∪ V)(x)
def
= U(x) + V(x)

− :MX ×MX →MX : (U − V)(x)
def
= U(x)− V(x) when V ⊆ U

· : N×MX →MX : (k · U)(x)
def
= kU(x)

+ :MX ×MY →MX+Y : (U + V)(z)
def
=

{
U(x) if z = (x, 0)

V(y) if z = (y, 1)

−|Y :MX →MY : MY (y)
def
= MX(y) when Y ⊆ X

Given a finite set X and U ∈ MX let |U| def
=
∑

x∈X U(x). Given a finite X, if f : X →MY

and U ∈ MX then we shall abuse notation and write f(U) =
⋃
x∈X U(x) · f(x). Another

slight abuse of notation will be the use of ∅ ∈ MX for the multiset s.t. ∅(x) = 0 for all
x ∈ X.

Given f : X → Y and U ⊆ Y , we will write f−1(U) to the denote the inverse image (or
preimage) of the set U under f , i.e., f−1(U) = {x ∈ X | f(x) ∈ U}.

Throughout this paper we use two-labelled transition systems (cf. Definition 2.1).
Depending on the context, labels will be words in {0, 1}∗ or N∗, and will be ranged over

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 7

by α, β, γ. Write #α for the length of a word α. Let i ∈ [1,#α], we denote by αi the ith
element of α. Let α, β ∈ N∗ with #α = #β, then we denote by α + β the sequence such
that #(α+ β) = #α and (α+ β)i = αi + βi for any i ∈ [1,#α].

The intuitive idea is that a transition p
α−→
β q means that a system in state p can, in a

single step, synchronise with α on its left boundary, β on it right boundary and change its
state to q.

Definition 2.1 (Two-labelled transition system). Fix a set of labels A (in this paper A =
{0, 1} or A = N). For k, l ∈ N, a (k, l)-transition is a two-labelled transition of the form
α−→
β where α, β ∈ A∗, #α = k and #β = l. A (k, l)-labelled transition system ((k, l)−LTS)

is a transition system that consists of (k, l)-transitions: concretely, it is a pair (V, T) where
V is a set of states, and T ⊆ V ×A∗×A∗×V , where for all (v, α, β, v′) ∈ T we have #α = k
and #β = l. A two-labelled transition system is a family of (k, l)-labelled transition systems
for k, l ∈ N.

Definition 2.2 (Bisimilarity). A simulation on a two-labelled transition system is a relation

S on its set of states that satisfies the following: if (v, w) ∈ S and v
α−→
β v′ then ∃w′ s.t.

w
α−→
β w′ and (v′, w′) ∈ S. A bisimulation is a relation S where both S and Sop, the inverse

(or opposite) relation, are simulations. Bisimilarity is the largest bisimulation relation and
can be obtained as the union of all bisimulations.

2.1. Petri Nets. Here we introduce the underlying models of nets, together with the dif-
ferent notions of firing semantics that are considered in the paper.

Definition 2.3 (C/E net). A C/E net is a 4-tuple N = (P, T, ◦−, −◦) where:1

− P is a set of places;
− T is a set of transitions;
− ◦−,−◦ : T → 2P are functions.

A C/E net N is finite when both P and T are finite sets. For a transition t ∈ T , ◦t and t◦

are called, respectively, its pre- and post-sets. Moreover, we write ◦t◦ for ◦t ∪ t◦.
The obvious notion of net homomorphisms f : N →M is a pair of functions fT : TN →

TM , fP : PN → PM such that ◦−N ; 2fP = fT ; ◦−M and −◦N ; 2fP = fT ; −◦M , where
2fP (X) =

⋃
x∈X{fP (x)}.

Notice that Definition 2.3 allows transitions t with both empty pre- and post-sets, that
is, ◦t = t◦ = ∅. Such transitions (e.g., transition ζ in Fig. 3), while usually excluded for
ordinary nets, are necessary when defining nets with boundaries in Section 3 (see Defini-
tion 3.1).

Transitions t 6= u are said to be independent when
◦t ∩ ◦u = ∅ and t◦ ∩ u◦ = ∅.

A set U of transitions is said to be mutually independent when for all t, u ∈ U , if t 6= u then
t and u are independent.

Given a set of transitions U let ◦U
def
=
⋃
u∈U

◦u and U◦
def
=
⋃
u∈U u

◦.
Given a net N = (P, T, ◦−,−◦), a (C/E) marking is a subset of places X ⊆ P . We

shall use the notation NX to denote the marking X of net N .

1In the context of C/E nets some authors call places conditions and transitions events.

8 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Definition 2.4 (C/E firing semantics). Let N = (P, T, ◦−, −◦) be a C/E net, X,Y ⊆ P
and for U ⊆ T a set of mutually independent transitions, write:

NX →U NY
def
= ◦U ⊆ X, U◦ ∩X = ∅ & Y = (X\◦U) ∪ U◦.

Remark 2.5. Notice that Definition 2.3 allows the presence of transitions t for which there
exists a place p with p ∈ ◦t and p ∈ t◦. Some authors refer to this as a consume/produce
loop. The semantics in Definition 2.4 implies that such transitions can never fire. We will
return to this in Remark 3.10, and in Remark 6.3 where we consider alternative semantics
for nets with boundaries. �

Places of a Place/Transition net (P/T net) can hold zero, one or more tokens and arcs
are weighted. The state of a P/T net is described in terms of (P/T) markings, i.e., (finite)
multisets of tokens available in the places of the net.

Definition 2.6 (P/T net). A P/T net is a 4-tuple (P, T, ◦−, −◦) where:

• P is a set of places;
• T is a set of transitions;
• ◦−,−◦ : T →MP .

Let X ∈MP , we write NX for the P/T net N with marking X .
We can extend ◦− and −◦ in the obvious way to multisets of transitions: for U ∈ MT

define ◦U def
=
⋃
t∈T U(t) · ◦t and similarly U◦ def

=
⋃
t∈T U(t) · t◦ .

Definition 2.7 (P/T strong firing semantics). Let N = (P, T, ◦−, −◦) be a P/T net,
X ,Y ∈MP and t ∈ T . For U ∈ MT a multiset of transitions, write:

NX →U NY def
= ◦U ⊆ X , U◦ ⊆ Y & X − ◦U = Y − U◦.

Although the conditions ◦U ⊆ X and U◦ ⊆ Y in the above definition are redundant
(since X − ◦U and Y − U◦ are defined only under such assumption), we explicitly state
them in order to stress this requirement for firing. Also, we remark that Definition 2.4 can
be obtained as a special case of Definition 2.7 when considering only 1-safe markings, i.e.,
markings that hold at most one token. Indeed, the conditions ◦U ⊆ X and U◦ ⊆ Y with
X and Y 1-safe only holds when U is a set of mutually independent transitions.

Definition 2.8 (P/T weak firing semantics). Let N = (P, T, ◦−, −◦) be a P/T net, X ,Y ∈
MP and U ∈ MT . Write:

NX ⇒U NY def
= Y ∪ ◦U = X ∪ U◦.

Let N,M be P/T nets, a net homomorphism f : N →M is a pair of functions fT : TN →
TM , fP : PN → PM such that such that ◦−N ; fP = fT ; ◦−M and −◦N ; fP = fT ; −◦M .

Example 2.9. Figure 1 depicts a simple P/T net N . We use the traditional graphical rep-
resentation in which places are circles, transitions are rectangles and directed edges connect
transitions to its pre- and post-set. When considering the strong semantics, the net N{p1}
can evolve as follows: N{p1} →{t1} N{p2} →{t2} N{p1} We remark that transition t2
cannot be fired at N{p1} since the side condition X − ◦t of Definition 2.7 is not satisfied (in
fact, {p1} − ◦t2 is not defined). When considering the weak semantics, the net N{p1} has
additional transitions such as N{p1} ⇒{t1,t2} N{p1}, in which t2 can be fired by consuming
in advance the token that will be produced by t1.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 9

p1 p2

t2

t1

Figure 1: A simple P/T net N .

We need to consider another kind of weak semantics of P/T nets that is related to C/E
nets in that markings hold at most one token.

Definition 2.10 (P/T restricted weak firing semantics). Let N = (P, T, ◦−, −◦) be a P/T
net, X,Y ⊆ P and U ∈ MT . Write:

NX ⇒U NY
def
= Y ∪ ◦U = X ∪ U◦.

where the operation ∪ refers to multiset union and the sets Y and X are considered as
multisets.

Note that Definition 2.10 is a special case of Definition 2.8, when considering just 1-safe
markings.

3. C/E Nets with boundaries

In Definition 2.3 we recalled the notion of C/E nets together with a firing semantics in
Definition 2.4.

In this section we introduce a way of extending C/E nets with boundaries that allows
nets to be composed along a common boundary. We give a labelled semantics to C/E nets
with boundaries in Section 3.1. The resulting model is semantically equivalent to the strong
semantics of the Petri Calculus, introduced in Section 6; the translations are amongst the
translations described in Sections 8 and 9.

In order to illustrate marked C/E nets with boundaries, it will first be useful to change
the traditional graphical representation of a net and use a representation closer in spirit to
that traditionally used in string diagrams.2 The diagram on the left in Fig. 2 demonstrates
the traditional graphical representation of a (marked) net. Places are circles; a marking is
represented by the presence or absence of tokens. Each transition t ∈ T is a rectangle; there
are directed edges from each place in ◦t to t and from t to each place in t◦. This graphical
language is a particular way of drawing hypergraphs; the right diagram in Fig. 2 demon-
strates another graphical representation, more suitable for drawing nets with boundaries.
Places are again circles, but each place has exactly two ports (usually drawn as small black
triangles): one in-port, which we shall usually draw on the left, and one out-port, usually
drawn on the right. Transitions are simply undirected links—each link can connect to any
number of ports. Connecting t to the out-port of p means that p ∈ ◦t, connecting t to p’s
in-port means that p ∈ t◦. The position of the “bar” in the graphical representation of each
link is irrelevant, they are used solely to distinguish individual links. A moment’s thought

2See [47] for a survey of classes of diagrams used to characterise free monoidal categories.

10 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Figure 2: Traditional and alternative graphical representations of a net.

ought to convince the reader that the two ways of drawing nets are equivalent, in that they
both faithfully represent the same underlying formal structures.

Independence of transitions in C/E nets is an important concept—only independent
transitions are permitted to fire concurrently. We will say that any two transitions t, u with
t 6= u that are not independent are in contention, and write t#u. Then, in ordinary C/E
nets, t#u precisely when t 6= u and ◦t∩ ◦u 6= ∅ or t◦ ∩u◦ 6= ∅. In particular, the firing rule
for the semantics of C/E nets (Definition 2.4) can be equivalently restated as follows:

NX →U NY
def
= ◦U ⊆ X, U◦ ∩X = ∅, Y = (X\◦U) ∪ U◦ & ∀u, v ∈ U.¬(u#v).

Our models connect transitions to ports on boundaries. Nets that share a common
boundary can be composed—the transitions of the composed net are certain synchronisa-
tions between the transitions of the underlying nets, as we will explain below. Connecting
two C/E net transitions to the same port on the boundary introduces a new source of
contention—moreover this information must be preserved by composition. For this reason
the contention relation is an explicit part of the structure of C/E nets with boundaries.

The model of C/E nets with boundaries originally proposed in [49] lacked the contention
relation and therefore the translation between Petri calculus terms and nets was more
involved. Moreover, the model of C/E nets with boundaries therein was less well-behaved
in that composition was suspect; for example bisimilarity was not a congruence with respect
to it. Incorporating the contention relation as part of the structure allows us to repair these
shortcomings and obtain a simple translation of the Petri calculus that is similar to the
other translations in this paper.

We start by introducing a version of C/E nets with boundaries. Let k, l,m, n range
over finite ordinals.

Definition 3.1 (C/E nets with boundaries). Let m,n ∈ N. A (finite, marked) C/E net
with boundaries NX : m→ n, is an 8-tuple (P, T,X, #, ◦−, −◦, •−, −•) where:

− (P, T, ◦−, −◦) is a finite C/E net;
− •− : T → 2m and −• : T → 2n connect each transition to a set of ports on the left

boundary m and right boundary n;
− X ⊆ P is the marking;
− # is a symmetric and irreflexive binary relation on T called contention.

The contention relation must include all those transitions that are not independent in the
underlying C/E net, and those that share a place on the boundary, i.e. for all t, u ∈ T where
t 6= u:

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 11

0

1

0

1

2

↵
�

�

�

✏
⇣

a

b

c

d

Figure 3: Representation of a net with boundaries N∅ : 2→ 3. Here T = {α, β, γ, δ, ε, ζ}
and P = {a, b, c, d}. The non-empty values of ◦− and −◦ are: α◦ = {a},
◦β = {a}, β◦ = {b, c, d}, ◦γ = {b}, ◦δ = {c}, ◦ε = {d}. The non-empty values of
•− and −• are: •α = {0}, ε• = {0}, γ• = {1}, δ• = {1}, ζ• = {2}. Of course
when the same port name appears in the left and right boundaries (e.g., 0) it
denotes different nodes.

(i) if ◦t ∩ ◦u 6= ∅, then t#u;
(ii) if t◦ ∩ u◦ 6= ∅, then t#u;

(iii) if •t ∩ •u 6= ∅, then t#u;
(iv) if t• ∩ u• 6= ∅, then t#u.

Transitions t, t′ ∈ T are said to have the same footprint when ◦t = ◦t′, t◦ = t′◦, •t = •t′

and t• = t′•. From an operational point of view, transitions with the same footprint are
indistinguishable. We assume that if t and t′ have the same footprint then t = t′. This
assumption is operationally harmless and somewhat simplifies reasoning about composition.

An example of C/E net with boundaries is pictured in Fig. 3. Note that ζ is a transition
with empty pre and postset, and transitions δ and γ are in contention because they share
a port.

The notion of independence of transitions extends to C/E nets with boundaries: t, u ∈ T
are said to be independent when ¬(t#u). We say that a set U of transitions is mutually
independent if ∀u, v ∈ U. ¬(u#v).

The obvious notion of homomorphism between two C/E nets extends that of ordinary
nets: given nets NX ,MY : m → n, f : NX → MY is a pair of functions fT : TN → TM ,
fP : PN → PM such that fP (X) = Y , fT (t)#fT (u) implies t#u, ◦−N ; 2fP = fT ; ◦−M ,
−◦N ; 2fP = fT ; −◦M , •−N = fT ; •−M and −•N = fT ; −•M . A homomorphism is an
isomorphism iff its two components are bijections; we write NX

∼= MY when there is an
isomorphism from NX to MY .

The main operation on nets with boundaries is composition along a common bound-
ary. That is, given nets MX : l → m, NY : m → n we will define a net MX ;NY : l → n.
Roughly, the transitions of the composed net MX ;NY are certain sets of transitions of the
two underlying nets that synchronise on the common boundary. Thus in order to define
the composition of nets along a shared boundary, we must first introduce the concept of
synchronisation.

Definition 3.2 (Synchronisation of C/E nets). Let MX : l → m and NY : m → n be C/E
nets. A synchronisation is a pair (U, V), with U ⊆ TM and V ⊆ TN mutually independent
sets of transitions such that:

− U + V 6= ∅;
− U• = •V .

12 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

The set of synchronisations inherits an ordering pointwise from the subset order, i.e. we
let (U ′, V ′) ⊆ (U, V) when U ′ ⊆ U and V ′ ⊆ V . A synchronisation is said to be minimal
when it is minimal with respect to this order. Let Synch(M,N) denote the set of minimal
synchronisations.

Note that synchronisations do not depend on the markings of the underlying nets, but
on the sets of transitions TM and TN . Consequently, Synch(M,N) is finite because TM
and TN are so. It could be also the case that Synch(M,N) is the empty set . Notice that
any transition in M or N not connected to the shared boundary m (trivially) induces a
minimal synchronisation—for instance if t ∈ TM with t• = ∅, then ({t}, ∅) is a minimal
synchronisation.

The following result shows that any synchronisation can be decomposed into a set of
minimal synchronisations.

Lemma 3.3. Suppose that MX : k → n and NY : n → m are C/E nets with boundaries
and (U, V) is a synchronisation. Then there exists a finite set of minimal synchronisations
{(Ui, Vi)}i∈I such that (i) Ui ∩ Uj = Vi ∩ Vj = ∅ whenever i 6= j, (ii)

⋃
i Ui = U and (iii)⋃

i Vi = V .

Proof. See Appendix A. �

Minimal synchronisations serve as the transitions of the composition of two nets along a

common boundary. Thus, given (U, V) ∈ Synch(M,N) let ◦(U, V)
def
= ◦U + ◦V , (U, V)◦

def
=

U◦ + V ◦, •(U, V)
def
= •U and (U, V)•

def
= V •. For (U, V), (U ′, V ′) ∈ Synch(M,N),

(U, V)#(U ′, V ′) iff (U, V) 6= (U ′, V ′) and

− U ∩ U ′ 6= ∅ or ∃u ∈ U, u′ ∈ U ′ such that u#u′ (as transitions of M), or
− V ∩ V ′ 6= ∅ ∃v ∈ V, v′ ∈ V ′ such that v#v′ (as transitions of N);

Having introduced minimal synchronisations we may now define the composition of two
C/E nets that share a common boundary.

Definition 3.4 (Composition of C/E nets with boundaries). When MX : l → m and
NY : m→ n are C/E nets, define their composition, M ;NX+Y : l→ n, as follows:

− places are PM + PN , the “enforced” disjoint union of places of M and N ;
− transitions are obtained from the set of minimal synchronisations Synch(M,N),

after removing any redundant transitions with equal footprint3;
− the marking is X + Y .

We must verify that # as defined on Synch(M,N) above satisfies the conditions on
the contention relation given in Definition 3.1. Indeed if ◦(U, V) ∩ ◦(U ′, V ′) 6= ∅ then one
of ◦U ∩ ◦U ′ and ◦V ∩ ◦V ′ must be non-empty. Without loss of generality, if the first is
nonempty then there exist u ∈ U , u′ ∈ U ′ with ◦u ∩ ◦u′ 6= ∅, thus either u = u′, in which
case U∩U ′ 6= ∅, or u#u′ in M—thus by construction ◦(U, V)#◦(U ′, V ′) in the composition,
as required. The remaining conditions are similarly easily shown to hold. An example of a
composition of two C/E nets is illustrated in Fig. 4.

Remark 3.5. Two transitions in the composition of two C/E nets may be in contention
even though they are mutually independent in the underlying C/E net, as illustrated by
Fig. 5. �

3It is possible that two or more minimal synchronisations share the same footprint and in that case only
one is retained. The precise identity of the transition that is kept is irrelevant.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 13

�1

�2

↵1

↵2

↵3

↵4

{↵2,↵3},�1

{↵1,↵3},�1

↵4,�2

Figure 4: Composition of two C/E nets.

↵1

↵2

�

↵1,�

↵2,�

Figure 5: Composition of two nets with boundaries. Note that α1#α2 implicitly in the left-
most net, and (α1, β)#(α2, β) in the composition. This is emphasised graphically
with the jagged line in the rightmost diagram.

Remark 3.6. Any ordinary C/E net N (Definition 2.3) can be considered as a net with
boundaries N : 0 → 0 as there is exactly one choice for functions •−,−• : T → 20 and
the contention relation consists of all pairs of transitions that are not independent in N .
Composition of two nets N : 0 → 0 and M : 0 → 0 is then just the disjoint union of the
two nets: the set of places is PN +PM , the minimal synchronisations are precisely ({t},∅),
t ∈ TN and (∅, {t′}), t′ ∈ TM , and the contention relation is the union of the contention
relations of N and M . �

3.1. Labelled semantics of C/E nets with boundaries. For any k ∈ N, there is a
bijection p−q : 2k → {0, 1}k with

pUqi
def
=

{
1 if i ∈ U
0 otherwise.

Similarly, with slight abuse of notation, we define p−q :Mk → Nk by

pUqi def
= U(i)

14 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

10
00*

00
00*

00
01*

00

01*

00
11*

00

01*

10
00*

00

10*

Figure 6: Part of a labelled transition system for simple C/E net 2 → 3. The symbol ∗ is
used as shorthand for any label in {0, 1}.

Definition 3.7 (C/E Net Labelled Semantics). Let N : m → n be a C/E net with bound-
aries and X,Y ⊆ PN . Write:

NX
α−→
β NY

def
= ∃ mutually independent U ⊆ TN s.t.

NX →U NY , α = p•Uq & β = pU•q (3.1)

It is worth emphasising that no information about precisely which set U of transitions
has been fired is carried by transition labels, merely the effect of the firing on the bound-

aries. Notice that we always have NX
0m−−→
0n NX , as the empty set of transitions is vacuously

mutually independent.
A transition NX

α−→
β NY indicates that the C/E net N evolves from marking X to

marking Y by firing a set of transitions whose connections are recorded by α on the left
interface and β on the right interface. We give an example in Fig. 6.

Labelled semantics is compatible with composition in the following sense.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 15

Theorem 3.8. Suppose that M : k → n and N : n → m are C/E nets with boundaries,

and X,X ′ ⊆ PM and Y, Y ′ ⊆ PN markings. Then M ;NX+Y
α−→
β M ;NX′+Y ′ iff there exists

γ ∈ {0, 1}n such that

MX
α−→
γ MX′ and NY

γ−→
β NY ′ .

Proof. See Appendix A. �

The above result is enough to show that bisimilarity is a congruence with respect to
the composition of nets over a common boundary.

Proposition 3.9. Bisimilarity of C/E nets is a congruence w.r.t. ‘ ;’.

Proof. See Appendix A. �

Remark 3.10. Consider the composition of the three nets with boundaries below.

d : 0 ! 2 e : 2 ! 0N : 2 ! 2

The result is a net with boundaries 0→ 0 with a single place and a single consume/produce
loop transition. As we have observed in Remark 2.5, this transition cannot fire with the
semantics of nets that we have considered so far. Globally, the transition cannot fire because
its postset is included in the original marking. The fact that the transition cannot fire is
also reflected locally, in light of Theorem 3.8: indeed, locally, for the transition to be able to

fire, there would need to be a transition N{?}
11−−→
11 N{?}, but this is not possible because there

is a token present in the postset of the transition connected to the lower left boundary. It is
possible to relax the semantics of nets in order to allow such transitions to fire, as we will
explain in Remark 6.3. �

Remark 3.11. In Remark 3.6 we noted that any ordinary net N can be considered as a
net with boundaries N : 0 → 0. For such nets, the transition system of Definition 3.7 has
transitions with only one label (since there is nothing to observe on the boundaries) and
thus corresponds to an unlabelled step-firing semantics transition system. In particular, it
follows that, while the transition systems generated for nets N : 0 → 0 are different, they
are all bisimilar; we feel that this is compatible with the usual view on labelled equivalences
in that they capture behaviour that is observable from the outside: a net N : 0 → 0 does
not have a boundary and thus there is no way of interacting with it and therefore no way of
telling apart two such nets. One can, of course, allow the possibility of observing the firing
of certain transitions (possibly all) by connecting them to ports on the boundary. Let N be a
net with n = #TN transitions. A corresponding net with boundaries that makes transitions
observable over the right interface is as follows: N : 0 → n with •t = ∅ for all t ∈ TN ,
• : TN → n any injective function, and the contention relation containing only those pairs

of transitions that are in contention in the underlying C/E net N . �

16 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

4. P/T nets with boundaries

This section extends the notion of nets with boundaries to P/T nets. The contention relation
no longer plays a role, and connections of transitions to boundary ports are weighted.

Definition 4.1 (P/T net with boundaries). Let m,n ∈ N. A (finite, marked) P/T net
with boundaries NX : m→ n is a tuple N = (P, T, ◦−,−◦, •−,−•) where:

− (P, T, ◦−,−◦) is a finite P/T net;
− •− : T → Mm and −• : T → Mn are functions that assign transitions to the left

and right boundaries of N ;
− X ∈MP .

As in Definition 3.1 we assume that transitions have distinct footprints.

Remark 4.2. For reasons that will become clear when we study the process algebraic ac-
count, we will sometimes refer to P/T nets with boundaries that have markings which are
subsets (X ⊆ P) of places instead of a multiset (X ∈ MP) of places as weak C/E nets
with boundaries. �

The notion of net homomorphism extends to marked P/T nets with the same bound-
aries: given NX ,MY : m → n, f : NX → MY is a pair of functions fT : TN → TM ,
fP : PN → PM such that fP (X) = Y, ◦−N ; 2fP = fT ; ◦−M , −◦N ; 2fP = fT ; −◦M ,
•−N = fT ; •−M and −•N = fT ; −•M . A homomorphism is an isomorphism if its two
components are bijections. We write NX ∼= MY if there is an isomorphism from NX to MY .

In order to compose P/T nets with boundaries we need to consider a more general notion
of synchronisation. This is because synchronisations of P/T involve multisets of transitions
and there is no requirement of mutual independence. The definitions of •− and −• extend

for multisets in the obvious way by letting •U def
=
⋃
t∈T U(t) · •t and U• def

=
⋃
t∈T U(t) · t•.

Definition 4.3 (Synchronisation of P/T nets). A synchronization between nets MX : l→ m
and NY : m → n is a pair (U ,V), with U ∈ MTM and V ∈ MTN multisets of transitions
such that:

− U + V 6= ∅;
− U• = •V.

The set of synchronisations inherits an ordering from the subset relation, i.e. (U ′, V ′) ⊆
(U , V) when U ′ ⊆ U and V ′ ⊆ V. A synchronisation is said to be minimal when it is
minimal with respect to this order.

Let Synch(M,N) denote the set of minimal synchronisations, an unordered set. This
set is always finite—this is an easy consequence of Dickson’s Lemma [23, Lemma A].

Lemma 4.4. The set of minimal synchronisations Synch(M,N) is finite.

The following result is comparable to Lemma 3.3 in the P/T net setting—any synchro-
nisation can be written as a linear combination of minimal synchronisations.

Lemma 4.5. Suppose that MX : l→ m and NY : m→ n are P/T nets with boundaries and
(U ,V) is a synchronisation. Then there exist a finite family {(bi, (Ui,Vi))}i∈I where each
bi ∈ N+, (Ui,Vi) ∈ Synch(M,N) where for any i, j ∈ I, (Ui,Vi) = (Uj ,Vj) implies that
i = j, such that

⋃
i∈I bi · Ui = U and

⋃
i∈I bi · Vi = V.

Proof. See Appendix B. �

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 17

3

1

1
c

�

1
2

2

a

b

↵

�

1

(a) Two P/T nets with boundaries M (left) and
N(right).

a

b

c

3

2

4

(3 · ↵ + 2 · �, 2 · �)

(b) Composition M ;N .

Figure 7: Composition of P/T nets with boundaries.

2

2

1 1

1

2 1

1

1

2

1

2

5

3

1

1

2

1

2

1

2

1 1

2

2

1

1

2 1

2

3
12

2

5

20

Figure 8: Composition of P/T nets with boundaries.

Given (U , V) ∈ Synch(M,N), let ◦(U , V)
def
= ◦U+◦V ∈ MPM+PN , (U , V)◦

def
= U◦+V◦ ∈

MPM+PN , •(U , V)
def
= •U ∈ Ml and (U , V)•

def
= V• ∈Mn.

Definition 4.6 (Composition of P/T nets with boundaries). If MX : l → m, NY : m → n
are P/T nets with boundaries, define their composition, MX ;NY : l→ n, as follows:

− places are PM + PN ;
− transitions are obtained from set Synch(M,N), after removing any redundant tran-

sitions with equal footprints (c.f. Definition 3.4);
− the marking is X + Y.

Figure 7(b) shows the sequential composition of the nets M and N depicted in Fig. 7(a).
The set of minimal synchronization between M and N consists just in the pair (U ,V) with
U = {α, α, α, β, β} and V = {γ, γ}. In other words, to synchronise over the shared interface

18 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

M should fire transition α three times (which consumes three tokens from a) and β twice
(which consumes four tokens from b) and N should fire γ twice (which produces two tokens
in c). The equivalent net describing the synchronised composition of M and N over their
common interface is a net that contains exactly one transition, which consumes three tokens
from a, four tokens from b and produces two tokens in c, as illustrated in Fig. 7(b). A more
complex example of composition of P/T nets is given in Fig. 8.

4.1. Labelled semantics of P/T nets with boundaries. We give two versions of la-
belled semantics, one corresponding to the standard semantics and one to the banking
semantics.

Definition 4.7 (Strong Labelled Semantics). Let N : m → n be a P/T net and X ,Y ∈
MPN . We write

NX
α−→
β NY

def
= ∃U ∈ MTN s.t. NX →U NY , α = p•Uq & β = pU•q. (4.1)

Definition 4.8 (Weak Labelled Semantics). Let N : m→ n be a P/T net and X ,Y ∈MPN .
We write

NX =⇒
α

β
NY

def
= ∃U ∈ MTN s.t. NX ⇒U NY , α = p•Uq & β = pU•q. (4.2)

Theorem 4.9. Suppose that M : k → n and N : n→ m are P/T nets with boundaries, and
X ,X ′ ∈MPM and Y,Y ′ ∈MPN markings. Then

(i) M ;NX+Y
α−→
β M ;NX ′+Y ′ iff there exists γ ∈ Nn such that

MX
α−→
γ MX ′ and NY

γ−→
β NY ′ .

(ii) M ;NX+Y =⇒
α

β
M ;NX ′+Y ′ iff there exists γ ∈ Nn such that

MX =⇒
α

γ
MX ′ and NY =⇒

γ

β
NY ′ .

Proof. See Appendix B. �

5. Properties of nets with boundaries

For each finite ordinal m there is a C/E net idm : m→ m with no places and m transitions,
each connecting the consecutive ports on the boundaries, i.e., for each transition ti with
0 ≤ i < m, •ti = ti

• = {i}. Similarly, there is a P/T net, which by abuse of notation we
shall also refer to as idm : m→ m.

Proposition 5.1. The following hold for both C/E and P/T nets:

(i) Let MX ,M
′
X′ : k → n and NY , N

′
Y ′ : n → m with MX

∼= M ′X′ and NY
∼= N ′Y ′. Then

MX ; NY
∼= M ′X′ ; N ′Y ′.

(ii) Let LW : k → l, MX : l → m and NY : m → n. Then (LW ; MX) ; NY
∼= LW ; (MX ;

NY).
(iii) Let MX : k → n. Then idk;MX

∼= MX
∼= MX ; idn.

Proof. The proof are straightforward, exploiting (the composition of) isomorphisms to re-
name places and transitions. �

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 19

Nets taken up to isomorphism, therefore, form the arrows of a category with objects
the natural numbers. Indeed, part (i) of Proposition 5.1 ensures that composition is a
well-defined operation on isomorphism equivalence classes of nets, part (ii) shows that
composition is associative and (iii) shows that composition has identities. Let CENet
and PTNet denote the categories with arrows the isomorphism classes of, respectively,
C/E and P/T nets.

We need to define one other binary operation on nets. Given (C/E or P/T) nets
MX : k → l and NY : m → n, their tensor product is, intuitively, the net that results from
putting the two nets side-by-side. Concretely, M ⊗NX+Y : k +m→ l + n has:

− set of transitions TM + TN ;
− set of places PM + PN ;
− ◦−,−◦ are defined in the obvious way;
− •−,−• are defined by:

•t =

{ •tM if t ∈ TM
{k + p | p ∈ •tN} if t ∈ TN t• =

{
t•M if t ∈ TM
{k + p | p ∈ t•N} if t ∈ TN

Proposition 5.2. The following hold for both C/E nets and P/T nets:

(i) Let MX ,M
′
X ′ : k → n and NY , N

′
Y ′ : l → m with MX ∼= M ′X ′ and NY ∼= N ′Y ′. Then

M ⊗NX+Y ∼= M ′ ⊗N ′X ′+Y ′ : k + l→ n+m.
(ii) idm+n

∼= idm ⊗ idn.
(iii) Let M1

X1
: m1 → m2, M2

X2
: m2 → m3, N1

Y1
: n1 → n2 and N2

Y2
: n2 → n3. Then, letting

Z def
= X1 +X2 +Y1 +Y2 we have (M1 ; M2)⊗ (N1 ; N2)Z ∼= (M1⊗N1) ; (M2⊗N2)Z .

Proof. It follows straightforwardly along the proof of Proposition 5. �

The above demonstrates that the categories CENet and PTNet are, in fact, monoidal.

Proposition 5.3. Bisimilarity of C/E nets is a congruence w.r.t. ⊗. Bisimilarity of P/T
nets is a congruence w.r.t. ‘ ;’ and ⊗.

Proof. The proof is analogous to that of Proposition 3.9. �

In particular, we obtain categories CENet|∼, PTNet|∼,PTNetProc|≈ with objects
the natural numbers and arrows the bisimilarity equivalence classes of, respectively C/E
and P/T nets, the latter with either the strong or the weak semantics. Moreover, there are
monoidal functors

[−] : CENet→ CENet|∼
[−] : PTNet→ PTNet|∼

[−]w : PTNet→ PTNet|≈
that are identity on objects and sends nets to their underlying equivalence classes.

6. Petri calculus

The Petri Calculus [49] extends the calculus of stateless connectors [14] with one-place
buffers. Here we recall its syntax, sorting rules and structural operational semantics. In
addition to the rules presented in [49] here we additionally introduce a weak semantics. The
connection between this semantics with some traditional weak semantics in process calculi
is clarified in Remark 6.2.

20 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

` © : (1, 1) ` ©• : (1, 1) ` I : (1, 1) ` X : (2, 2) ` ∆ : (1, 2) `

∆

: (2, 1) ` ⊥⊥⊥ : (1, 0) ` >>> : (0, 1)

` Λ : (1, 2) ` V : (2, 1) ` ↓↓↓ : (1, 0) ` ↑↑↑ : (0, 1)

` P : (k, l) ` R : (m,n)

` P⊗R : (k+m, l+n)

` P : (k, n) ` R : (n, l)

` P ;R : (k, l)

Figure 9: Sort inference rules.

We give the BNF for the syntax of the Petri Calculus in (6.1) below. The syn-
tax features twelve constants {©,©• , I, X, ∆,

∆

, ⊥⊥⊥,>>>, Λ, V, ↓↓↓ , ↑↑↑ }, to which we shall re-
fer to as basic connectors, and two binary operations (⊗, ;). Elements of the subset
{I, X, ∆,

∆

, ⊥⊥⊥, >>>, Λ, V, ↓↓↓ , ↑↑↑ } of basic connectors will sometimes be referred to as the
stateless basic connectors. The syntax does not feature any operations with binding, prim-
itives for recursion nor axiomatics for structural congruence.

P ::= © | ©• | I | X | ∆ | ∆| ⊥⊥⊥ | >>> | Λ | V | ↓↓↓ | ↑↑↑ | P ⊗P | P ; P (6.1)

Constant © represents an empty 1-place buffer while ©• denotes a full 1-place buffer.
The remaining basic connectors stands for the identity I, the symmetry X, synchronisations
(∆ and

∆

), mutual exclusive choices (Λ and V), hiding (⊥⊥⊥ and >>>) and inaction (↓↓↓ and
↑↑↑). Complex connectors are obtained by composing simpler connector in parallel (⊗) or
sequentially (;).

The syntax is augmented with a simple discipline of sorts. The intuitive idea is that a
well-formed term of the Petri calculus describes a kind of black box with a number of ordered
wires on the left and the right. Then, following this intuition, the operation ; connects such
boxes by connecting wires on a shared boundary, and the operation ⊗ places two boxes on
top of each other. A sort indicates the number of wiring ports of a term, it is thus a pair
(k, l), where k, l ∈ N. The syntax-directed sort inference rules are given in Fig. 9. Due
to their simplicity, a trivial induction confirms uniqueness of sorting: if ` P : (k, l) and
` P : (k′, l′) then k = k′ and l = l′.

As evident from the rules in Fig. 9, a term generated from (6.1) fails to have a sort iff
it contains a subterm of the form P ; R with ` P : (k, l) and ` R : (m, n) such that
l 6= m. Coming back to our intuition, this means that P ; R refers to a system in which
box P is connected to box R, yet they do not have a compatible common boundary; we
consider such an operation undefined and we shall not consider it further. Consequently in
the remainder of the paper we shall only consider those terms that have a sort.

The structural inference rules for the operational semantics of the Petri Calculus are
given in Fig. 10. Actually, two variants of the operational semantics are considered, to
which we shall refer to as the strong and weak operational semantics. The strong variant
is obtained by considering all the rules in Fig. 10 apart from the rule (Weak*).

The labels on transitions in the strong variant are pairs of binary vectors; i.e., P
α−→
β Q

with α, β ∈ {0, 1}∗. The transition P
α−→
β Q describes the evolution of P that exhibits the

behavior α over its left boundary and β over its right boundary. It is easy to check that
whenever P : (n, m) and P

α−→
β Q then α ∈ {0, 1}n, β ∈ {0, 1}m and Q : (n, m). Intuitively,

α and β describe the observation on each wire of the boundaries.
For instance, (TkI) states that the empty place© becomes a full place©• when one token

is received over its left boundary and no token is produced on its right boundary. Rule (TkO)

describes the transition of a full place that becomes an empty place and releases a token
over its right boundary. Rule (Id) states that connector I replicates the same observation on

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 21

(TkI)
©

1−→
0 ©•

(TkO)
©•

0−→
1 ©

(Id)
I

1−→
1 I

(Tw)
X

ab−−→
ba X

(⊥⊥⊥)
⊥⊥⊥

1−→ ⊥⊥⊥
(>>>)

>>> −→1 >>>

(∆)
∆

1−→
11 ∆

(

∆

)∆11−−→
1

∆

(Λa)
Λ

1−−→
(1−a)a Λ

(Va)

V
(1−a)a−−−−→

1 V

C:(k, l) a basic connector
(Refl)

C
0k−−→
0l

C

P
α−→
γ Q R

γ−→
β S

(Cut)
P ;R

α−→
β Q;S

P
α1−−→
β1

Q R
α2−−→
β2

S
(Ten)

P⊗R
α1α2−−−→
β1β2

Q⊗S

P
α1−−→
β1

R R
α2−−→
β2

Q
(Weak*)

P
α1+α2−−−−−→
β1+β2

Q

Figure 10: Structural rules for operational semantics. Assume that a, b ∈ {0, 1} and
α, β, γ ∈ {0, 1}∗ (strong variant) and α, β, γ ∈ N∗ (weak variant).

its two boundaries. Rule (Tw) shows that the connector X exchanges the order of the wires
on its two interfaces. Rules (>>>) and (⊥⊥⊥) say that both >>> and ⊥⊥⊥ hide to one of its boundaries
the observation that takes over the other. By rule (∆), the connector ∆ duplicates the
observation on its left wire to the two wires on its right boundary. Each of the rules (Λa) and
(Va) actually represent two rules, one for a = 0 and one for a = 1. The rule (Refl) guarantees
that any basic connector (and, therefore, any term) is always capable of “doing nothing”;
we will refer to transitions in which the labels consist only of 0s as trivial behaviour. (Refl)

is the only rule that applies to basic connectors ↓↓↓ and ↑↑↑ , which consequently only exhibit
trivial behaviour. Rule (Cut) states that two connectors composed sequentially can compute
if the observations over their shared interfaces coincide. Differently, components composed
in parallel can evolve independently (as defined by rule (Ten).

The weak variant is obtained by additionally allowing the unrestricted use of rule
(Weak*) in any derivation of a transition. This rule deserves further explanation: the addi-
tion operation that features in (Weak*) is simply point-wise addition of vectors of natural
numbers (as defined in Section 2); the labels in weak transitions will thus, in general, be
natural number vectors instead of mere binary vectors. In order to distinguish the two vari-
ants we shall write weak transitions with a thick transition arrow: P =⇒

α

β
Q. Analogously to

the strong variant, if P : (n, m) and P =⇒
α

β
Q then α ∈ Nn, β ∈ Nm and Q : (n, m).

Example 6.1. Let P
def
= © ; ∆ and Q

def
= ©• ; ∆. It is easy to check that P : (1, 2) and

Q : (1, 2). The unique non trivial behavior of P under the strong semantics is P
1−→
00 Q and

can be derived as follows

(TkI)
©

1−→
0 ©•

(Refl)
∆

0−→
00 ∆

(Cut)
©;∆

1−→
00 ©• ;∆

We can also show that the non-trivial behaviours of Q are Q
0−→
11 P and Q

1−→
11 Q. By using

rule (Weak*) with the premises P
1−→
00 Q and Q

0−→
11 P , we can obtain P =⇒

1

11
P . This weak tran-

sition denotes a computation in which a token received over the left interface is immediately
available on the right interface. This kind of behavior is not derivable when considering the
strong semantics. Finally, note that we can build the following derivation

22 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

P =⇒
1

11
P P =⇒

1

11
P

(Weak*)
P =⇒

2

22
P

and, in general, for any n we can build P =⇒
n

nn
P , i.e., a transition in which P receives n

tokens over the wire on its left boundary and sends n tokens over each wire on its right
boundary.

Remark 6.2. There is a strong analogy between the weak semantics of the Petri Calculus
and the weak semantics of traditional process calculi, say CCS. Given the standard LTS of
CCS, one can generate in an obvious way a new LTS with the same states but in which the
actions are labelled with traces of non-τ CCS actions, where any τ -action of the original
LTS is considered to be an empty trace in the new LTS—i.e. the identity for the free monoid
of non-τ actions. Bisimilarity on this LTS corresponds to weak bisimilarity, in the sense of
Milner, on the original LTS.

On the other hand, the labels of the strong version of the Petri calculus are pairs of
strings of 0s and 1. A useful intuition is that 0 means “absence of signal” while 1 means
“presence of signal.” The free monoid on this set, taking 0 to be identity is nothing but the
natural numbers with addition—in this sense the rule (Weak*) generates a labelled transition
system that is analogous to the aforementioned “weak” labelled transition system for CCS.
See [50] for further details. �

Remark 6.3. Consider the additional rules below, not included in the set of operational
rules for the Petri calculus in Fig. 10.

(TkI2)
©

1−→
1 ©

(TkO2)
©•

1−→
1 ©•

Recall that the semantics of C/E nets, given in Definition 2.4 is as follows:

NX →U NY
def
= ◦U ⊆ X, U◦ ∩X = ∅ & Y = (X\◦U) ∪ U◦.

where U is a set of mutually independent transitions.
Including the rule (TkI2) would allow an empty place to receive a token, and simulta-

neously release it, in one operation. Similarly, rule (TkO2) allows computations in which a
marked place simultaneously receives and releases a token.

While we will not give all the details here, the system with (TkI2) would correspond to
the semantics where, for U a set of mutually independent transitions:

NX →U NY
def
= U◦ ∩X = ∅, ◦U ∩ Y = ∅ & X ∪ U◦ = Y ∪ ◦U.

Using this semantics, in the example below, the two transitions can fire simultaneously to
move from the marking illustrated on the left to the marking illustrated on the right.

Note that this definition also allows intuitively less correct behaviour, in particular, a tran-
sition that has an unmarked place in both its pre and post sets is able to fire, assuming that
it is otherwise enabled.

Instead, including the rule (TKO2) allows a marked place to receive a token and simulta-
neously release it, in one operation. Here, we would need to change the underlying semantics
of nets to:

NX →U NY
def
= ◦U ⊆ X, U◦ ⊆ Y & X\◦U = Y \U◦.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 23

This was the semantics of nets originally considered in [49]. For example, in the net below,
the two transitions can again fire independently.

Note that this semantics allows transitions that intersect non-trivially in their pre and post
sets to fire (see Remarks 2.5 and 3.10).

Including both rules (TKI2) and (TKO2) allows both of the behaviours described above,
with the underlying net semantics:

NX →U NY
def
= Y + ◦U = X + U◦

where X, Y , U are sets but the operations are those of multisets. For example, in the net
below left, all the transitions can fire together to produce the marking on the right.

The full weak semantics (Definition 2.8) that we will consider here corresponds to consid-
ering the unrestricted use of the rule (Weak*) in the Petri calculus. This semantics is even
more permissive: we do not keep track of independence of transitions and allow the firing of
multisets of transitions. Notice that (Weak*) subsumes the rules (TkI2) and (TkO2) discussed
above, in the sense that they can be derived from (TkI), (TkO) and (Weak*). An example
computation is illustrated below.

Here the four transitions can fire together. �

We let σ(P) denote the set of basic subterms of P , inductively defined as

σ(P) =

{
σ(Q) ∪ σ(R) if P = Q⊗R or P = Q ; R
{P } otherwise

A term P is said to be stateless when σ(P) ∩ {©, ©• } = ∅. The next result follows by
trivial induction on derivations.

Lemma 6.4. Let P : (k, l) be a stateless term. Then, for any α, β,Q such that P
α−→
β Q or

P =⇒
α

β
Q we have P = Q. �

It is useful to characterise the behaviour of the basic connectors under the weak seman-
tics. The proofs of the following are straightforward.

Proposition 6.5. In the following let a, b, c, d ∈ N.

(i) © =⇒
a

b
P iff P =© and a = b, or P =©• and a = b+ 1.

(ii) ©• =⇒
a

b
P iff P =©• and a = b, or P =© and b = a+ 1.

(iii) I =⇒
a

b
I iff a = b.

(iv) X =⇒ab
cd

X iff a = d, b = c.

(v) ∆ =⇒
a

bc
∆ iff a = b = c.

(vi)

∆

=⇒ab
c

∆

iff a = b = c.

24 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

(vii) ⊥⊥⊥ =⇒
a ⊥⊥⊥.

(viii) >>> =⇒
a
>>>.

(ix) Λ =⇒
a

bc
V iff a = b+ c.

(x) V =⇒ab
c

V iff c = a+ b.

(xi) ↓↓↓ =⇒
a ↓↓↓ iff a = 0.

(xii) ↑↑↑ =⇒
a
↑↑↑ iff a = 0.

The following useful technical lemma shows that, in any derivation of a weak transition
for a composite term of the form P ; Q or P ⊗Q one can assume without loss of generality
that the last rule applied was, respectively, (Cut) and (Ten).

Lemma 6.6.

(i) If P ; R =⇒
α

β
Q then there exist P ′, R′, γ such that Q = P ′ ; R′, P =⇒

α

γ
P ′ and R =⇒

γ

β
R′.

(ii) If P ⊗R =⇒
α

β
Q then there exist P ′, R′ such that Q = P ′ ⊗R′, P =⇒

α1

β1
P ′, R =⇒

α2

β2
R′ with

α = α1α2 and β = β1β2.

Proof. (i) If the last rule used in the derivation was (Cut) then we are finished. By exami-
nation of the rules in Fig. 10 the only other possibility is (Weak*). We can collapse all the
instances of (Weak*) at the root of the derivation into a subderivation tree of the form:

P ; R =⇒
α0

β0
Q1 Q1 =⇒

α1

β1
Q2 · · · Qn =⇒

αn

βn
Q

P ; R =⇒
α

β
Q

(6.2)

where α =
∑

i αi and β =
∑

i βi. We now proceed by induction on n. The last rule in the
derivation of P ; R =⇒

α0

β0
Q1 must have been (Cut), whence we obtain some γ0, P1 and R1

such that P =⇒
α0

γ0
P1, R =⇒

γ0

β0
R1 and Q1 = P1 ; R1. If n = 1 then α = α0, β = β0, Q1 = Q

and we are finished. Otherwise, let α′ =
∑

1≤i≤n αi, β
′ =

∑
1≤i≤n βi, we have P1 ; R1 =⇒α

′

β′
Q

and by the inductive hypothesis, there exists γ′ such that P1 =⇒α
′

γ′
P ′, R1 =⇒γ

′

β′
R′ with and

Q = P ′ ; R′. We can now apply (Weak*) twice to obtain P =⇒
α

γ0+γ′
P ′ and R =⇒γ0+γ′

β
R′.

The proof of (ii) is similar. �

We shall denote bisimilarity on the strong semantics by ∼ and bisimilarity on the weak
semantics by ≈. Both equivalence relations are congruences. This fact is important, because
it allows us to replace subterms with bisimilar ones without affecting the behaviour of the
overall term.

Proposition 6.7 (Congruence). For ./∈ {∼,≈}, if P ./ Q then, for any R :

(i) (P ; R) ./ (Q ; R).
(ii) (R ; P) ./ (R ; Q).

(iii) (P ⊗R) ./ (Q⊗R).
(iv) (R⊗ P) ./ (R⊗Q).

Proof. The proof follows the standard format; we shall only treat case (i) as the others are
similar. For (i) we show that {(P ; R,Q ; R) |P ./ Q} for ./∈ {∼,≈} are bisimulations

w.r.t. respectively the strong and weak semantics. Suppose that P ; R
a−→
b S. The only

possibility is that this transition was derived using (Cut). So P
a−→
c P ′, R

c−→
b R′ for some

c, P ′, R′ with S = P ′ ; R′. Similarly, if P ; R =⇒
a

b
S then using part (i) of Lemma 6.6 gives

P =⇒
a

c
P ′, R =⇒

c

b
R′ with S = P ′ ; R′. Using the fact that P ./ Q we obtain corresponding

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 25

© ©•

I X

∆

∆

⊥⊥⊥ >>>

Λ V

↓↓↓ ↑↑↑

Figure 11: Circuit diagram components.

matching transitions from Q to Q′ where P ′ ./ Q′, and finally apply (Cut) to obtain matching
transitions from Q ; R to Q′ ; R; the transition is thus matched and the targets stay in
their respective relations. �

6.1. Circuit diagrams. In subsequent sections it will often be convenient to use a graphical
language for Petri calculus terms. Diagrams in the language will be referred to as circuit
diagrams. We shall be careful, when drawing diagrams, to make sure that each diagram
can be converted to a syntactic expression by “scanning” the diagram from left to right.

The following result, which confirms the associativity of ; and ⊗ justifies the use of
circuit diagrams to represent terms.

Lemma 6.8. Suppose that ./∈ {∼,≈}.
(i) Let P : (k, l), Q : (l, m), R : (m, n). Then

(P ; Q) ; R ./ P ; (Q ; R).

(ii) Let P : (k, l), Q : (m, n), R : (t, u). Then

(P ⊗Q)⊗R ./ P ⊗ (Q⊗R).

(iii) Let P : (k, l), Q : (l, m), R : (n, t), S : (t, u). Then

(P ; Q)⊗ (R ; S) ./ (P ⊗R) ; (Q⊗ S).

Proof. Straightforward, using the inductive presentation of the operational semantics in the
case of ∼ and the conclusions of Lemma 6.6 in the case of ≈. �

Each of the language constants is represented by a circuit component listed in Fig. 11.
For the translations of Section 9 we shall need additional families of compound terms,

indexed by n ∈ N+:

In : (n, n) ⊥⊥⊥n : (n, 0) ↓↓↓ n : (n, 0) dn : (0, 2n) en : (2n, 0) ∆n : (n, 2n) ∇n : (2n, n).

Their definitions, given below, are less intuitive than their behaviour, which we state first.
Under the strong semantics, it is characterised in each case by the following rules:

α∈{0,1}n

In
α−→
α In

α∈{0,1}n

⊥⊥⊥n
α−→ ⊥⊥⊥n ↓↓↓n

0n−−→ ↓↓↓n

α∈{0,1}n

dn −→αα dn

α∈{0,1}n

en
αα−−→ en

α∈{0,1}n

∆n

α−→
αα ∆n

α∈{0,1}n

∇n
αα−−→
α ∇n

(6.3)

26 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

and their weak semantics is characterised by:
α∈Nn

In =⇒
α

α
In

α∈Nn

⊥⊥⊥n =⇒
α
⊥⊥⊥n ↓↓↓n =⇒0

n

↓↓↓n

α∈Nn

dn =⇒
αα

dn

α∈Nn

en =⇒
αα

en

α∈Nn

∆n =⇒
α

αα
∆n

α∈Nn

∇n =⇒
αα

α
∇n

(6.4)

Intuitively, In, ⊥⊥⊥n and ↓↓↓ n correspond to n parallel copies of I, ⊥⊥⊥ and ↓↓↓, respectively.
Connector dn (and its dual en) stands for the synchronisation of n pairs of wires. For

n = 2, the only allowed transitions under the strong semantics are d2 −−−→0000 d2, d2 −−−→0101 d2,

d2 −−−→1010 d2 and d2 −−−→1111 d2, i.e., all labels that are concatenations of two identical strings
of length 2. Connector ∆n (and its dual ∇n) is similar but duplicates any label α in the
other interface.

We now give the definitions: first we let In
def
=
⊗

n I, ⊥⊥⊥n def
=
⊗

n⊥⊥⊥ and ↓↓↓ n def
=
⊗

n ↓↓↓. In
order to define the remaining terms we first define Xn : (n+ 1, n+ 1) recursively as follows:

X1
def
= X Xn+1

def
= (Xn ⊗ I) ; (In ⊗ X).

A simple induction confirms that the semantics of Xn is characterised as follows:

a∈{0,1}, α∈{0,1}n

Xn
aα−−→
αa Xn

a∈N, α∈Nn

Xn =⇒
aα

αa
Xn

Now because dn and en, as well as ∆n and ∇n are symmetric, here we only give the
constructions of dn and ∆n. We define ∆n recursively:

∆1
def
= ∆ ∆n+1

def
= (∆⊗∆n) ; (I⊗ Xn ⊗ In)

Then, we let dn
def
= >>>n ; ∆n for >>>n def

=
⊗

n>>>.
An easy induction on the derivation of a transition confirms that these constructions

produce terms whose semantics is characterised by (6.3) and (6.4).

6.2. Relationship between strong and weak semantics. It is immediate from the
definition that if P

a−→
b Q then P =⇒

a

b
Q. Perhaps surprisingly (cf. Remark 6.2), it is not true

that P ∼ Q implies P ≈ Q. Indeed, consider the term ∆ ; V with circuit diagram shown
below.

It is not difficult to verify that the only transition derivable using the strong semantics is

the trivial ∆ ; V
0−→
0 ∆ ; V. Hence, ∆ ; V ∼↓↓↓ ;↑↑↑ . Instead, in the weak semantics we have

the following derivation:

∆ =⇒1
11

∆

V =⇒01

1
V V =⇒10

1
V

(Weak*)
V =⇒11

2
V

(Cut)
∆ ; V =⇒1

2
∆ ; V

and, indeed, it is not difficult to show that ∆ ; V =⇒
m

n
P iff P = ∆ ; V and n = 2m. It

follows that ∆ ; V 6≈↓↓↓ ;↑↑↑ (the only transition derivable with the weak semantics is the
trivial ↓↓↓ ;↑↑↑ =⇒0

0
↓↓↓ ;↑↑↑). In Section 9.5 we shall study these terms further and refer to them

as (right) amplifiers.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 27

n,h,k∈N k≤n
(TkIOn,h,k)

LnM
h−→
k Ln+h−kM

k∈N
(Idk)

I
k−→
k I

h,k∈N
(Twh,k)

X
hk−−→
kh X

k∈N
(⊥⊥⊥k)

⊥⊥⊥
k−→ ⊥⊥⊥

k∈N
(>>>k)

>>> −→k >>>
k∈N

(∆k)
∆

k−→
kk ∆

k∈N
(

∆

k)∆kk−−→
k

∆

h,k∈N
(Λh,k)

Λ
h+k−−−→
hk Λ

h,k∈N
(Vh,k)

V
hk−−→
h+k V

C:(k, l) a basic connector
(Refl)

C
0k−−→
0l

C

P
α−→
γ Q R

γ−→
β S

(Cut)
P ;R

α−→
β Q;S

P
α1−−→
β1

Q R
α2−−→
β2

S
(Ten)

P⊗R
α1α2−−−→
β1β2

Q⊗S

P
α1−−→
β1

P ′ P ′
α2−−→
β2

Q
(Weak*)

P
α1+α2−−−−−→
β1+β2

Q

Figure 12: Structural rules for operational semantics of P/T calculus, where α, β, γ ∈ N∗.

7. P/T Calculus

This section introduces an extension of the Petri calculus with buffers that may contain an
unbounded number of tokens. We replace the terms © and ©• of the Petri calculus by a
denumerable set of constants LnM (one for any n ∈ N), each of them representing a buffer
containing n tokens. In particular, L0M stands for © and L1M for ©• . All remaining terms
have analogous meaning. We give the BNF for the syntax of the P/T Calculus below, with
n ∈ N and LnM : (1, 1).

P ::= LnM | I | X | ∆ | ∆| ⊥⊥⊥ | >>> | Λ | V | ↓↓↓ | ↑↑↑ | P ⊗ P | P ; P

We rely on a sorting discipline analogous to the one of the Petri calculus. The inference
rules for the all terms but LnM are those of Fig. 9, where h, k, n ∈ N and α, β ∈ N∗. For LnM
we add the following:

` LnM : (1, 1)

The operational semantics is shown in Fig. 12. We remark that rules are now schemes.
For instance, there is one particular instance of Rule (TkIOn,h,k) for any possible choice of
n, h and k. We have just one scheme for buffers. In fact, rules (TkI) and (TkO) of the Petri
calculus (Fig. 10) are obtained as particular instances of (TkIOn,h,k), namely (TkIO0,1,0) and
(TkIO1,0,1). The semantics for all stateless connectors are defined so that they agree with
their corresponding weak semantics in the Petri calculus (see Proposition 6.5).

We say that P
α−→
β Q strongly if we can prove that P

α−→
β Q without using rule (Weak*).

As for the Petri calculus, the weak variant is obtained by additionally allowing the unre-
stricted use of rule (Weak*) and we write weak transitions with a thick transition arrow:
P =⇒

α

β
Q.

As for the Petri calculus, we refer to {LnM, I, X, ∆,

∆

, ⊥⊥⊥, >>>, Λ, V, ↓↓↓ , ↑↑↑ } as the basic
connectors, and a term P is stateless if σ(P) ∩ { LnM | n ∈ N } = ∅, i.e., if P does not
contain any subterm of the form LnM. It is easy to show that the conclusion of Lemma 6.4
also holds in the P/T calculus.

Lemma 7.1. Let P be a stateless P/T calculus term. If P
α−→
β Q and P

α′−−→
β′ Q′ , then

Q = Q′ = P and P
α+α′−−−−→
β+β′ P .

28 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Proof. The proof follows by induction on the structure of P . Since P is stateless it cannot
be of the form LmM. The cases corresponding to the remaining basic connectors are straight-
forward. Cases for sequential (;) and parallel (⊕) composition follow by using the inductive
hypothesis on both subterms. �

Corollary 7.2. Let P be a stateless term. For any α, β, P =⇒
α

β
Q if and only if P

α−→
β Q

and Q = P .

Lemma 7.3. Let n, h, k ∈ N. Then, LnM h−→
k Q strongly iff k ≤ n and Q = Ln+ h− kM.

Proof. Straightforward since the only possible strong derivations for LnM are obtained by
using (TkIOn,h,k). �

Note that, LnM h−→
k LmM does not imply k ≤ n for weak transitions. For instance, the

transitions L0M 1−→
0 L1M and L1M 0−→

1 L0M can obtained from rule (TkIOn,h,k). Then, we can derive
L0M =⇒1

1
L0M by using rule (Weak*). This example makes it evident that the weak transitions

account for the banking semantics.

Lemma 7.4. Let n, h, k ∈ N. Then, LnM =⇒h
k
Q if and only if k ≤ n+h and Q = Ln+h−kM.

Proof. See Appendix C. �

The following example shows that any buffer containing n + m tokens can be seen as
the combination of two buffers containing, respectively, n and m tokens. This idea will
be reprised in Section 10 to show that P/T nets can be represented with a finite set of
constants (instead of using the infinite set presented in this section).

Example 7.5. Given n,m ∈ N, it is easy to check that P = Λ; (LnM ⊗ LmM); V : (1, 1) is
(strong and weak) bisimilar to Ln+mM. For the strong case, the only non-trivial behaviour

of P is obtained as follows. By Lemma 7.3, LnM
h1−−→
k1

Q1 and Q1 = Ln + h1 − k1M with

k1 ≤ n, and similarly, LmM
h2−−→
k2

Q2 and Q2 = Lm + h2 − k2M with k2 ≤ m. By using rules

(Λ), (Ten) and (V) we derive P
h1+h2−−−−→
k1+k2

Λ; (Ln + h1 − k1M ⊗ Lm + h2 − k2M); V. From k1 ≤ n

and k2 ≤ m we get k1 + k2 ≤ n1 +n2. Then, Ln+mM
h1+h2−−−−→
k1+k2

Ln+m+ h1 + h2− k1− k2M =
L(n+ h1 − k1) + (m+ h2 − k2)M by Lemma 7.3. Conversely, by Lemma 7.3 the non trivial

behaviours of Ln+mM are Ln+mM h−→
k Ln+m+ h− kM with k ≤ n+m. As done before, we

can derive P
h1+h2−−−−→
k1+k2

Λ; (Ln + h1 − k1M ⊗ Lm + h2 − k2M); V for any k1, k2, h1, h2 ∈ N s.t.
k1 ≤ n, k2 ≤ m, k = k1 + k2 and h = h1 + h2 by using Lemma 7.3 and rules (Λ), (Ten) and
(V). The weak case follows analogously by using Lemma 7.4 instead of Lemma 7.3.

The following technical result is similar to Lemma 6.6 and shows that we can assume
without loss of generality that the last applied rule in the derivation of a transition for a
term of the form P ; Q or P ⊗Q is, respectively, (Cut) and (Ten).

Lemma 7.6.

(i) If P ; R =⇒
α

β
Q then there exist P ′, R′, γ such that Q = P ′ ; R′, P =⇒

α

γ
P ′ and R =⇒

γ

β
R′.

(ii) If P ⊗R =⇒
α

β
Q then there exist P ′, R′ such that Q = P ′ ⊗R′, P =⇒

α1

β1
P ′, R =⇒

α2

β2
R′ with

α = α1α2 and β = β1β2.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 29

Proof. (i) ⇒) We proceed by induction on the structure of the derivation. If the last rule
used in the derivation was (Cut) then we are finished. By examination of the rules in Fig. 10
the only other possibility is (Weak*). Then, the derivation has the following shape:

P ; R =⇒
α0

β0
Q1 Q1 =⇒

α1

β1
Q

P ; R =⇒
α

β
Q

(7.1)

where α = α0 + α1 and β = β0 + β1. By inductive hypothesis on the first premise

Q1 = P1 ; R1 P =⇒
α0

γ0
P1 R =⇒

γ0

β0
R1 (7.2)

Since Q = P1 ; R1, by inductive hypothesis on the second premise of (7.1)

Q = P2 ; R2 P1 =⇒
α1

γ1
P2 R =⇒

γ1

β2
R2 (7.3)

From (7.2) and (7.3), we can build the following proof in which last applied rule is (Weak*):

P =⇒
α0

γ0
P1 P1 =⇒

α1

γ1
P2

(Weak*)
P =⇒
α0+α1

γ0+γ1
P2

R =⇒
α0

γ0
R1 R1 =⇒

α1

γ1
R2

(Weak*)
R =⇒
γ0+γ1

β0+β1
R2

(Cut)
P ;R =⇒

α

β
P2;R2

⇐) Immediate by using rule (Weak*).
The proof of (ii) is similar. �

As in the Petri calculus we denote bisimilarity on the strong semantics by ∼ and
bisimilarity on the weak semantics by ≈. The following result shows that both equivalence
relations are congruences also for P/T nets.

Proposition 7.7 (Congruence). For ./∈ {∼,≈}, if P ./ Q then, for any R :

(i) (P ; R) ./ (Q ; R).
(ii) (R ; P) ./ (R ; Q).

(iii) (P ⊗R) ./ (Q⊗R).
(iv) (R⊗ P) ./ (R⊗Q).

Proof. The proof follows as the one for Proposition 6.7, but we use Lemma 7.6 instead of
Lemma 6.6. �

8. Translating terms to nets

In this section we give several straightforward translations from the process algebras studied
in Sections 6 and 7 to the nets with boundaries studied in 3 and 4. In particular, this section
contains translations:

(i) from C/E calculus terms with strong semantics to C/E nets (Theorem 8.1);
(ii) from C/E calculus terms with weak semantics to weak C/E nets4 (Proposition 8.4);

(iii) from P/T calculus terms with strong semantics to P/T nets with standard semantics
(Theorem 8.2);

(iv) from P/T calculus terms with weak semantics to P/T nets with banking semantics
(Theorem 8.3).

4See Remark 4.2.

30 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

J©K def
= J©• K def

=

(a) C/E buffers.

JIK def
= JXK def

=

J∆K def
= J

∆

K def
=

J>>>K def
= J⊥⊥⊥K def

=

JΛK def
= JVK def

=

J↑↑↑ K def
= J↓↓↓ K def

=

(b) Stateless connectors.

{[LnM]} def
= n

(c) P/T buffers.

Figure 13: Translation from basic connectors to nets.

The translations rely on the facts that (1) there is a simple net for each basic connector
and (2) the two operations on syntax agree with the corresponding operations on nets with
boundaries. In each case the translations both preserve and reflect semantics.

8.1. Translating Petri calculus terms to C/E nets. We start by giving a compositional
translation from Petri calculus terms to C/E nets with boundaries that preserves the strong
semantics in a tight manner.

Each of the basic connectors of the Petri calculus has a corresponding C/E net with the
same semantics: this translation (J−K) is given in Fig. 13(a) and Fig. 13(b), where we leave
implicit that the contention relation is just the smallest relation induced by the sharing of
ports. The translation extends compositionally by letting

JT1 ; T2K
def
= JT1K ; JT2K and JT1 ⊗ T2K

def
= JT1K⊗ JT2K.

We obtain a very close operational correspondence between Petri calculus terms and their
translations to C/E nets, as stated by the following result.

Theorem 8.1. Let T be a term of the Petri calculus.

(i) if T
α−→
β T ′ then JT K α−→

β JT ′K.

(ii) if JT K α−→
β NX then there exists T ′ such that T

α−→
β T ′ and JT ′K = NX .

Proof. (i) We proceed by structural induction on T . When T is a constant, each case can
be shown to hold easily by inspection of the translations illustrated in Fig. 13. Now if

T = P ; Q and T
α−→
β T ′ then we have P

α−→
γ P ′, Q

γ−→
β Q′ and T ′ = P ′;Q′. Using the

inductive hypothesis we obtain JP K α−→
γ JP ′K and JQK

γ−→
β JQ′K. Then by Theorem 3.8 we

obtain JP ; QK = JP K ; JQK α−→
β JP ′K; JQ′K = JP ′;Q′K. The case of ⊗ is straightforward.

(ii) Again we proceed by structural induction on T and again for constants it is a matter

of examination. Suppose that T = P ; Q and JT K α−→
β NX . Since JT K = JP K ; JQK then by

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 31

Theorem 3.8 there exists γ such that JP K α−→
γ N ′X′ , JQK

γ−→
β N ′′X′′ where NX = N ′X′ ; N ′′X′′ .

By the inductive hypothesis P
α−→
γ P ′, Q

γ−→
β Q′ with JP ′K = N ′X′ and JQ′K = N ′′X′′ . Using

(Cut) we obtain P ; Q
α−→
β P ′ ; Q′ and clearly JP ′ ; Q′K = JP ′K ; JQ′K = NX . The case of

T = P ⊗Q is again straightforward. �

8.2. Translating P/T calculus terms to P/T nets. The translation from P/T calculus
to P/T nets is similar to the translation that we have already considered. We will use
the notation {[−]} to emphasise that the codomain of the translation is P/T nets, where

composition of nets is defined differently. For C a stateless connector, let {[C]} def
= JCK

(considered as a P/T net) as given in Fig. 13(b) and the translation of the buffers of the
P/T calculus is in Fig. 13(c).

As for C/E nets, the encoding is homomorphic w.r.t. ; and ⊕:

{[T1 ; T2]} def
= {[T1]} ; {[T2]} and {[T1 ⊕ T2]} def

= {[T1]} ⊕ {[T2]}.
We first consider P/T calculus with strong semantics and P/T nets with the standard

semantics.
Theorem 8.2. Let T be a term of P/T calculus.

(i) if T
α−→
β T ′ then {[T]} α−→

β {[T ′]}.
(ii) if {[T]} α−→

β NX then there exists a term T ′ such that T
α−→
β T ′ and {[T ′]} = NX .

Proof. (i) We proceed by structural induction on T . If T = LnM then LnM h−→
k
Q implies

k ≤ n and Q = Ln + h − kM by Lemma 7.3. Consider the net corresponding to the term
LnM given in Fig. 13(c) and let α be the transition on the left and β the transition on the
right. Take U = hα+ kβ. It is immediate to check that {[T]} →U {[Ln+ h− kM]}. The cases
corresponding to the remaining constants can be shown to hold easily by inspection of the
translations illustrated in Fig. 13. Now if T = T1;T2 and T

α−→
β T ′ then we have T1

α−→
γ T ′1,

T2
γ−→
β T ′2 and T ′ = T ′1;T ′2. Using the inductive hypothesis we obtain {[T1]} α−→

γ {[T ′1]} and

{[T2]} γ−→
β {[T ′2]}. By Theorem 4.9(i),

{[T1;T2]} = {[T1]}; {[T2]} α−→
β {[T ′1]}; {[T ′2]} = {[T ′1;T ′2]}.

The case for ⊗ follows by using rule (ten), inductive hypothesis on both premises and then
parallel composition of nets.

(ii) Again we proceed by structural induction on T and again for constants it is a matter

of examination. Suppose that T = T1;T2 and {[T]} α−→
β NX . Then, {[T]} = {[T1]}; {[T2]} by

definition of the encoding. By Theorem 4.9(i), there exists γ such that {[T1]} α−→
γ N1X1 ,

{[T2]} γ−→
β N2X2 . By the inductive hypothesis T1

α−→
γ T ′1, T2

γ−→
β T ′2 with {[T ′1]} = N1X1 and

{[T ′2]} = N2X2 . Using (Cut) we obtain T1;T2
α−→
β T ′1;T ′2 and clearly {[T ′1;T ′2]} = {[T ′1]}; {[T ′2]} =

(N1;N2)X where X = X1 + X2. �

Then, we extend the result to P/T calculus and P/T nets with weak semantics.
Theorem 8.3. Let T be a term of P/T calculus.

(i) if T =⇒
α

β
T ′ then {[T]} =⇒

α

β
{[T ′]}.

(ii) if {[T]} =⇒
α

β
NX then there exists a term T ′ such that T =⇒

α

β
T ′ and {[T ′]} = NX .

32 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Proof. The proof follows analogously to the one of Theorem 8.2 (for this case we rely on
Lemma 7.4 and Theorem 4.9 (ii)). �

To complete the picture, we also give a translation of Petri calculus terms with weak
semantics to weak C/E nets, that is P/T nets with banking semantics where the marking
is a subset (instead of a multiset) of places. Again, the translation of basic connectors is
defined as in Fig. 13, and the translation of compound terms is homomorphic. The proof is
similar to the proof of Theorem 8.3 (this is in particular due to the fact that in Theorem 4.9
if X and Y are sets, so are XM , XN , YM , and YN).

Proposition 8.4. Let T be a term of the Petri calculus.

(i) if T =⇒
α

β
T ′ then {[T]} =⇒

α

β
{[T ′]}.

(ii) if {[T]} =⇒
α

β
NX then there exists T ′ such that T =⇒

α

β
T ′ and {[T ′]} = NX .

9. Translating nets to terms

In this section we exhibit translations from the net models to process algebra terms. As with
the translations in Section 8 all the translations preserve and reflect semantics. Concretely,
we will define translations:

(i) from C/E nets to Petri calculus terms with strong semantics (Theorem 9.11);
(ii) from weak C/E nets (see Remark 4.2) to Petri calculus terms with weak semantics

(Theorem 9.16);
(iii) from P/T nets with standard semantics to P/T calculus terms with strong semantics

(Theorem 9.18);
(iv) from P/T nets with the banking semantics to P/T calculus terms with weak semantics

(Theorem 9.19).

First we treat the translation from C/E nets to Petri calculus terms. In order to do this
we shall need to first introduce and study particular kinds of Petri calculus terms: relational
forms (Definition 9.7). In order to translate P/T nets, these will be later generalised to
multirelational forms (Definition 9.14), which are relevant in the Petri calculus with weak
semantics and the two variants of the P/T calculus. These building blocks allow us to
translate any net with boundary to a corresponding process algebra term with the same
labelled semantics.

Relational and multirelational forms are built from more basic syntactic building blocks:
inverse functional forms (Definition 9.1), direct functional forms (Definition 9.4), and addi-
tionally for multirelational forms, amplifiers (Definition 9.12). For Θ a set of Petri calculus
terms, let TΘ denote the set of terms generated by the following grammar:

TΘ ::= θ ∈ Θ | I | TΘ ⊗ TΘ | TΘ ; TΘ.

We shall use tΘ to range over terms of TΘ.

9.1. Functional forms. We start by introducing functional forms, which are instrumental
to the definition of the relational forms used in the proposed encoding.

Definition 9.1 (Inverse functional form). A term t : (k, l) is said to be in right inverse
functional form when it is in T{⊥⊥⊥} ; T{∆} ; T{X}. Dually, t : (k, l) is in left inverse functional
form when it is in T{X} ; T{

∆

} ; T{>>>}.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 33

Figure 14: Right inverse functional form.

Lemma 9.2. For any function f : l → k there exists a term rifff : (k, l) in right inverse
functional form, the dynamics of which are characterised by the following:

rifff
α−→
β rifff ⇔ ∃U ⊆ k s.t. α = pUq and β = pf−1(U)q

rifff =⇒
α

β
rifff ⇔ ∃U ∈Mk s.t. α = pUq and β = pf−1(U)q

The symmetric result holds for terms t : (l, k) in left inverse functional form. That is,
given a function f : l → k there exists a term lifff : (l, k) in left inverse functional form,
the dynamics of which are characterised by the following:

lifff
α−→
β lifff ⇔ ∃U ⊆ k s.t. β = pUq and α = pf−1(U)q

lifff =⇒
α

β
lifff ⇔ ∃U ∈Mk s.t. β = pUq and α = pf−1(U)q

Proof. In Appendix D. �

Example 9.3. Let f : 3→ 4 s.t. f(0) = f(2) = 1 and f(1) = 3. Then, rifff : (4, 3) can be
defined as follows (see Fig. 14):

rifff = (⊥⊥⊥⊗ I ⊗⊥⊥⊥⊗ I); (∆⊗ I); (I ⊗ X)

The term (⊥⊥⊥ ⊗ I ⊗⊥⊥⊥ ⊗ I) captures the fact that 0 and 2 are not in the image of f
(i.e., we write ⊥⊥⊥ attached to the corresponding ports), while 1 and 3 are (i.e., we write I for
those ports). Term (∆ ⊗ I) says that the pre-image of 1 has two elements (i.e., ∆) while
the pre-image of 3 has 1(i.e., I). Finally, term (I ⊗ X) sorts the connections to the proper
ports.

Lemma 9.2 ensures that the only transitions of rifff under the strong semantics are those
in which U ⊆ 4 is observed over the left interface while its pre-image is observed over the

right interface. For instance, rifff
1010−−−→
000 rifff (i.e., f−1({0, 2}) = ∅), rifff

0100−−−→
101 rifff (i.e.,

f−1({1}) = {0, 2}), rifff
1101−−−→
111 rifff (i.e., f−1({0, 1, 3}) = {0, 1, 2}), and rifff

0000−−−→
000 rifff

(i.e., f−1(∅) = ∅) among others. Similarly, for the weak semantics we can obtain, e.g.,

rifff
2201

===⇒
212

rifff (i.e., f−1({0, 0, 1, 1, 3}) = {0, 0, 1, 2, 2}). The term lifff : (3, 4) can be

defined analogously by “mirroring” rifff : (4, 3), i.e.,

lifff = (I ⊗ X); (

∆⊗ I); (>>>⊗ I ⊗>>>⊗ I).

Definition 9.4 (Direct functional form). A term t : (k, l) is said to be in right direct
functional form when it is in T{X} ; T{V} ; T{↑↑↑ } Dually, t : (k, l) is in left direct functional
form when it is in T{↓↓↓ } ; T{Λ} ; T{X}

Lemma 9.5. For each function f : k → l there exists a term rdfff : (k, l) in right direct
functional form, the dynamics of which are characterised by the following:

rdfff
α−→
β rdfff ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u 6= v ⇒ f(u) 6= f(v), α = pUq and β = pf(U)q

34 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Figure 15: Right direct functional form.

rdfff =⇒
α

β
rdfff ⇔ ∃U ∈Mk s.t. α = pUq and β = pf(U)q

The symmetric result holds for terms t : (l, k) in left direct functional form. That is, there
exists a term ldfff : (l, k) in left direct functional form with semantics characterised by the
following:

ldfff
α−→
β ldfff ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u 6= v ⇒ f(u) 6= f(v), β = pUq and α = pf(U)q

ldfff =⇒
α

β
ldfff ⇔ ∃U ∈Mk s.t. β = pUq and α = pf(U)q.

Proof. In Appendix D. �

Example 9.6. The right direct functional form for f introduced in Example 9.3 is as follow
(see Fig. 15):

rdfff = (I⊗ X); (V ⊗ I); (↓↓↓ ⊗ I ⊗ ↓↓↓ ⊗ I).

The construction is analogous to the inverse functional form in Example 9.3. The term
(I ⊗ X) exchange the order of wires appropriately (it switches the ports 1 and 2), then the
term (V ⊗ I) states the values 0 and 2 are mutually exclusive because they have the same
image (i.e., f(0) = f(2) = 1). Finally, ↓↓↓ in (↓↓↓ ⊗ I ⊗ ↓↓↓ ⊗ I) denotes that 0 and 2 (over
the right interface) are not part of the image of f . It is worth noticing that the following

transitions rdfff
100−−→
0100 rdfff (i.e., f({0}) = {1}), rdfff

001−−→
0100 rdfff (i.e., f({2}) = {1}) and

rdfff
011−−→
0101 rdfff (i.e., f({1, 2}) = {1, 3}) are derivable under the strong semantics, while

the transition rdfff
101−−→
0100 rdfff (i.e., f({0, 2}) = {1}) cannot be derived because the domain

values 0 and 2 has the same image and, thus, are in mutual exclusion. Differently, the weak
semantics allows us to consider multisets of domain values that may have the same image,

e.g., we can derive rdfff
101

===⇒
0200

rdfff (i.e., f({0, 2}) = {1, 1}).

Similarly, we can define the left direct functional form of f as below:

ldfff = (↓↓↓ ⊗ I ⊗ ↓↓↓ ⊗ I); (Λ⊗ I); (I⊗ X).

The dynamics of ldfff can be interpreted analogously to rdfff , after swapping the interfaces.

9.2. Relational forms. We now identify two classes of terms of the Petri calculus: the
left and right relational forms. These will be used in the translation from C/E nets to Petri
calculus terms with strong semantics for representing the functions ◦ , ◦, • , •.

Definition 9.7. A term t : (k, l) is in right relational form when it is in

T{⊥⊥⊥} ; T{∆} ; T{X} ; T{V} ; T{↑↑↑ }.

Dually, t is said to be in left relational form when it is in

T{↓↓↓ } ; T{Λ} ; T{X} ; T{

∆

} ; T{>>>}.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 35

(a) rifffl . (b) rdfffr . (c) ρf .

Figure 16: Right relational form.

The following result spells out the significance of the relational forms.

Lemma 9.8. For each function f : k → 2l there exists a term ρf : (k, l) in right relational
form, the dynamics of which are characterised by the following:

ρf
α−→
β ρf ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u 6= v ⇒ f(u) ∩ f(v) = ∅, α = pUq and β = pf(U)q

The symmetric result holds for functions f : k → 2l and terms t : (l, k) in left relational
form. That is, there exists λf : (l, k) in left relational form with semantics

λf
α−→
β λf ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u 6= v ⇒ f(u) ∩ f(v) = ∅, β = pUq and α = pf(U)q

Proof. To give a function f : k → 2l is to give functions fl : m → k, fr : m → l such that
(fl, fr) : m→ k × l is injective and for any i < k, f(i) = fr(f

−1
l (i)). Let

ρf
def
= rifffl ; rdfffr and λf

def
= ldfffr ; lifffl .

Then the required characterisations follow directly from the characterisations of inverse and
direct functional forms given in Lemmas 9.2 and 9.5. �

Example 9.9. Let f : 4 → 24 defined by f(0), f(1) = {0}, f(2) = ∅ and f(3) = {1, 2}.
Figure 16(c) shows the right relational form ρf of f that can be obtained, as suggested by
proof of Lemma 9.8, from the combination of the functions fl : 4→ 4 and fr : 4→ 4 defined
by fl(0) = 0, fl(1) = 1, fl(2) = fl(3) = 3, fr(0) = fr(1) = 0, fr(2) = 1 and fr(3) = 2 (the
corresponding rifffl and rdfffr are in Fig. 16(a) and 16(b), respectively).

Assume now that f above is the postset function of a C/E net consisting on four tran-
sitions (named 0, 1, 2, 3) and four places (also named 0, 1, 2, 3). Intuitively, the term ρf
accounts for the tokens produced during the execution of a step. The left interface stands
for transitions while the right interface stands for places. For instance, the transition

ρf
1011

===⇒
1110

ρf (i.e., f({0, 2, 3}) = {0, 1, 2}) stands for tokens produced by the simultane-

ous firing of the transitions 0, 2, and 3 in the places 0, 1 and 2. Note that transitions 0 and
1 are not independent and, hence, they cannot be fired simultaneously. This fact is made
evident in ρf because the ports 0 and 1 over the left interface are in mutual exclusion.

The left relational form λf can be defined analogously. Dually, λf can be interpreted
as a term describing the consumption of tokens during the execution of several mutually
independent transitions.

Note that not all terms t : (k, l) in right relational form have the behaviour of ρf for

some f : k → 2l; a simple counterexample is ∆ ; V : (1, 1) whose only reduction under the

strong semantics is ∆ ; V
0−→
0 ∆ ; V.

36 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

⇢�� ���

�•� ⇢�•

dt et

#t

wNX �trt

Figure 17: Circuit diagrammatic representation of the translation from a C/E net to a Petri
calculus term.

9.3. Contention. Recall that contention is an irreflexive, symmetric relation on transi-
tions, that restricts the sets of transitions that can be fired together.

Now consider the term c, defined below.

c
def
= (∆⊗∆) ; (I⊗ X⊗ I) ; (I⊗ I⊗ (V ;⊥⊥⊥)).

It is not difficult to verify that c has its behaviour characterised by the following transitions:

c
00−−→
00 c, c

10−−→
10 c, c

01−−→
01 c.

Given a set of transitions t and a contention relation # ⊆ t × t, here we will define a
term #t : t→ t with semantics:

#t
pUq−−−→
pV q #t iff U = V and ∀u, v ∈ U. ¬(u#v)

We define it by induction on the size of #. The base case is when # is empty, and in this
case we let #t = It. Otherwise, there exists (u, v) ∈ #. Let #′ = #\{(u, v), (v, u)}. By
the inductive hypothesis we have a term #′t : t→ t that satisfies the specification wrt the
relation #′. Now the term #′t ; Xu,v ; It−2⊗ c ; X−1

u,v has the required behaviour, where Xu,v
is a term in T{X,I} that permutes t, taking u and v to t− 2 and t− 1, and X−1

u,v is its inverse.

9.4. Translating C/E nets. Here we present a translation from C/E nets with boundaries,
defined in Section 3, to Petri calculus terms as defined in Section 6. Let NX : m → n =
(P, T, X, #, ◦−, −◦, •−, −•) be a finite C/E net with boundary (Definition 3.1). Assume,
without loss of generality, that P = p and T = t for some p, t ∈ N. If p = 0 we let

wNX : (0, 0)
def
= >>> ;⊥⊥⊥, otherwise

wNX : (p, p)
def
=
⊗
i<p

mi where mi
def
=

{
©• if i ∈ X
© otherwise

(9.1)

The following technical result will be useful for showing that the encodings of this section
are correct.

Lemma 9.10.

(i) wNX
pZq−−−→
pWq Q iff Q = wNY , W ⊆ X, Z ∩X = ∅ and Y = (X\W) ∪ Z.

(ii) wNX =⇒
α

β
Q iff Q = wNY and X + α = Y + β as multisets.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 37

Proof. (i) Examination of either rules (⊥⊥⊥1) and (>>>1), together with the rule (Cut) (when
p = 0) or rules (TkI) and (TkO), together with the rule (Ten) (when p > 0).

(ii) Combination of (i) with part (ii) of Lemma 6.6. �

The translation of N can now be expressed as:

TNX
def
= (dt ⊗ λ•−) ; (#t ⊗ (

∆

t ; ρ−◦ ; wNX ; λ◦− ; ∆t)); (et ⊗ ρ−•). (9.2)

A schematic circuit diagram representation of the above term is illustrated in Fig. 17, where
terms are represented as boxes, sequential composition is the juxtaposition of boxes (to be
read from left to right) and parallel composition is shown vertically (read from top to
bottom).

The encoding preserves and reflects semantics in a very tight manner, as shown by the
following result.

Theorem 9.11. Let N be a (finite) C/E net. The following hold:

(i) if NX
α−→
β NY then TNX

α−→
β TNY ;

(ii) if TNX
α−→
β Q then there exists Y such that Q = TNY and NX

α−→
β NY .

Proof. In Appendix D. �

9.5. Translating P/T nets (and weak C/E nets). We begin by defining right and left
amplifiers !k, k! : (1, 1) for any k ∈ N that will be necessary in order to define multirelational
forms, with the latter being needed to translate P/T nets.

Definition 9.12 (Amplifiers). Given k ∈ N+, the right amplifier !k : (1, 1) is defined

recursively as follows: !1
def
= I, !(k + 1)

def
= ∆; (!k ⊗ I); V. Dually, the left amplifier k! : (1, 1)

is defined: 1!
def
= I, (k + 1)!

def
= Λ; (I⊗ k!);

∆

.

Notice that under the strong semantics of the Petri calculus, for any k > 1, k! and !k

have no non-trivial behaviour (i.e., the only behavior is k!
0−→
0 k!). Instead, the behaviour of

a right amplifier !k under the weak semantics of the Petri calculus, and in both the strong
and weak semantics of the P/T calculus, intuitively “amplifies” a signal k times from left to
right. Symmetrically, a left amplifier k! amplifies a signal k times from right to left. More
formally, their behaviour under the weak semantics of the Petri calculus and both semantics
of the P/T calculus is summarised by the following result.

Lemma 9.13. Let a, b ∈ N. Then !k =⇒
a

b
!k iff b = ka. Similarly, k! =⇒

a

b
k! iff a = kb.

Proof. In Appendix D. Note that k! and !k are built from stateless connectors, and thus the
weak and strong semantics of the P/T calculus coincide on amplifies. �

We let !x
def
= {!k | k ∈ N+} denote the set of right amplifiers and x!

def
= {k! | k ∈ N+} the

set of left amplifiers.

38 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

9.6. Multirelational forms. Multirelational forms generalise relational forms and take
on their role in the translation of P/T nets. Whereas relational forms allow us to encode
relations between k and l (or equivalently, functions k → 2l) in terms of stateless connectors,
as demonstrated in Lemma 9.8, multirelational forms, using the weak semantics of the Petri
calculus, allow us to encode multirelations between k and l (equivalently, functions k →Ml).

Definition 9.14. A term t : (k, l) is in right multirelational form when it is in

T{⊥⊥⊥} ; T{∆} ; T{X} ; T!x ; T{X} ; T{V} ; T{↑↑↑ }.

Dually, t is said to be in left multirelational form when it is in

T{↓↓↓ } ; T{Λ} ; T{X} ; Tx! ; T{X} ; T{

∆

} ; T{>>>}.

Lemma 9.15. For each function f : k → Ml there exists a term ρf : (k, l) in right mul-
tirelational form, the dynamics of which are characterised by the following:

ρf =⇒
α

β
ρf ⇔ ∃U ∈Mk s.t. α = pUq and β = pf(U)q.

The symmetric result holds for functions f : k → Ml and terms t : (l, k) in left relational
form. That is, there exists a term λf : (l, k) in left multirelational form so that

λf =⇒
α

β
λf ⇔ ∃U ∈Mk s.t. β = pUq and α = pf(U)q.

Proof. To give a function f : k → Ml is to give functions fl : m → k, fr : m → l,
fm : m→ N with (fl, fr) : m→ k × l injective, so that, for all i < k, j < l

f(i)j =

{
fm(u) if ∃u < m. fl(u) = i and fr(u) = j

0 otherwise.
(9.3)

Notice that the above makes sense because (fl, fr) is injective, that is, if there exists u

that satisfies the first premise in (9.3) then it is the unique such element. We let ρf
def
=

rifffl ; (
⊗

i<m!fm(i)) ; rdfffr and λf
def
= ldfffr ; (

⊗
i<m fm(i)!) ; lifffl . For the Petri calculus

with weak semantics, the required characterisation then follows from the weak cases of
Lemmas 9.2 and 9.5, together with the conclusion of Lemma 9.13. For both the strong and
the weak semantics of P/T calculus it follows since in both cases those semantics agree with
the weak semantics of the Petri calculus on stateless connectors. �

Recall that by restricting P/T nets with the banking semantics to markings that are
merely sets we obtain a class of nets that we call weak C/E nets (Remark 4.2). LetNX : m→
n = (P, T, ◦−, −◦, •−, −•) be a finite weak C/E net with X ⊆ P a marking. Recall that

◦− : T →MP , −◦ : T →MP ,
•− : T →Mm and −• : T →Mn.

The translation from N to the Petri calculus is as given in (9.2), with multirelational forms
replacing relational forms. Let TNX denote the obtained Petri calculus term.

We are now ready to state the semantic correspondence of the translation from weak
nets to Petri calculus terms.

Theorem 9.16. Let N be a finite weak C/E net. The following hold:

(i) if NX =⇒
α

β
NY then TNX =⇒

α

β
TNY .

(ii) if TNX =⇒
α

β
Q then there exists Y such that Q = TNY and NX =⇒

α

β
NY .

Proof. The proof closely follows the proof of Theorem 9.11. �

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 39

To translate general P/T nets with both the standard and the banking semantics, we
move to the P/T calculus with, respectively, the strong and the weak semantics. We start
by introducing the encoding of a marking. Again w.l.o.g. we assume that places and
transitions of a P/T are given by sets of ordinals, i.e., P = p and T = t for some p, t ∈ N.
Let N = (p, t, ◦−,−◦, •−,−•) be a P/T net with boundaries. Then, a marking X ∈MP is
encoded as follows

wNX : (p, p) =
{ >>>;⊥⊥⊥ if p = 0⊗

i<pLX (i)M otherwise
(9.4)

Clearly the encoding of markings of P/T nets in (9.4) is similar to the encoding of
markings of C/E nets in (9.1). The following technical result is used to prove the correctness
of the proposed encoding.

Lemma 9.17. Let X ∈Mp.

(i) wNX
pZq−−−→
pWq

Q iff Q = wNY , W ⊆ X , Z ⊆ Y and X −W = Y − Z.

(ii) wNX
pZq

===⇒
pWq

Q iff Q = wNY , and X + Z = Y +W.

Proof. (i) The proof follows by induction on p. Base case (p = 0) follows immediately
because >>>;⊥⊥⊥ −→ >>>;⊥⊥⊥ is the only allowed reduction for >>>;⊥⊥⊥. Inductive step follows by
inductive hypothesis, rule (Ten), and Lemma 7.3.

(ii) Proof follows analogously to case (i) but we use Lemma 7.4 for the inductive step.�

As for the translation of weak C/E nets, the definition of the encoding relies on the
definitions of terms ρf : (k, l) and λf : (l, k) (the right and left multirelational forms of
function f : k → Ml) as introduced in Lemma 9.15. The translation of P/T with bound-
aries to a P/T calculus terms is as given in (9.2), with multirelational forms replacing the
corresponding relational forms. We write TNX (instead of TNX) to highlight the usage of
multirelational forms.

The proofs of next results closely follows the proof of Theorem 9.11 and are omitted.

Theorem 9.18 (Strong). Let N be a finite P/T net with boundaries, then

(i) if NX
α−→
β
NY then TNX

α−→
β
TNY .

(ii) if TNX
α−→
β
Q then NX

α−→
β
NY and Q = TNY .

Theorem 9.19 (Weak). Let N be a finite P/T net with boundaries, then

− if NX =⇒
α

β
NY then TNX =⇒

α

β
TNY .

− if TNX =⇒
α

β
Q then NX =⇒

α

β
NY and Q = TNY .

Example 9.20. We now exhibit the P/T terms that encode the behaviour of the nets in
Fig. 7(a) (for simplicity we show terms that are bisimilar to the ones generated by the

encoding, but simpler). The term T1
def
= ↑↑↑; L0M; ∆; V : (0, 1) encodes the behaviour of the

place a and the transition α. Intuitively, the term ↑↑↑ in T1 represents the transitions that
can produce tokens into the place a, which in this case is the empty set. Analogously, ∇; Λ
describes the transitions that can consume tokens from place a, in this case, this is the right

amplifier !2 (see Lemma 9.13). The term T2
def
= ↑↑↑; L0M; Λ;

∆

corresponds to the part of M
containing place b and the transition β. Then, the complete net M can be translated into

40 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

T
def
= (T1 ⊗ T2). As for T1 it is easy to check that T : (0, 2), which coincides with the

boundaries of M .

Similarly, we can obtain the encoding of N as follows U
def
= (3!⊗ I) ;

∆

; L0M; ↓↓↓ . Finally,
the term for M ;N in Fig. 7(b) is bisimilar to ((↑↑↑; L0M ;!2)⊗ (↑↑↑; L0M; 2!)) ; (3!⊗ I) ;

∆

; L0M; ↓↓↓ .

10. Petri Tile Calculus

While in the Petri calculus we have just two possible states for each place (empty or full),
in the P/T calculus we have a denumerable set of constants LnM, one for each n ∈ N.
Correspondingly, the rules of the P/T calculus are actually schemes of rules, parametric to
the number of tokens that are observed in one step.

In this section we show that we can further decompose the P/T calculus to expose
the minimal units of computation while preserving the correspondence to P/T nets with
boundaries. Furthermore, the ability to do so provides a technical answer to the long
standing quest for the algebra of P/T nets (see Section 11), where boundaries are key
instruments to achieve compositionally.

Technically, we present the rules of the operational semantics as tiles and exploit the
monoidality law of the tile model [27] to give a finitary presentation of P/T nets with
boundaries. In the weak case the tile model arises as the straightforward generalisation of
the Petri calculus to account for unbounded buffers. In the strong case some ingenuity is
needed to avoid computations that consume tokens before being produced. Moreover, in
both cases we can exploit standard machinery from the theory of tile systems to prove that
bisimilarity is a congruence w.r.t. sequential and parallel composition just by noting that
the basic tiles we start from adhere to a simple syntactic format, called basic source.

We start by overviewing the basics of the tile model, then presenting the Petri tile
calculus and finally proving the correspondence with the P/T calculus (and, by transitivity,
with P/T nets with boundaries).

10.1. The tile model. Roughly, the semantics of (concurrent) systems can be expressed
via tiles when: i) system configurations s are equipped with input/output interfaces, written
s : wi → wo for wi the input interface of s and wo the output interface of s, with special
configurations idw : w → w called identities for each interface w; ii) system configurations
are equipped with a notion of sequential composition s; t (defined when the output interface
of s matches the input interface of t) such that idwi ; s = s = s; idwo for each s : wi →
wo; iii) system configurations are equipped with a distinguished unit element idε : ε → ε
and with a monoidal tensor product s ⊗ t that is associative, has the unit idε as neutral
element and distributes over sequential composition (i.e., (s; t) ⊗ (s′; t′) = (s ⊗ s′); (t ⊗ t′)
whenever both sides are defined); iv) observations have analogous structure idw, a; b and
a ⊗ b; v) the interfaces of configurations and of observations are the same. Technically,
the above requirements impose that configurations and observations form two monoidal
categories called, respectively, H (form horizontal) and V (from vertical) with the same
underlying set of objects.

A tile A : s
a−→
b
t is a rewrite rule stating that the initial configuration s can evolve

to the final configuration t via A, producing the effect b; but the step is allowed only if
the ‘arguments’ of s can contribute by producing a, which acts as the trigger of A (see
Fig. 18(i)). Triggers and effects are observations and tile vertices are called interfaces. The

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 41

(i)
w1

s //

a
�� A

w2

b��
w3 t

// w4

(ii)
· //

�� A
· //

�� B
·
��· // · // ·

(iii)

· //

�� A
·
��· //

�� B
·
��· // ·

(iv)

· //

��

·
��· //

��

·
��

B

· // ·
· //A ·

Figure 18: Examples of tiles and their composition.

s
a−→
b
t h

b−→
c
f

s;h
a−→
c
t; f

(Hor)

s
a−→
b
t t

c−→
d
h

s
a;c−−→
b;d

h
(Vert)

s
a−→
b
t h

c−→
d
f

s⊗ h a⊗c−−→
b⊗d

t⊗ f
(Mon)

Figure 19: Main inference rules for tile logic.

similarity between tile shapes and that of the structural rules for the operational semantics
used throughout the paper is evident.

Definition 10.1 (Tile system). A tile system is a tuple R = (H,V, N,R) where H and
V are monoidal categories over the same set of objects, N is the set of rule names and
R : N → H× V × V × H is a function such that for all A ∈ N , if R(A) = 〈s, a, b, t〉, then
the sources and targets of s, a, b, t match as in Fig. 18(i).

Like rewrite rules in rewriting logic, tiles can be seen as sequents of tile logic: the

sequent s
a−→
b
t is entailed by the tile system R = (H,V, N,R), if it can be obtained by

horizontal, parallel, and vertical composition of some basic tiles in R plus identity tiles

idwi
a−→
a
idwo and s

idwi−−−→
idwo

s. The “borders” of composed sequents are defined in Fig. 19. The

horizontal composition coordinates the evolution of the initial configuration of A with that
of B, ‘synchronising’ their rewrites (see Fig. 18(ii)). This rule is analogous to the rule (Cut)

of the Petri and P/T calculi. The vertical composition is the sequential composition of
computations (see Fig. 18(iii)). This rule is analogous to the rule (Weak*) of the Petri and
P/T calculi. The parallel composition builds wider steps (see Fig. 18(iv)), as if the steps
A and B were computed concurrently, side by side. Parallel composition corresponds to
rule (Ten) of the Petri and P/T calculi.

Tiles express the reactive behaviour of configurations in terms of trigger + effect labels.
In this context, the usual notion of bisimilarity is called tile bisimilarity ('tb).

Definition 10.2 (Tile bisimilarity). Let R = (H,V, N,R) be a tile system. A symmetric

relation S on configurations is called a tile bisimulation if whenever (s, t) ∈ S and s
a−→
b
s′,

then t′ exists such that t
a−→
b
t′ and (s′, t′) ∈ S. The largest tile bisimulation is called tile

bisimilarity and it is denoted by 'tb.

Note that s 'tb t only if s and t have the same input-output interfaces.

10.2. Petri Tile Calculus. The categories H and V are typically those freely generated
from some (many-sorted, hyper-) signatures ΣH and ΣV over the same set of sorts. In the
case of unsorted signatures, we denote objects of H and V just as natural numbers and
thus we freely generate H and V starting from families of symbols f : n→ m, also written

42 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

f : (n,m), with n,m ∈ N. Identity arrows idn : n→ n (and possibly other auxiliary arrows)
are introduced by the free construction.

We are going to exploit one fundamental algebraic law of the tile model, namely the
functoriality of the monoidal product imposed by the free construction, according to which
we have (f ⊗ g); (f ′ ⊗ g′) = (f ; f ′) ⊗ (g; g′) for any arrows (either all configurations or all
observations) f, f ′, g, g′ such that f ; f ′ and g; g′ are well-defined. In particular, for a : n→ m
and a′ : n′ → m′, we have (idn ⊗ a′); (a⊗ idm′) = a⊗ a′ = (a⊗ idn′); (idm ⊗ a′).

Configurations. We take as horizontal signature (i.e., to represent the states of the system)
the set of stateless connectors together with one constant for the empty place L0M : (1, 1)
and one constant for tokens • : (0, 1). The set of horizontal configurations is just the free
monoidal category generated from this signature.

More concretely, we can equivalently define the syntax of the Petri Tile Calculus with
the BNF below.

P ::= L0M | • | X | ∆ | ∆| ⊥⊥⊥ | >>> | Λ | V | ↓↓↓ | ↑↑↑ |
I | P ⊗ P | P ; P

Note however that the signature of configuration only consists of the symbol in the first
line, while the items in the second line are added automatically by the construction of the
free monoidal category: the constant I : (1, 1) is an auxiliary arrow (it is the identity id1

of the category) and the parallel and sequential composition are subject to the axioms of
monoidal categories. The identity id0 is the neutral element of parallel composition.

Places containing several tokens are defined as the combination of the constants L0M
and • as follows: we let inc

def
= (I⊗ •); V and define Ln+ 1M def

= LnM; inc = (LnM⊗ •); V for any
n ≥ 0, where the last equality is due to the identity law and functoriality of the tensor ⊗
in the monoidal category of configurations:

LnM; inc = LnM; (I⊗ •); V = (LnM⊗ id0); (I⊗ •); V = ((LnM; I)⊗ (id0; •)); V = (LnM⊗ •); V

Roughly, LnM can be seen as a cluster made of one instance of L0M and n instances of •, all
connected via a “tree” of V symbols.

Observations. We take as vertical signature (i.e., for the actions observed over the interfaces)
the unary symbols 1 : (1, 1) and τ : (1, 1). The former is used to represent observed
tokens, the latter is used as a separator of sequences of tokens in epochs, so that tokens
from different epochs cannot interfere with each other. The set of vertical observations is
just the free monoidal category generated from this signature. Roughly, an epoch is an
observation that does not involve any τ . Since the symbols of the signature are unary, for
any observation a : (n,m) we have n = m and moreover we can express a as the parallel
product a1 ⊗ ...⊗ an of suitable n “unary” observations a1 : (1, 1), ..., an : (1, 1). Note that,
as a tile system, here we let the observation 0 (i.e., the absence of a token) be the identity

id1, so that, e.g. 0; 1 = 1 = 1; 0. We also let n + 1
def
= n; 1 for any n > 0. This definition

characterises the fact that the consumption/production of several tokens over the same
interface is actually serialised, i.e., an observation of n tokens over an interface corresponds
to n sequential steps that observe one token each. The fact that 0 is the identity id1, and
e.g. 1 = 0; 1 = 0; 0; 1 = ... intuitively means that the particular step in which a token is

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 43

observed is irrelevant. Therefore, we can anticipate/postpone the observation of a token as
needed. As a consequence, we lose the possibility to express causal dependency between

observations. For instance, we equate as equivalent the following three tiles s
1;0−−→
0;1

s (i.e., s

first receives a token and then produces one), s
0;1−−→
1;0

s (i.e., s first produces a token and then

consumes one), s
1−→
1
s (i.e., s simultaneously consumes and produces a token). This feature

is suitable for the banking semantics, but it is insufficient for dealing with the strong case
since, e.g., we expect an empty place not to produce a token before receiving it. For this
reason we have introduced a novel observation τ to separate computation steps in epochs:
tokens can be rearranged along the steps within the same epoch but cannot be moved across
the delimiter(s) τ of the epoch they belongs to. For instance, the observation a = 2; τ ; 0; τ ; 1
has three epochs: the first has two tokens observed, the second has no token observed and the
third has one token observed. Tokens within each of these three epochs can be rearranged
in different sequential steps as needed, e.g., a = 1; 1; τ ; 0; τ ; 1 = 1; 0; 1; τ ; 0; 0; τ ; 0; 1; 0 =
But tokens cannot be rearranged across epochs, e.g., a 6= 1; τ ; 1; τ ; 1. The tile model we
will focus on corresponds to the strong case, but the weak case can be recovered by taking
τ = id1 (i.e., removing the observation of epochs).

In the following, we let n̄
def
= τ ;n (i.e., n̄ has one epoch with n tokens) and, for any

a : (k, k), ā
def
= τk; a, where we recall that τk is the parallel composition of τ for k times. As

a special case we have 0̄ = τ ; 0 = τ ; id1 = τ . Sometimes we will need to “slice” observations
along epochs. The following results provides a canonical representation for observations.

Lemma 10.3. For any observation a : (1, 1) there exist unique k, n1, ..., nk ∈ N such that
a = n1;n2; ...;nk.

Proof. By structural induction on a. �

As a corollary, for any observation a : (1, 1) there exist unique k, n1, ..., nk ∈ N such
that ā = n1;n2; ...;nk.

Terminology and notation. As already said, we call epoch any τ -free observation. We say
that a : (h, h) is valid if there exist k ∈ N and epochs a1 : (h, h), ..., ak : (h, h) such
that ā = a1; a2; ...; ak. Note that if a is valid, then there is a unique such k (because the
decomposition “aligns” all τ separating one epoch from another), in which case we say that
a has age k, written δ(a) = k. We say that a is elementary if δ(a) = 1 and that a and b are
coetaneous if δ(a) = δ(b) (i.e., if they have the same age). It is obvious by definition that the
relation of being coetaneous is reflexive, commutative and transitive, i.e., it is an equivalence
relation. For example 1 and 5 are coetaneous, while 1 and 5; 3 are not coetaneous. Slightly
abusing the notation, we say that the empty observation id0 : (0, 0) is coetaneous to any
valid a.

For two coetaneous a : (1, 1) and b : (1, 1) such that ā = n1;n2; ...;nk and b̄ =

m1;m2; ...;mk we let a+ b
def
= n1 +m1;n2 +m2; ...;nk +mk.

We say that a : (1, 1) is idle if there exists k ∈ N such that ā = τ ; ...; τ︸ ︷︷ ︸
k

. We say that

a : (h, h) is idle if it is valid and a = a1 ⊗ · · · ⊗ ah for some suitable a1 : (1, 1), ..., ah : (1, 1)
that are idle (note that, since a is valid then each ai contains the same number of occurrences
of τ).

44 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

(TkI)
L0M

1−→
0 L1M

(TkO)
• −−→τ ;1 ↑↑↑

h,k∈{0,1}
(Twh,k)

X
hk−−→
kh X

(⊥⊥⊥)
⊥⊥⊥

1−→ ⊥⊥⊥
(>>>)

>>> −→1 >>>

(∆)
∆

1−→
11 ∆

(

∆

)∆11−−→
1

∆

h∈{0,1}
(Λh)

Λ
1−→

h(1−h) Λ

h∈{0,1}
(Vh)

V
h(1−h)−−−−−→

1 V

C:(k, l) a basic connector
(Epoch)

C
τk−−→
τl

C

Figure 20: Basic tiles for the Petri Tile calculus.

P :(k, l)
(Idle)

P
0k−−→
0l

P

P
a−→
c Q R

c−→
b S

(Hor)
P ;R

a−→
b Q;S

P
a−→
b Q R

c−→
d S

(Mon)
P⊗R

ac−−→
bd Q⊗S

P
a−→
b P ′ P ′

a′−→
b′ Q

(Vert)

P
a;a′−−−→
b;b′ Q

Figure 21: Ordinary rules for tile systems.

For a : (1, 1) such that ā = n1;n2; ...;nk, we let count(a) =
∑k

i=1 ni.
In the following, we shall often denote parallel composition of observation just as jux-

taposition, to keep the labels of tiles as compact as possible (see, e.g., rules (Twh,k), (∆), (

∆

),
(Λh), (Vh) in Fig. 20 and rule (Mon) in Fig. 21).

Tiles. The operational semantics is given by the tile system freely generated from the basic
tiles in Fig. 20, using the composition rules in Fig. 21. Rules for stateless connectors are
analogous to those of the P/T Calculus shown in Fig. 12. Rule (TkI) is a particular case of
rule (TkIOn,h,k). Rule (TkO) is in charge of adding a new epoch to the observation when a
token is consumed.

Note that the rules
(Id1)

I
1−→
1 I

(Iτ)
I
τ−→
τ I

are generated by the free construction of the tile system.
Although the rule (Epoch) is given for basic connectors only, it can be immediately

proved by structural induction that for any P we have
P :(k, l)

(Epoch)

P
τk−−→
τl

P

In the weak case, where τ = 0, then the rule (Epoch) just becomes the ordinary (Idle)

rule of tiles and the basic tile (TkO) becomes

(WeakTkO)
• −→1 ↑↑↑

We note that the rules of the Petri tile calculus are in the so-called basic source format.

Definition 10.4 (Basic source). A tile system R = (H,V, N,R) enjoys the basic source
property if for each A ∈ N if R(A) = 〈s, a, b, t〉, then s ∈ ΣH.

The basic source property is a syntactic criterion ensuring that tile bisimilarity is a
congruence (in both the strong and the weak case of the Petri tile calculus).

Lemma 10.5 (cf. [27]). If a tile system R enjoys the basic source property, then tile bisim-
ilarity is a congruence (w.r.t. ; and ⊗).

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 45

As a consequence, a tile for P ⊗Q can always be obtained as the parallel composition
of one tile for P and one for Q; and similarly, for P ;Q. This fact is implicitly exploited in
many proofs, which can thus be performed by structural induction.

The behaviour of basic connectors is characterised below (See Appendix E for more
details and all technical lemmas cited in the proofs). For any observation a, b, c, d and
h, k ∈ N, we have:

− ⊥⊥⊥ a−→⊥⊥⊥ and >>> −→a >>>.

− a = b = c if and only if ∆
a−→
bc ∆ and

∆bc−→
a

∆

.

− a = d, b = c and a, b are coetaneous if and only if X
ab−−→
cd X

− a = b+ c if and only if Λ
a−→
bc Λ, V

bc−→
a V.

− a is idle if and only if ↑↑↑ −→a ↑↑↑ , ↓↓↓ a−→ ↓↓↓ .

Lemma 10.6. Let P : (h, l) be any stateless connector. If P
a−→
b Q then Q = P .

Proof. By straightforward structural induction on P . �

Lemma 10.7. Let P : (h, l) be any basic stateless connector. If P
a−→
b P then a and b are

(valid and) coetaneous.

Proof. The property is obvious for ⊥⊥⊥, >>>, ↑↑↑ , ↓↓↓ . For the other connectors, the property is
an immediate consequence of some technical lemmas reported in Appendix E: Lemma E.3
(for ∆ and

∆

); Lemma E.4 (for X); Lemma E.5 (for Λ and V). �

Lemma 10.8. For any h, k, n, if k ≤ n then LnM h̄−→̄
k
P ′ with P ′ 'tb Ln+ h− kM. Moreover,

for any h, k, n, if LnM h̄−→̄
k
P ′ then P ′ 'tb Ln+ h− kM and k ≤ n.

Proof. See Appendix E. �

10.3. Correspondence with P/T calculus (strong case). We prove the correspon-
dence theorem between Petri tile calculus and P/T nets with boundaries (strong), by tran-
sitivity, proving the correspondence with P/T calculus (strong).

By abusing notation, we use the identity mapping to associate Petri tile configurations
to P/T calculus terms and vice versa, since • can be read as the P/T calculus term ↑↑↑ ; L1M,
(see Appendix E, Lemma E.10).

Regarding observations, we map the label α = n1n2 · · ·nk to the observation ᾱ =
n̄1n̄2 · · · n̄k.
Lemma 10.9. If P

α−→
β P ′ in the P/T calculus, then P

ᾱ−→̄
β
P ′′ in the Petri tile calculus

with P ′ 'tb P
′′. Vice versa, If P

ᾱ−→̄
β
P ′ in the Petri tile calculus, then P

α−→
β P ′′ in the P/T

calculus with P ′ 'tb P
′′.

Proof. The proof is by structural induction on P , exploiting the technical Lemmas E.23
and E.24 in Appendix E. �

Next, we prove the correspondence at the level of sequences. One direction of the
correspondence is easy.

Theorem 10.10. If P
α1−−→
β1

α2−−→
β2
· · · αk−−→

βk
P ′ in the P/T calculus, then P

ᾱ1−−→̄
β1

ᾱ2−−→̄
β2
· · · ᾱk−−→

β̄k
P ′′

in the Petri tile calculus with P ′ 'tb P
′′.

46 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Proof. By induction on the length k of the computation, exploiting Lemma 10.9. �

The other direction is less obvious, because a configuration P can evolve via a tile
P

a−→
b Q without a and b being necessarily valid and coetaneous. In fact, it is actually the

case that tile bisimilarity is stronger than bisimilarity in the P/T calculus, as the following
example shows.

Example 10.11. Let us consider the term X; X of the P/T calculus. We have clearly
that X; X ∼ I ⊗ I in the P/T calculus. On the other hand, the tile configuration I ⊗ I can

make concurrent steps like I⊗ I
1 (5̄;3̄)−−−−→
1 (5̄;3̄)

I⊗ I obtained as the parallel composition of two tiles

I
1−→
1 I and I

5̄;3̄−−→
5̄;3̄

I that cannot be matched by X; X (because it admits valid and coetaneous

observations only, cf. Lemma E.4, while 1 and 5̄; 3̄ are not coetaneous).

We now compare tile bisimilarity 'tb to strong bisimilarity ∼ for the P/T calculus.

Theorem 10.12. P 'tb Q implies P ∼ Q.

Proof. Direct consequence of Theorem 10.10. �

This fact is quite interesting, because it shows that tile bisimilarity is able to characterise
a finer concurrent semantics (than the P/T calculus) where no assumption is made about
the timing of concurrent events. Instead, both the Petri calculus and the P/T calculus (in
the strong case) force the simultaneous observation of a step across disconnected parts of
the net.

One may argue that X should not synchronise the interfaces, and tiles can deal with
this situation by allowing the exchange of any a and b, even non-coetaneous ones. In fact,
this would correspond to take a symmetric monoidal category of observations, with X being
an auxiliary arrow. However, we prefer to keep the synchronising X, because we can then
exploit it to recover exactly the semantics of P/T calculus, and by transitivity, that of P/T
nets with boundaries.

Let us denote by Xn,n : (n+ 1, n+ 1) the configuration inductively defined as:

X0,0
def
= I X1,1

def
= X; X Xn+1,n+1

def
= (X⊗ In); Xn,n; (X⊗ In)

Lemma 10.13. For any n, a, b we have that Xn,n
a−→
b P if and only if P = Xn,n and a = b.

Proof. By induction on n, exploiting Lemma E.4. �

Roughly, one can think of Xn,n like a (stateless) connector that behaves like n + 1
identities, but filters out non valid and non coetaneous sequences. Then, for P : (h, k), let
us denote by sync(P) the term

sync(P)
def
= (Ih⊗ ↑↑↑); Xh,h; (P ⊗ I); Xk,k; (Ik⊗ ↓↓↓)

Essentially, sync(P) embeds P in parallel with some sort of “clock” wire I, then syn-
chronises the left and right interfaces of P and the “clock” (the additional clock wiring is
needed because the left and the right interfaces of P may be disconnected, like in P =⊥⊥⊥;>>>),
and finally hide the clock using ↑↑↑ and ↓↓↓ .

Then, if we embed any P : (h, k) within sync(P) we are not dramatically changing the

overall behaviour of P , because we can always find a valid and coetaneous step P
a′−→
b′ Q for

any non-valid or non-coetaneous step P
a−→
b Q (cf. Lemmas E.17–E.22). Moreover, if P has

no concurrent activities, then clearly P 'tb sync(P).

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 47

Lemma 10.14. sync(P) ∼ P .

Proof. Let P : (h, k). We first prove that, for any n, Xn,n ∼ In+1 (by induction on n).
Therefore sync(P) ∼ (Ih⊗ ↑↑↑); (P ⊗ I); (Ik⊗ ↓↓↓) ∼ P ⊗ (↑↑↑ ; ↓↓↓) ∼ P . �

Theorem 10.15. If sync(P)
a−→
b Q in the Petri tile calculus then sync(P)

α1−−→
β1

α2−−→
β2
· · · αk−−→

βk
Q′

in the P/T calculus with ā = ᾱ1; ᾱ2; · · · ; ᾱk, b̄ = β̄1; β̄2; · · · ; β̄k, and Q′ 'tb Q.

Proof. See Appendix E. �

Theorem 10.16. P ∼ Q if and only if sync(P) 'tb sync(Q).

Remark 10.17. Although we skip details here, the case of C/E nets can also be dealt with
in the tile model by: (1) replacing the constant • : (0, 1) of Petri tile calculus with the new
constant L1M : (1, 1); (2) replacing the basic tile (TkO) in Fig. 20 with

(TkO’)
L1M

τ−→
τ ;1 L0M

and (3) prefixing with τ all the observations of the basic tiles in Fig. 20, except for tile (Epoch)

where τ ’s are already present. Then, the different semantics discussed in Remark 6.3 can
be recovered by considering the different combinations with additional tiles

(TkI2)
L0M

τ ;1−−→
τ ;1 L0M

(TkO2)
L1M

τ ;1−−→
τ ;1 L1M

Note also that the weak case discussed below, where τ = 0 = id1, subsumes the above
tiles (TkI2) and (TkO2) as they can be derived starting from tiles (TkI) and (TkO’) thanks to
the vertical composition of tiles. �

10.4. Correspondence with P/T calculus (weak case). In the weak case, the corre-
spondence between the Petri tile calculus and the P/T calculus is much easier to prove.
We recall that in the weak case, the symbol τ is just the identity and that tile (Epoch)

coincides with (Idle). Consequently, the only observations allowed are sequences of 1 (with
0 still being the identity), that we still denote by natural numbers, i.e., we will write n as
observation to denote a sequence of 1’s of length n. In the following we denote by utb the
tile bisimilarity for the weak case.

Lemma 10.18. For any h, k, n,m, a, b:

(1) h = k = n if and only if ∆
n−→
hk ∆ and

∆hk−−→
n

∆

;

(2) h = k and n = m if and only if X
hn−−→
mk X;

(3) n = h+ k if and only if Λ
n−→
hk Λ and V

hk−−→
n V;

(4) n = 0 if and only if ↑↑↑ −→n ↑↑↑ and ↓↓↓ n−→ ↓↓↓ ;

(5) h = k if and only if I
h−→
k I;

(6) if P is a stateless connector and P
a−→
b Q, then Q = P ;

(7) k ≤ n+ h and m = n+ h− k if and only if LnM h−→
k P with P utb LmM

Proof. The proof of (1–4) immediately follows from Lemmas E.3–E.6. The proof of (5)
follows by the property of identity I. The proof of (6) follows by Lemma 10.6. The proof of
(7) is analogous to the proof of Lemma E.15. �

By abusing the notation, we use the identity mapping to associate Petri tile configura-
tions (resp. observations) to P/T calculus terms (resp. labels), and vice versa.

48 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Theorem 10.19. P
h−→
k P ′ in the (weak) Petri tile calculus if and only if P =⇒h

k
P ′′ in the

P/T calculus with P ′ utb P
′′.

Proof. By induction on the structure of P . On basic connectors we exploit Lemma 10.18.
For composite terms, we observe that rules (Seq), (Par) and (Weak) of the P/T calculus
directly correspond to tile compositions rules (Hor), (Mon) and (Vert), respectively. �

It is now easy to compare tile bisimilarity utb to weak bisimilarity ≈ for the P/T
calculus.

Corollary 10.20. P ≈ Q if and only if P utb Q.

11. Related work

Composable nets. Process algebras and Petri nets are two of the most popular models of
concurrent systems and many works addressed their joint use by defining suitable “calculi
of nets”, where process-algebra like syntax is used to build more complex nets out of a
small set of basic nets. One of the most successful proposals along this thread of research
is the so-called Petri Box calculus [36, 35, 9, 10]. The key idea is to develop a general
algebraic theory of net compositions, without relying on any preconceived set of basic nets
and operators. Roughly, any set of safe and clean nets can provide the basic components,
called plain boxes. Similarly, suitable nets, called operator boxes, can be chosen to pro-
vide composition-by-refinement: if the operator box has n transitions, it should receive n
arguments (e.g. plain boxes) that are used to refine the transitions element-wise. The op-
erator boxes guarantee that the result is also a plain box. Moreover, the algebra provides
suitable syntax for denoting the position of tokens within the box hierarchy (by overlining
and underlining expressions). In fact, while the structure of the net is not affected by the
firing of transitions, the dynamic evolution is reflected in the changing markings. This is
modelled by differentiating static expressions (i.e. structure) from dynamic expressions (i.e.
structure plus state): in the latter case, an overlined expression a means a token is present
before a (thus enabling it) and an underlined expression a means a token is present after a
(e.g. after a has been executed). Any ambiguity in the over-/under-lining is banned by a
suitable structural equivalence over dynamic expressions and the operational semantics is
then defined in the SOS style over dynamic expressions only by “moving” the over-/under-
lining (i.e. without changing the underlying static expression that fixes the overall structure
of the plain boxes). The Petri Box calculus has been also enriched in [22] with buffer places
where different transitions may deposit and remove tokens to represent asynchronous com-
munication. Although the flavour of the Petri Box approach is different from ours, because
it addresses a particular class of well-behaving nets and does not fix a minimal algebra that
generates all nets, it would be interesting to investigate how the Petri Box approach can
be extended to deal with “boundaries” for composition.

Approaches such as [8, 24] study the problem of composing nets over a well-defined
communication protocol shared by components, called the interface. Each component is
seen as a refinement of the interface and the composition operation merges all components
by fusing those parts that are mapped to the same elements of the interface. Technically
speaking, components are characterised by refinement morphisms that map elements of
the components to the shared interface. Then, the composition is modelled as a product

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 49

in a suitable category of nets. Differently from these approaches, our nets are composed
over shared interfaces just by juxtaposing components and, hence, boundaries are the only
elements fused during composition.

Other process algebraic approaches to the representation of nets are [38], where a par-
ticular flavour of reactive systems, called link graphs, are shown to be capable of modelling
C/E nets and provide them with an LTS semantics for which bisimilarity is a congruence.
A similar, if more direct, approach was developed in [46]. In [18] P/T nets are characterised
as a suitable typed fragment of the join calculus. One main difference w.r.t. our approach
is that, in both cases, nets are modelled by “uniquely naming” places and transitions and
exploiting classical name-handling mechanisms of nominal calculi to compose nets. Since
names can be shared and made private, there can be some analogy with our synchronising
and hiding connectors, but not with the ones for mutual exclusion and inaction.

An approach maybe closer to our objective is the one in [41, 44], where a notion of Petri
nets with interfaces is introduced in order to design a set of net combinators for which suit-
able behavioural congruences can be defined. The interfaces in [41, 44] consist of “public”
transitions and places that are used by the net to communicate with its surrounding context.
The approach led to the definition of an elementary calculus in which one can construct
any Petri net with an interface from trivial constants (single places, single transitions) by
drawing arcs, adding tokens, and hiding public places and transitions. The behavioural
congruences are defined by considering a universal context U such that two Petri nets be-
have the same in any context if their behaviour is equal in the universal context. The key
difference with our approach is that by having ports in the interface, instead of places and
transitions, we can define behavioural congruences without needing a universal context for
experimenting, because our nets come equipped with an interactive operational semantics.
Moreover, it seems that our notion of composition is slightly more powerful, because of the
combinatorial way of composing transitions attached to the same port.

A similar idea is followed in [5], which introduces open nets. Open nets come equipped
with a distinguished set of places, called open places, that form the interface between the
system and the environment. In [5], the basic building blocks of any system are the tran-
sitions and the main operation for composition is given in terms of category theory as a
pushout. Essentially, the composition glues two open nets together along their common
open places and it is general enough to accommodate both interaction through open places
and synchronisation of transitions. The deterministic process semantics is shown to be com-
positional with respect to such a composition operation. Given the particular role played
by open places, open nets are maybe the model closest in spirit to our approach. One main
difference is that our approach focus on the operational and abstract semantics and not on
the process semantics.

Connectors. Different studies about primitive forms of connectors have appeared in the
literature. Our approach to connectors is much indebted to [51, 13].

In [14], the algebra of stateless connectors inspired by previous work on simpler alge-
braic structures [13, 51] was presented. The operational, observational and denotational
semantics of connectors are first formalised separately and then shown to coincide. More-
over, a complete normal-form axiomatisation is available for them. The work in [14] also
reconciles the algebraic and categorical approaches to system modelling. The algebraic ap-
proach models systems as terms in a suitable algebra. Operational and abstract semantics

50 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

are then usually based on inductively defined labelled transition systems. The categori-
cal approach models systems as objects in a category, with morphisms defining relations
such as subsystem or refinement. Complex software architectures can be modelled as dia-
grams in the category, with universal constructions, such as colimit, building an object in
the same category that behaves as the whole system and that is uniquely determined up
to isomorphisms. While equivalence classes are usually abstract entities in the algebraic
approach, having a normal form gives a concrete representation that matches a nice fea-
ture of the categorical approach, namely that the colimit of a diagram is its best concrete
representative.

Reo [1] is an exogenous coordination model based on channel-like connectors that me-
diate the flow of data among components. Notably, a small set of point-to-point primitive
connectors is sufficient to express a large variety of interesting constraints over the behaviour
of connected components, including various forms of mutual exclusion, synchronisation, al-
ternation, and context-dependency. Typical primitive connectors are the synchronous /
asynchronous / lossy channels and the asynchronous one-place buffer. They are attached to
ports called Reo nodes. Components and primitive connectors can be composed into larger
Reo circuits by disjoint union up-to the merging of shared Reo nodes. The semantics of
Reo has been formalised in several ways, exploiting co-algebraic techniques [3], constraint-
automata [4], colouring tables [19], and the tile model [2]. See [29] for a recent survey.

BIP [7] is a component framework for constructing systems by superposing three layers
of modelling, called Behaviour, Interaction, and Priority. At the global level, the behaviour
of a BIP system can be faithfully represented by a safe Petri net with priorities, whose single
transitions are obtained by fusion of component transitions according to the permitted
interactions, and priorities are assigned accordingly. In absence of priorities, an algebraic
presentation of BIP connectors with vacuous priorities is given in [11]. One key feature of
BIP is the so-called correctness by construction, which allows the specification of architecture
transformations preserving certain properties of the underlying behaviour. For instance it
is possible to provide (sufficient) conditions for compositionality and composability which
guarantee deadlock-freedom. The BIP component framework has been implemented in a
language and a tool-set. The formal relation between BIP and nets with boundaries has been
studied in [16]. Firstly, it is shown that any BI(P) system (without priorities) can be mapped
into a 1-safe Petri net that preserves computations. Intuitively, the places of the net are in
one-to-one correspondence with the states of the components, while the transitions of the
net represent the synchronised execution of the transitions of the components. In addition,
[16] introduces a composition operation for BI(P) systems that enables the hierarchical
definition of systems. Then, this compositional version of BI(P) systems is used to define
a compositional mapping of BI(P) systems into bisimilar nets with boundaries. Finally, it
is shown that any net with boundaries without left interface can be encoded as a BI(P)
system consisting on just one component. It is in this sense that BI(P) systems and nets
with boundaries are retained equivalent.

Tiles and Wires. Considered as process algebras, the operations of the systems presented
in this paper are fundamentally different to those traditionally considered by process alge-
braists. Indeed, they are closer in nature to the algebra of tile logic [27, 12] and the algebra
of Span(Graph) [31] (which are both based on the algebra of monoidal categories) than,
say, to the primitives of CCS such as a commutative parallel composition operation.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 51

The Tile Model offers a flexible and adequate semantic setting for concurrent sys-
tems [40, 25, 17] and also for defining the operational and abstract semantics of suitable
classes of connectors. Tiles resemble Plotkin’s SOS inference rules [43], but take inspiration
also from Structured Transition Systems [20] and context systems [37]. The Tile Model
also extends rewriting logic [39] (in the non-conditional case) by taking into account rewrite
with side effects and rewrite synchronisation. While in this paper we exploit horizontal
connectors only, in [17] it is shown how to benefit from the interplay of connectors in both
the horizontal and vertical dimensions for defining causal semantics.

In [30] Span(Graph) is used to capture the state space of P/T nets; that work is close in
spirit to the translations from nets to terms given in this paper. A process algebra, called
wire calculus, based on similar operations has been previously studied in [48]. The wire
calculus shares strong similarities with the (simplest monoidal version of the) tile model,
in the sense that it has sequential and parallel compositions and exploits trigger-effect
pairs labels as observations. However, the tile model can be extended to deal with more
sophisticated kinds of configurations and observations. The wire calculus has a more friendly
process algebra presentation instead of relying on categorical machinery and it exploits a
different kind of vertical composition. The usual action prefixes a.P of process algebras are
extended in the wire calculus by the simultaneous input of a trigger a and output of an
effect b, written a

b .P , where a (resp. b) is a string of actions, one for each input port (resp.
output port) of the process.

12. Conclusions

In theoretical computer science, it is very frequent that quite different representations are
shown to be equally expressive by providing mutual encoding with tight semantics corre-
spondence: thus, in the end, they are different ways to represent the same abstract concept.

In this paper, we have contributed to the above thread by relating the expressiveness
of nets with boundaries, process calculi and tile model across several spectra: i) condi-
tion/event approach (one-place buffers) vs place/transition approach (unbounded buffers);
ii) strong semantics vs weak semantics; iii) tile systems vs SOS rules.

The constructions and equivalences presented in this paper witness that we can move
smoothly from one model to the other, emphasising the crucial rules that needs to be
changed. Still, one anomaly emerged from our study that we think is worth remarking
here.

The anomaly, somehow foreseeable, is that the strong tile bisimilarity for the Petri tile
calculus nets is finer than the strong bisimilarity for the P/T calculus. This is due to the
inherent concurrency of the tile model, that leads tile bisimilarity to distinguish concurrent
behaviours arising in disconnected subsystems just because no synchronisation mechanism
can be enforced on their observations. When this feature is not wanted, then it can be
solved simply by making sure to connect together all subsystems by suitable “transparent”
connectors that behave as identity, except for providing a shared “clock” synchronisation
when needed. Note that even in this case, the inherent concurrency of sub-system is fully
maintained between one tick of the clock and the next.

Among several possibilities for future work we mention: i) study and compare the
expressive power of fragments of the Petri calculus and of the P/T calculus where certain
connectors are excluded; ii) exploit the analogy with the Petri Box approach to define high
level composition operators that can preserve suitable properties of nets with boundaries;

52 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

iii) investigate the expressiveness of symmetric monoidal tile models, where the connector
X does not enforce any synchronisation and characterise the corresponding bisimilarity
equivalence at the level of nets with boundaries.

Acknowledgement

The authors acknowledge the anonymous reviewers for their careful reading of the man-
uscript and their insightful comments. Research supported by the EU Integrated Project
257414 ASCENS, the Italian MIUR Project IPODS (PRIN 2008), Italian MIUR Project
CINA (PRIN 2010), ANPCyT Project BID-PICT-2008-00319, and UBACyT 20020090300122.

References

[1] F. Arbab. Reo: a channel-based coordination model for component composition. Math. Struct. in Comp.
Science, 14(3):329–366, 2004.

[2] F. Arbab, R. Bruni, D. Clarke, I. Lanese, and U. Montanari. Tiles for Reo. In A. Corradini and
U. Montanari, editors, WADT 2008, volume 5486 of Lect. Notes in Comput. Sci., pages 37–55. Springer,
2009.

[3] F. Arbab and J. Rutten. A coinductive calculus of component connectors. In M. Wirsing, D. Pattinson,
and R. Hennicker, editors, WADT 2002, volume 2755 of Lect. Notes in Comput. Sci., pages 34–55.
Springer, 2002.

[4] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component connectors in Reo by constraint
automata. Sci. Comput. Program., 61(2):75–113, 2006.

[5] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional semantics for open Petri nets based
on deterministic processe. Math. Struct. in Comp. Science, 15(1):1–35, 2005.

[6] M. A. Barbosa and L. S. Barbosa. Specifying software connectors. In Z. Liu and K. Araki, editors,
ICTAC 2004, volume 3407 of Lect. Notes in Comput. Sci., pages 52–67. Springer, 2004.

[7] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In SEFM
2006, pages 3–12. IEEE Computer Society, 2006.

[8] L. Bernardinello, E. Monticelli, and L. Pomello. On preserving structural and behavioural properties
by composing net systems on interfaces. Fundam. Inform., 80(1-3):31–47, 2007.

[9] E. Best, R. R. Devillers, and M. Koutny. The Box algebra = Petri nets + process expressions. Inf.
Comput., 178(1):44–100, 2002.

[10] E. Best and M. Koutny. Process algebra: A Petri-net-oriented tutorial. In J. Desel, W. Reisig, and
G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume 3098 of Lect. Notes in Comput.
Sci., pages 180–209. Springer, 2003.

[11] S. Bliudze and J. Sifakis. The algebra of connectors - structuring interaction in BIP. IEEE Trans.
Computers, 57(10):1315–1330, 2008.

[12] R. Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD thesis, Computer Science
Department, University of Pisa, 1999.

[13] R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connection. Theoret. Comput.
Sci., 286(2):247–292, 2002.

[14] R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors. Theoret. Comput. Sci.,
366(1-2):98–120, 2006.

[15] R. Bruni, H. C. Melgratti, and U. Montanari. A connector algebra for P/T nets interactions. In J.-P.
Katoen and B. König, editors, CONCUR 2011, volume 6901 of Lect. Notes in Comput. Sci., pages
312–326. Springer, 2011.

[16] R. Bruni, H. C. Melgratti, and U. Montanari. Connector algebras, petri nets, and bip. In E. M. Clarke,
I. Virbitskaite, and A. Voronkov, editors, PSI 2011, Ershov Memorial Conference, volume 7162 of Lect.
Notes in Comput. Sci., pages 19–38. Springer, 2012.

[17] R. Bruni and U. Montanari. Dynamic connectors for concurrency. Theoret. Comput. Sci., 281(1-2):131–
176, 2002.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 53

[18] M. G. Buscemi and V. Sassone. High-level Petri nets as type theories in the Join calculus. In F. Honsell
and M. Miculan, editors, FoSSaCS 2001, volume 2030 of Lect. Notes in Comput. Sci., pages 104–120.
Springer, 2001.

[19] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and context dependency.
Sci. Comput. Program., 66(3):205–225, 2007.

[20] A. Corradini and U. Montanari. An algebraic semantics for structured transition systems and its appli-
cation to logic programs. Theoret. Comput. Sci., 103:51–106, 1992.

[21] R. Devillers. The semantics of capacities in P/T nets. In G. Rozenberg, editor, European Workshop
on Applications and Theory in Petri Nets, volume 424 of Lect. Notes in Comput. Sci., pages 128–150.
Springer, 1988.

[22] R. Devillers, H. Klaudel, M. Koutny, and F. Pommereau. Asynchronous box calculus. Fundam. Inform.,
54(4):295–344, 2003.

[23] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct prime
factors. Amer. Journal Math., 35(4):413–422, 1913.

[24] E. Fabre. On the construction of pullbacks for safe petri nets. In S. Donatelli and P. S. Thiagarajan,
editors, ICATPN 2006, volume 4024 of Lect. Notes in Comput. Sci., pages 166–180. Springer, 2006.

[25] G. L. Ferrari and U. Montanari. Tile formats for located and mobile systems. Inf. Comput., 156(1-
2):173–235, 2000.

[26] J. L. Fiadeiro and T. Maibaum. Categorical semantics of parallel program design. Sci. Comput. Pro-
gram., 28(2-3):111–138, 1997.

[27] F. Gadducci and U. Montanari. The tile model. In Proof, Language, and Interaction, pages 133–166.
The MIT Press, 2000.

[28] M. Johnson, editor. Algebraic Methodology and Software Technology, 6th International Conference,
AMAST’97, Sydney, Australia, December 13-17, 1997, Proceedings, volume 1349 of Lect. Notes in
Comput. Sci. Springer, 1997.

[29] S.-S. T. Q. Jongmans and F. Arbab. Correlating formal semantic models of Reo connectors: Connector
coloring and constraint automata. In A. Silva, S. Bliudze, R. Bruni, and M. Carbone, editors, ICE 2011,
volume 59 of Elect. Proc. in Th. Comput. Sci., pages 84–103, 2011.

[30] P. Katis, N. Sabadini, and R. F. C. Walters. Representing Place/Transition nets in Span(Graph). In
Johnson [28], pages 322–336.

[31] P. Katis, N. Sabadini, and R. F. C. Walters. Span(Graph): A categorial algebra of transition systems.
In Johnson [28], pages 307–321.

[32] J. Kleijn and M. Koutny. Causality in structured occurrence nets. In C. B. Jones and J. L. Lloyd,
editors, Dependable and Historic Computing, volume 6875 of Lect. Notes in Comput. Sci., pages 283–
297. Springer, 2011.

[33] J. Kleijn and M. Koutny. Localities in systems with a/sync communication. Theoret. Comput. Sci.,
429(0):185–192, 2012.

[34] J. Kleijn, M. Koutny, and M. Pietkiewicz-Koutny. Regions of petri nets with a/sync connections. The-
oret. Comput. Sci., 454(0):189–198, 2012.

[35] M. Koutny and E. Best. Operational and denotational semantics for the Box algebra. Theoret. Comput.
Sci., 211(1-2):1–83, 1999.

[36] M. Koutny, J. Esparza, and E. Best. Operational semantics for the Petri Box calculus. In B. Jonsson and
J. Parrow, editors, CONCUR’94, volume 836 of Lect. Notes in Comput. Sci., pages 210–225. Springer,
1994.

[37] K. G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts. In M. Pa-
terson, editor, ICALP’90, volume 443 of Lect. Notes in Comput. Sci., pages 526–539. Springer, 1990.

[38] J. J. Leifer and R. Milner. Transition systems, link graphs and Petri nets. Math. Struct. in Comput.
Sci., 16(6):989–1047, 2006.

[39] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci.,
96:73–155, 1992.

[40] U. Montanari and F. Rossi. Graph rewriting, constraint solving and tiles for coordinating distributed
systems. Applied Categorical Structures, 7(4):333–370, 1999.

[41] M. Nielsen, L. Priese, and V. Sassone. Characterizing behavioural congruences for Petri nets. In I. Lee
and S. A. Smolka, editors, CONCUR’95, volume 962 of Lect. Notes in Comput. Sci., pages 175–189.
Springer, 1995.

54 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

[42] D. E. Perry and E. L. Wolf. Foundations for the study of software architecture. ACM SIGSOFT Software
Engineering Notes, 17:40–52, 1992.

[43] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 60-61:17–139,
2004.

[44] L. Priese and H. Wimmel. A uniform approach to true-concurrency and interleaving semantics for Petri
nets. Theoret. Comput. Sci., 206(1-2):219–256, 1998.

[45] W. Reisig. Petri Nets: An Introduction, volume 4 of Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 1985.

[46] V. Sassone and P. Sobociński. A congruence for Petri nets. Electr. Notes in Theor. Comput. Sci.,
127(2):107–120, 2005.

[47] P. Selinger. A survey of graphical languages for monoidal categories. New structures for physics, pages
289–355, 2011.

[48] P. Sobociński. A non-interleaving process calculus for multi-party synchronisation. In F. Bonchi,
D. Grohmann, P. Spoletini, and E. Tuosto, editors, ICE 2009, volume 12 of Elect. Proc. in Th. Comput.
Sci., pages 87–98, 2009.

[49] P. Sobociński. Representations of Petri net interactions. In P. Gastin and F. Laroussinie, editors, CON-
CUR 2010, volume 6269 of Lect. Notes in Comput. Sci., pages 554–568. Springer, 2010.

[50] P. Sobociński. Relational presheaves as labelled transition systems. In D. Pattinson and L. Schröder,
editors, CMCS 2012, volume 7399 of Lect. Notes in Comput. Sci., pages 40–50. Springer, 2012.

[51] G. Stefanescu. Reaction and control I. Mixing additive and multiplicative network algebras. Logic Jour-
nal of the IGPL, 6(2):348–369, 1998.

Appendix A. Proofs from Section 3 (C/E Nets with boundaries)

Proof of Lemma 3.3. Induction on the size of |U ∪ V |. Base cases are when (U, V) is a
minimal synchronisation, in that case we are finished—the singleton set {(U, V)} satisfies
the hypothesis. Else take any minimal synchronisation (U ′, V ′), contained in (U, V). Since
(U, V) and (U ′, V ′) are synchronisations, U• = •V and U ′• = •V ′ hold. Then, (U\V)• =
U•\V • = •U ′\•V ′ = •(V \V ′). Hence, (U\U ′, V \V ′) is a synchronisation. Apply inductive
hypothesis to (U\U ′, V \V ′) to obtain a set of minimal synchronisations, to which we add
(U ′, V ′). All the conditions required of the set are clearly satisfied. �

Proof of Theorem 3.8. (⇒) Suppose M ;NX+Y
α−→
β M ;NX′+Y ′ . Then there exists a mu-

tually independent set of minimal synchronisations {(Ui, Vi)}i∈I such that p•(
⋃
Ui)q = α

and p(
⋃
Vi)
•q = β. It follows that

⋃
i Ui is a mutually independent set of transitions in M

and
⋃
i Vi is a mutually independent set of transitions in N . Moreover (

⋃
i Ui)

• =
⋃
i (Ui

•) =⋃
i
•Vi = •(

⋃
i Vi). Let γ = p

⋃
i Ui
•q = p

⋃
i
•Viq; we obtain MX

α−→
γ MX′ and YY

γ−→
β NY ′ as

required.

(⇐) If MX
α−→
γ MX′ and NY

γ−→
β NY ′ then there exist contention-free subsets U ⊆ TM

and V ⊆ TN with U• = •V . Using the conclusion of Lemma 3.3 we obtain a mutually inde-
pendent set of transitions of M ;N that induces the transition M ;NX+Y

α−→
β M ;NX′+Y ′ .�

Proof of Proposition 3.9. We only show that

A
def
= {(M1

X1
;NY , M

2
X2

;NY) |M1
X1
∼M2

X2
}

is a bisimulation. If M1
X1

;NY
α−→
β M1

X′1
;NY ′ then using the “only-if” direction of Theo-

rem 3.8 we have M1
X1

α−→
γ M1

X′1
and NY

γ−→
β NY ′ for some γ. Using the assumption, there

exists X ′2 with M2
X2

α−→
γ M2

X′2
with M1

X′1
∼ M2

X′2
. Then, using the “if” direction of Theo-

rem 3.8 we obtain that M2
X2

;NY
α−→
β M2

X′2
;NY ′ and (M1

X′1
;NY ′ , M

2
X′2

;NY ′) ∈ A. �

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 55

Appendix B. Proofs from Section 4 (P/T nets with boundaries)

Proof of Lemma 4.5. Let d = |U•| = |•V|. We proceed by induction on d. The base case
is d = 0. This means that whenever U(t) 6= 0 then |t•| = 0 and whenever V(t) 6= 0 then
|•t| = 0. The required family is then

{(U(t), ({t},∅))}t∈TM ∪ {(V(t), (∅, {t}))}t∈TN .
Now if d > 0 and (U ,V) is a minimal synchronisation then we are finished, taking the one
member family {(1, (U ,V))}. Otherwise let (U ′,V ′) be any minimal synchronisation with
∅ 6= U ′ ⊆ U and ∅ 6= V ′ ⊆ V. By definition we have U ′• = •V ′ and so (U − U ′)• =
U• − U ′• = •V − •V ′ = •(V − V ′). We remark that |U ′•| = |•V ′| > 0 because (U ′,V ′) is
minimal with U ′ 6= ∅ and V ′ 6= ∅. Hence we apply the inductive hypothesis to U − U ′ and
V − V ′ to obtain a family F = {(bi, (Ui,Vi))}i∈I satisfying the expected requirements. If
∃i ∈ I with (Ui,Vi) = (U ′,V ′) then the required family is {(bj , (Uj ,Vj)}j 6=i∪{(bi+1, (Ui,Vi)},
otherwise the required family is F ∪ {(1, (U ′,V ′)}. �

Proof of Theorem 4.9.

(i) (⇒) If M ;NX+Y
α−→
β M ;NX ′+Y ′ then there exists W ∈ MTM ;N

, with p•Wq = α and
pW•q = β. Define WM ∈MTM and WN ∈MTN as

WM =
⋃

(U ,V)∈TM ;N

W(U ,V) · U WN =
⋃

(U ,V)∈TM ;N

W(U ,V) · V

Analogously to Lemma 3.8 (ii), it can be shown that pWM
•q = p•WNq. Finally,

because ◦W ⊆ X + Y, W◦ ⊆ X ′ + Y ′ and (X + Y) − ◦W = (X ′ + Y ′) − W◦, we
conclude that
− ◦WM ⊆ X , W◦M ⊆ X ′ and X − ◦WM = X ′ −W◦M , and
− ◦WN ⊆ Y, W◦N ⊆ Y ′ and Y − ◦WN = Y ′ −W◦N .

Thus we have shown that MX
α−→
γ MX ′ and NY

γ−→
β NY ′ .

(⇐) Suppose MX
α−→
γ MX ′ and NY

γ−→
β NY ′ for some γ ∈ Nn. Then there exist

WM ∈ MTM such that p•WMq = α and pWM
•q = γ, and WN ∈ MTN such that

p•WNq = γ and pWN
•q = β.

By the conclusion of Lemma 4.5, there exists a family {(bi, (Ui,Vi)}i∈I where for
each i ∈ I we have bi ∈ N and (Ui,Vi) ∈ Synch(M,N). Moreover

⋃
i∈I bi · Ui =

WM and
⋃
i∈I bi · Vi = WN . Let W def

=
⋃
i∈I bi · (Ui,Vi). Clearly we have that

M ;NX+Y
α−→
β M ;NX ′+Y ′ , as evidenced by W.

(ii) Follows analogously to the previous case.
�

Appendix C. Proofs from Section 7 (P/T Calculus)

Proof of Lemma 7.4. (⇒) The proof follows by induction on the structure of the deriva-
tion. First we note that the only applicable rules are (TkIOn,h,k) and (Weak). Case (TkIOn,h,k)

follows immediately, since k ≤ n ≤ n + h. If the last applied rule is (Weak*), then the

56 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

derivation has the following shape:

LnM α′−→
β′

P ′ P ′
α′′−→
β′′

Q

LnM α′+α′′−−−−→
β′+β′′

Q
(Weak*)

By inductive hypothesis on the first premise, we have P ′ = Ln′M with α′ = h′, β′ = k′,
k′ ≤ n + h′ and n′ = n + h′ − k′ (1). By inductive hypothesis on the second premise,
we conclude Q = LmM with α′′ = h′′, β′′ = k′′, k′′ ≤ n′ + h′′ and m = n′ + h′′ − k′′.
We use (1) to substitute n′ by n + h′ − k in m. Then, by rearranging terms we have
m = n′ + h′′ − k′′ = (n + h′ − k′) + h′′ − k′′ = n + (h′ + h′′) − (k′ + k′′). Similarly,
k′′ ≤ n′ + h′′ = (n+ h′ − k′) + h′′ and hence k′ + k′′ ≤ n+ (h′ + h′′).

(⇐) By (TkIOn,h,0) we have LnM =⇒h
0

Ln+hM. By rule (TkIOn+h,0,k) we have Ln+hM =⇒0
k

LmM.
We conclude by applying (Weak*). �

Appendix D. Proofs from Section 9 (Translating nets to terms)

Proof of Lemma 9.2. Here we concentrate on left inverse functional form and the strong
semantics. The proof for right inverse functional forms is symmetric, and the argument
for the weak semantics (and, thus, similarly for P/T calculus semantics) follows the same
structure and relies on the characterisation in Proposition 6.5. Any function f : l → k can
be decomposed uniquely into f = f2 ◦ f1 ◦ f0 where

(i) f0 : l→ l is a permutation
(ii) f1 : l → m is surjective and monotone (with respect to the obvious ordering on

elements of the ordinal) and
(iii) f2 : m→ k is injective and monotone.

Let lifff0 : (l, l) be a term in T{X} whose behaviour is characterised by

lifff0

α−→
β lifff0 ⇔ ∃U ⊆ l s.t. β = pUq and α = pf−1

0 (U)q

Define lifff1 : (l,m) ∈ T{ ∆

} as lifff1

def
=
⊗

i<m

∆

|f1
−1(i)|, then it follows that

lifff1

α−→
β lifff1 ⇔ ∃U ⊆ m s.t. β = pUq and α = pf−1

1 (U)q.

Now let lifff2 : (m, k) ∈ T{>>>} be lifff2

def
=
⊗

i<k

{
I if f−1

2 (i) 6= ∅
>>> otherwise.

, it follows easily that

lifff2

α−→
β lifff2 ⇔ ∃U ⊆ k s.t. β = pUq and α = pf−1

2 (U)q.

It follows that lifff
def
= lifff0 ; lifff1 ; lifff2 is in left inverse functional form and has the required

semantics. �

Proof of Lemma 9.5. We concentrate only on right direct functional forms and strong
semantics. The other cases follow as in the proof Lemma 9.2. Also as in that proof, we
decompose f = f2 ◦ f1 ◦ f0 where f0 : l → l is a permutation, f1 : l → m is surjective and
monotone and f2 : m→ k is injective and monotone.

Let rdfff0 ∈ TX be a term such that

rdfff0

α−→
β rdfff0 ⇔ ∃U ⊆ l s.t. α = pUq and β = pf0(U)q

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 57

Next let rdfff1 : (l, m)
def
=
⊗

i<m V|f−1
0 (i)|, which is clearly in T{V}, then

rdfff1

α−→
β rdfff1 ⇔ ∃U ⊆ l s.t. α = pUq and β = pf1(U)q

The third ingredient is rdfff2 : (m, k)
def
=
⊗

i<k

{
I if f−1

2 (i) 6= ∅
↑↑↑ otherwise.

which is in T{↑↑↑ } and

whose behaviour is clearly

rdfff2

α−→
β rdfff2 ⇔ ∃U ⊆ l s.t. α = pUq and β = pf2(U)q.

Finally let rdfff
def
= rdfff0 ; rdfff1 ; rdfff2 . �

Proof of Theorem 9.11. (i) If NX
α−→
β NY then there exists a set U ⊆ t of mutually

independent transitions such that NX →U NY , with α = p•Uq and β = pU•q. Using the
conclusion of Lemma 9.10, we have

wNX
pU◦q−−−→
p◦Uq wNY .

Now, using the conclusion of Lemma 9.8 and (Cut) we obtain transition

ρ−◦ ; wNX ; λ◦−
pUq−−−→
pUq ρ−◦ ; wNY ; λ◦−

and subsequently

∇t ; ρ−◦ ; wNX ; λ◦− ; ∆t
pUqpUq−−−−−→
pUqpUq ∇t ; ρ−◦ ; wNY ; λ◦− ; ∆t

Certainly #t
pUq−−−→
pUq #t, thus using the semantics of dt and et we obtain:

TNX
p•Uq−−−→
pU•q TNY

as required.

(ii) If TNX
α−→
β Q then Q = (dt ⊗ λ•−) ; Q1 ; (et ⊗ ρ−•) and

#t ⊗ (∇t ; ρ−◦ ; wNX ; λ◦− ; ∆t)
pUqpUqpV q−−−−−−−→

pU′qpU′qpV ′q Q1

For some U, V, U ′, V ′ ⊆ t with α = p•V q and β = pV ′•q. The structure of (Ten) and the
semantics of #t imply that U = U ′, mutually independent, and Q1 = It ⊗Q2 with

∇t ; ρ−◦ ; wNX ; λ◦− ; ∆t
pUqpV q−−−−−→
pUqpV ′q Q2

Now the semantics of ∆t implies that U = V and conversely, the semantics of ∇t that
U = V ′, moreover Q2 = ∇t ; Q3 ; δt with

ρ−◦ ; wNX ; λ◦−
pUq−−−→
pUq Q3

Finally, using the conclusion of Lemma 9.8, we obtain Q3 = ρ−◦ ; Q4 ; λ◦− and

wNX
pU◦q−−−→
p◦Uq Q4

In particular, we obtain that Q4 = wNY and NX
α−→
β NY . �

58 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Proof of Lemma 9.13. Here we give the proof for right amplifiers, the argument for left
amplifiers follows by symmetry. The proof follows by induction: the base case !1 = I is
obvious. Now

!(k + 1) =⇒
a

b
!(k + 1) ⇔

(I⊗!k) ; V =⇒
aa

b
(I⊗!k) ; V ⇔

!k =⇒
a

b′
!k and b = a+ b′.

By the inductive hypothesis b′ = ka and so b = (k + 1)a as required. �

Appendix E. Proofs from Section 10 (Petri Tile Calculus)

The following technical lemmas state the admissible tiles for basic connectors.

Lemma E.1. For any h, k ∈ N we have:

X
hk−−→
kh X ⊥⊥⊥ k−→⊥⊥⊥ >>> −→k >>> ∆

k−→
kk ∆

∆kk−−→
k

∆

Λ
h+k−−−→
hk Λ V

hk−−→
h+k V

X
hk−−→
kh

X ⊥⊥⊥ k−→⊥⊥⊥ >>> −→
k
>>> ∆

k−→
kk

∆

∆kk−−→
k

∆

Λ
h+k−−−→
hk

Λ V
hk−−→
h+k

V

Proof. The proof is trivial, by construction. We show the cases of

V
hk−−→
h+k V V

hk−−→
h+k

V

the other cases are analogous.
The two instances of rule V are:

V
01−−→
1 V V

10−−→
1 V

By composing h instances of the former and k of the latter using (Vert), we have (recall
that the observation h is the sequential composition of h observations 1):

V
0h−−→
h V V

k0−−→
k V

Finally we compose the above rules using (Vert) (recall that 0 is the identity, hence 0;h =
h = h; 0):

V
kh−−→
h+k V

Then, we can use the instance of (Epoch):

V
ττ−−→
τ V

By (Vert) we have:

V
(ττ);(hk)−−−−−−→
τ ;(h+k) V i.e. V

(τ ;h)(τ ;k)−−−−−−→
τ ;(h+k) V i.e. V

hk−−→
h+k

V

�

Lemma E.2. For any observation a we have:

⊥⊥⊥ a−→⊥⊥⊥ >>> −→a >>> ∆
a−→
aa ∆

∆aa−−→
a

∆

Proof. By straightforward induction on the structure of a. If a = 0 the thesis follows by
(Idle). If a = τ ; a′ then the thesis follows by (Epoch), (Vert) and the inductive hypothesis on
a′. If a = 1; a′ then the thesis follows by the basic tiles (for ⊥⊥⊥, >>>, ∆,

∆

), (Vert) and the
inductive hypothesis on a′. �

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 59

Lemma E.3. For any observations a, b, c we have a = b = c if and only if:

∆
a−→
bc ∆

∆bc−→
a

∆

Proof. The only tiles applicable to the source configuration ∆ (resp.

∆

) are ∆ (resp.

∆

),
(Epoch), (Idle) and (Vert). The equality of the observations is an invariant of the application
of such rules. �

Lemma E.4. For any observations a, b, c, d we have that a = d, b = c and a, b are coeta-
neous if and only if:

X
ab−−→
cd X

Proof. The only tiles applicable to the source configuration X are X, (Epoch), (Idle) and (Vert).
The requirement on the observations is an invariant of the application of such rules. �

Lemma E.5. For any observations a, b, c we have that a, b, c are coetaneous and a = b+ c
if and only if:

Λ
a−→
bc Λ V

bc−→
a V

Proof. The only tiles applicable to the source configuration Λ (resp. V) are Λ (resp. V),
(Epoch), (Idle) and (Vert). The constraint on the observations is an invariant of the application
of such rules. �

Lemma E.6. An observation a is idle if and only if:

↑↑↑ −→a ↑↑↑ ↓↓↓ a−→ ↓↓↓
Proof. The only tiles applicable to the source configuration ↑↑↑ (resp. ↓↓↓) are (Epoch), (Idle)

and (Vert). The constraint on the observations is an invariant of the application of such
rules. �

Lemma E.7. If • −→b P ′, then either b is idle and P ′ = • or b = b′; 1̄; b′′ with b′, b′′ idle and
P ′ =↑↑↑ .

Proof. Immediate, by noting the only rules applicable to • are (TkO), (Epoch), (Idle) and
(Vert). �

Lemma E.8. For any n ∈ N we have LnM 'tb (LnM⊗ ↑↑↑); V.

Proof. We observe that I 'tb (I⊗ ↑↑↑); V. In fact by Lemma E.6 and Lemma E.5 for any a
and for the unique idle c that is coetaneous of a we know that:

I
a−→
a I ↑↑↑ −→c ↑↑↑ V

ac−−→
a V

Therefore, by (Mon) and (Vert) we have that

(I⊗ ↑↑↑); V
a−→
a (I⊗ ↑↑↑); V

is the only admissible move. Hence the relation {(I, (I⊗ ↑↑↑); V), ((I⊗ ↑↑↑); V, I)} is a tile
bisimulation and I 'tb (I⊗ ↑↑↑); V.

Since tile bisimilarity is a congruence and LnM = LnM; I we can conclude that LnM =
LnM; I 'tb LnM; (I⊗ ↑↑↑); V = (LnM⊗ ↑↑↑); V. �

Lemma E.9. ↑↑↑ ; L0M 'tb ↑↑↑ .

Proof. The only rules applicable to L0M are (TkI), (Epoch) and (Idle), but (TkI) would require 1
as trigger, that ↑↑↑ cannot produce as effect. Therefore all and only observations that ↑↑↑ ; L0M
can give rise to are idle observations, i.e. the same as ↑↑↑ . �

60 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Lemma E.10. • 'tb ↑↑↑ ; L1M.

Proof. Recall that L1M def
= (L0M⊗ •); V. Then,

↑↑↑ ; L1M =↑↑↑ ; (L0M⊗ •); V = ((↑↑↑ ; L0M)⊗ •); V 'tb (↑↑↑ ⊗•); V = •; (↑↑↑ ⊗I); V 'tb •; I = • . �

Lemma E.11. For any k ≤ n, LnM 0̄−→̄
k
P ′ with P ′ 'tb Ln − kM. Moreover, for any k, n, if

LnM 0̄−→̄
k
P ′ then P ′ 'tb Ln− kM and k ≤ n.

Proof. The first part is by induction on k. For k = 0 the thesis holds trivially by (Epoch).
For k > 0, we have that n−1 ≥ k−1 ≥ 0 and LnM = (Ln−1M⊗•); V. By inductive hypothesis

we have Ln− 1M 0̄−→
k−1

P ′′ with P ′′ 'tb Ln− kM. We also know that • −→̄
1
↑↑↑ by (TkO) and that

V
(k−1)1̄−−−−−→
k̄

V by Lemma E.5. Therefore we conclude by letting P ′ = (P ′′⊗ ↑↑↑); V, and by

(Mon) and (Hor) and Lemma E.8 we have LnM 0̄−→̄
k

(P ′′⊗ ↑↑↑); V 'tb (Ln−kM⊗ ↑↑↑); V 'tb Ln−kM.
For the second part, we proceed by induction on n+k. For n+k = 0 the thesis follows

immediately because the only possibility is that L0M 0̄−→̄
0

L0M by (Epoch), (Idle) and (Vert). Let

n + k > 0. If k > n, then it is not possible that LnM 0̄−→̄
k
P ′, because the term LnM does

not contain enough tokens •. Therefore, it must be k ≤ n and n > 0. If k = 0 the thesis
follows trivially. Otherwise, let k > 0, h = k − 1, m = n− 1 ≥ 0 and LnM = (LmM⊗ •); V. If

LnM 0̄−→̄
k
P ′, then (using (Mon) and (Hor)):

− either LmM 0̄−→̄
k
P ′′, • 0̄−→̄

0
• and V

k0−−→̄
k

V,

− or LmM 0̄−→̄
h
P ′′, • 0̄−→̄

1
↑↑↑ and V

h1−−→̄
k

V.

In the first case, by inductive hypothesis, P ′′ 'tb Lm− kM and therefore

P ′ = (P ′′ ⊗ •); V 'tb (Lm− kM⊗ •); V = Lm+ 1− kM = Ln− kM.
In the second case, by inductive hypothesis, P ′′ 'tb Lm − hM = Ln − kM and therefore

P ′ = (P ′′⊗ ↑↑↑); V 'tb (Ln− kM⊗ ↑↑↑); V 'tb Ln− kM by Lemma E.8. �

Lemma E.12. For any h, LnM h−→
0 Ln + hM. Moreover, for any h, k, if LnM h−→

k P ′ then
P ′ = Ln+ hM and k = 0.

Proof. Both parts are proved by induction on h. �

Lemma E.13. For any h, L0M h̄−→̄
0

LhM. Moreover, for any h, if L0M h̄−→̄
0
P ′ then P ′ = LhM.

Proof. By Lemma E.12, using (Epoch) and (Vert). �

Proof of Lemma 10.8. The proof is along the lines of Lemma E.11, showing that for any

k ≤ n, LnM 0̄−→̄
k
P ′ with P ′ 'tb Ln−kM and that for any k, n, if LnM 0̄−→̄

k
P ′ then P ′ 'tb Ln−kM

and k ≤ n; but it additionally exploits Lemma E.13. �

Lemma E.14. For any h, k, n there is no P ′ such that LnM h̄−→
k P ′.

Proof. By induction on n, if τ is observed in the left interface, then it must be observed on
the right interface too (even when h = k = 0). �

Lemma E.15. For any h, k, n, if LnM
h;τ−−→̄
k

P ′ then P ′ 'tb Ln+ h− kM and k ≤ n+ h.

Proof. The thesis follows as a combination of Lemma E.12 and Lemma 10.8 using (Vert)

(after noting that h; 0̄ = h; τ and k = 0; k). �

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 61

Lemma E.16. If LnM a−→
b P ′, then a and b are coetaneous and P ′ 'tb Ln + h − kM for

h = count(a) and k = count(b).

Proof. By induction on δ(a), exploiting Lemmas E.12–E.15. �

Lemma E.17. Let P : (h, l) be any connector. If P
a−→
b P ′, then there exist idle a′, b′ such

that P
a;a′−−−→
b;b′ P ′ with a; a′ and b; b′ valid and coetaneous.

Proof. By structural induction on P .
If P is •, then a and b are trivially valid and coetaneous by Lemma E.7.
If P is L0M, then a and b are coetaneous by Lemma E.16 and they are trivially valid

because a : (1, 1) and b : (1, 1).
If P is a basic stateless connector, then a and b are valid and coetaneous by Lemma 10.7.

If P = Q ⊗ R then it must be the case that Q
a1−−→
b1

Q′ and R
a2−−→
b2

R′ with a = a1a2,
b = b1b2. By inductive hypothesis:

− there must exist idle a′1, b
′
1 such that Q

a1;a′1−−−→
b1;b′1

Q′ with a1; a′1 and b1; b′1 valid and

coetaneous;

− there must exist idle a′2, b
′
2 such that R

a2;a′2−−−→
b2;b′2

R′ with a2; a′2 and b2; b′2 valid and

coetaneous.

Let k1 = δ((a1; a′1)(b1; b′1)) and k2 = δ((a2; a′2)(b2; b′2)). If k1 = k2 then (a1; a′1)(a2; a′2) and
(b1; b′1)(b2; b′2) are (valid and) coetaneous and we are done. Otherwise, assume without loss
of generality that k1 > k2. Then, by applying (Epoch) and (Vert) for k1− k2 times to R′, we

have R′
a′3−−→
b′3

R′ for the unique idle and coetaneous a′3, b
′
3 such that δ(a′3b

′
3) = k1−k2. Then,

by (Vert), R
a2;a′2;a′3−−−−−→
b2;b′2;b′3

R′. Now, it is obvious that a2; a′2; a′3 and b2; b′2; b′3 are coetaneous and

that δ((a2; a′2; a′3)(b2; b′2; b′3)) = k1. Therefore we let a′ = a′1(a′2; a′3) and b′ = b′1(b′2; b′3) and
we are done.

If P = Q;R then it must be the case that Q
a−→
c Q′ and R

c−→
b R′. By inductive hypoth-

esis:

− there must exist idle a′1, c
′
1 such that Q

a;a′1−−−→
c;c′1

Q′ with a; a′1 and c; c′1 valid and co-

etaneous;

− there must exist idle c′2, b
′
2 such that R

c;c′2−−−→
b;b′2

R′ with c; c′2 and b; b′2 valid and coeta-
neous.

Let k1 = δ(c; c′1) and k2 = δ(c; c′2). If k1 = k2 then c′1 = c′2 and, by transitivity, a; a′1
and b; b′1 are (valid and) coetaneous and we are done. Otherwise, assume without loss of
generality that k1 > k2. Then, by applying (Epoch) and (Vert) for k1 − k2 times to R′, we

have R′
c′3−−→
b′3

R′ for the unique idle and coetaneous c′3, b
′
3 such that δ(c′3b

′
3) = k1− k2. Then,

by (Vert), R
c;c′2;c′3−−−−→
b;b′2;b′3

R′. Now, it is obvious that c; c′1 = c; c′2; c′3. Therefore we let a′ = a′1
and b′ = b′2; b′3 and we are done. �

Lemma E.18. If P
a;c̄−−→
b P ′ with a; c̄ and b (valid and) coetaneous then there exist d, ē, P ′′

such that P
a−→
d P ′′, P ′′

c̄−→̄
e P ′, b = d; ē, and δ(a) = δ(d).

62 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Proof. We proceed by structural induction on P . The most interesting case is that of

sequential composition. Let P = Q;R, with Q
a;c̄−−→
x Q′, R

x−→
b R′, and P ′ = Q′;R′. By

inductive hypothesis:

− there exist y, z̄, Q′′ such that Q
a−→
y Q′′, Q′′

c̄−→̄
z Q′, x = y; z̄, and δ(a) = δ(y).

Since x = y; z̄, by inductive hypothesis on R
y;z̄−−→
b R′:

− there exist d, ē, R′′ such that R
y−→
d R′′, R′′

z̄−→̄
e R′, b = d; ē, and δ(y) = δ(d).

Then, by applying (Hor) we obtain:

− P = Q;R
a−→
d Q′′;R′′,

− Q′′;R′′
c̄−→̄
e Q′;R′.

Then, we take P ′′ = Q′′;R′′ and we are done. �

Lemma E.19. If P
a−→
b P ′ with a and b (valid and) coetaneous, then there exist k elemen-

tary observations a1, ..., ak with ā1; · · · ; āk = ā, k elementary observations b1, ..., bk with

b̄1; · · · ; b̄k = b̄, and k terms P1, P2, ..., Pk such that P
ā1−−→
b̄1

P1, P1
ā2−−→
b̄2

P2, ..., Pk−1
āk−−→
b̄k

Pk =

P ′.

Proof. By (Epoch) and (Vert) we have P
ā−→̄
b
P ′. Then the thesis follows by induction on

δ(ā), exploiting Lemma E.18. The base case is trivial. For the inductive case, let δ(ā) =
k + 1 for some k ≥ 0 and assume the thesis is valid for any c with δ(c̄) < n. By δ(ā) =
k + 1 we know that there exist epochs a1, ..., ak+1 such that ā = ā1; · · · ; ¯ak+1. Let c̄ =

ā2; · · · ; āk+1. By hypothesis we have P
ā1;c̄−−−→
b P ′. By Lemma E.18, there exist d, ē, P ′′ such

that P
a−→
d P ′′, P ′′

c̄−→̄
e P ′, b̄ = d; ē, and δ(d) = δ(a) = 1. Then, take b̄1 = d and P1 =

P ′′. By inductive hypothesis about P1
c̄−→̄
e P ′ we have that there exist suitable elementary

observations b2, ..., bk+1 and P2, ..., Pk+1 such that P1
ā2−−→
b̄2

P2, ..., Pk
āk+1−−−→
b̄k+1

Pk+1 = P ′ and

we are done. �

Definition E.20. We let l denote the least congruence5 on observations defined by the
following rules:

a:(1,1)
(After)

a l τ ;a

a:(1,1)
(Before)

a l a;τ

As an easy invariant preserved by l, observe that whenever a l a′ the number of 1’s
occurring in a is the same as the number of 1’s occurring in a′. Roughly, given a non valid
observation a, we can always find a valid observation a′ l a that differs from a by the
insertion of one or more τ to align different epochs. For example, given a = 2̄(1̄; 0̄; 3̄)(4̄; 7̄)
and a′ = (0̄; 2̄; 0̄)(1̄; 0̄; 3̄)(4̄; 0̄; 7̄) we have that a l a′. Also a′′ = (0̄; 2̄; 0̄; 0̄)(0̄; 1̄; 0̄; 3̄)(4̄; 0̄; 7̄; 0̄)
is such that a l a′′. In particular, note that for any a : (h, h) and b : (h, h) we have ā l a
and a; b l a l b; a if and only if b is idle.

Lemma E.21. Let P : (h, l) be any stateless connector. If P
a−→
b P , then there exist idle

a′, b′ such that P
a;a′−−−→
b;b′ P with a; a′ and b; b′ valid and coetaneous, a; a′ l a and b; b′ l b.

Proof. By structural induction on P , along the lines of Lemma E.17.
If P is a basic connector, then a and b are valid and coetaneous by Lemma 10.7.

5By requiring l to be a congruence, we are implicitly assuming that it is an equivalence relation (reflexive,
symmetric, transitive) and that it is preserved by the sequential and parallel composition of observations.

CONNECTOR ALGEBRAS FOR C/E AND P/T NETS’ INTERACTIONS 63

If P = Q ⊗ R then it must be the case that Q
a1−−→
b1

Q and R
a2−−→
b2

R with a = a1a2,
b = b1b2. By inductive hypothesis:

− there must exist idle a′1, b
′
1 such that Q

a1;a′1−−−→
b1;b′1

Q with a1; a′1 and b1; b′1 valid and

coetaneous, a1; a′1 l a1 and b1; b′1 l b1;

− there must exist idle a′2, b
′
2 such that R

a2;a′2−−−→
b2;b′2

R with a2; a′2 and b2; b′2 valid and

coetaneous, a2; a′2 l a2 and b2; b′2 l b2.

Let k1 = δ((a1; a′1)(b1; b′1)) and k2 = δ((a2; a′2)(b2; b′2)). If k1 = k2 then (a1; a′1)(a2; a′2) and
(b1; b′1)(b2; b′2) are (valid and) coetaneous and we are done, because a = a1a2 l (a1; a′1)(a2; a′2)
and b = b1b2 l (b1; b′1)(b2; b′2) (recall that l is a congruence). Otherwise, assume without loss
of generality that k1 > k2. Then, by applying (Epoch) and (Vert) for k1 − k2 times to R, we

have R
a′3−−→
b′3

R for the unique idle and coetaneous a′3, b
′
3 such that δ(a′3b

′
3) = k1 − k2. Then,

by (Vert), R
a2;a′2;a′3−−−−−→
b2;b′2;b′3

R. Now, it is obvious that a2; a′2; a′3 and b2; b′2; b′3 are coetaneous and

that δ((a2; a′2; a′3)(b2; b′2; b′3)) = k1. Therefore we let a′ = a′1(a′2; a′3) and b′ = b′1(b′2; b′3) and
we are done.

If P = Q;R then it must be the case that Q
a−→
c Q and R

c−→
b R. By inductive hypothesis:

− there must exist idle a′1, c
′
1 such that Q

a;a′1−−−→
c;c′1

Q with a; a′1 and c; c′1 valid and coeta-

neous, a; a′1 l a and c; c′1 l c;
− there must exist idle c′2, b

′
2 such that R

c;c′2−−−→
b;b′2

R with c; c′2 and b; b′2 valid and coeta-

neous, c; c′2 l c and b; b′2 l b.
Let k1 = δ(c; c′1) and k2 = δ(c; c′2). If k1 = k2 then c′1 = c′2. Then, a; a′1 and b; b′2 are
(valid and) coetaneous and we are done. Otherwise, assume without loss of generality that

k1 > k2. Then, by applying (Epoch) and (Vert) for k1 − k2 times to R, we have R
c′3−−→
b′3

R

for the unique idle and coetaneous c′3, b
′
3 such that δ(c′3b

′
3) = k1 − k2. Then, by (Vert),

R
c;c′2;c′2−−−−→
b;b′2;b′3

R. Now, it is obvious that c; c′1 = c; c′2; c′3. Therefore we let a′ = a′1 and b′ = b′2; b′3
and we are done. �

Lemma E.22. If P
a−→
b P ′, then there exist k elementary observations a1, ..., ak such that

ā1; · · · ; āk l a, k elementary observations b1, ..., bk such that b̄1; · · · ; b̄k l b, and k terms

P1, P2, ..., Pk such that P
ā1−−→
b̄1

P1, P1
ā2−−→
b̄2

P2, ..., Pk−1
āk−−→
b̄k

Pk = P ′.

Proof. By Lemma E.17 we know that there exist idle a′, b′ such that P
a;a′−−−→
b;b′ P ′ with a; a′

and b; b′ valid and coetaneous. Then, the thesis follows by Lemma E.19. �

We start by proving a strong correspondence between one step reductions in the P/T
calculus and Petri tile system.

Lemma E.23. Let P be any basic stateless connector. P
α−→
β Q in the P/T calculus if and

only if P
ᾱ−→̄
β
Q in the Petri tile system.

Proof. By case analysis, exploiting Lemmas E.1–E.6. �

64 ROBERTO BRUNI, HERNÁN MELGRATTI, UGO MONTANARI, AND PAWE L SOBOCIŃSKI

Lemma E.24. If LnM h−→
k Q in the P/T calculus then LnM h̄−→̄

k
Q′ in the Petri tile system with

Q′ 'tb Q. Vice versa, if LnM h̄−→̄
k
Q′ in the Petri tile system, then LnM h−→

k Ln+ h− kM in the
P/T calculus.

Proof. Immediate, by Lemma 10.8. �

Lemma E.25. If sync(P)
a−→
b Q, then a, b are valid and coetaneous and Q = sync(P ′) for

some P ′ such that P
a−→
b P ′.

Proof. Consider P : (h, k). By Lemmas 10.13 and E.6, the only admissible moves

(Ih⊗ ↑↑↑); Xh,h
a−→
c R are when R = (Ih⊗ ↑↑↑); Xh,h and c = aa′ with a′ : (1, 1) the only idle ob-

servation that is coetaneous with a. Similarly, the only admissible moves Xk,k; (Ik⊗ ↓↓↓)
d−→
b R′

are when R′ = Xk,k; (Ik⊗ ↓↓↓) and d = bb′with b′ : (1, 1) the only idle observation that is

coetaneous with b. Since the tile sync(P)
a−→
b Q must be completed by finding a suitable

tile (P ⊗ I)
aa′−−→
bb′ Q′, the only possibility is that Q′ = P ′ ⊗ I, a′ = b′ and P

a−→
b P ′. Hence,

Q = sync(P ′) and a and b must be coetaneous by transitivity. �

Lemma E.26. If for any a, b such that P
a−→
b Q then a and b are valid and coetaneous, then

P 'tb sync(P).

Proof. Direct consequence of Lemma 10.13. �

Lemma E.27. If sync(P)
ᾱ−→̄
β
Q in the Petri tile calculus, then sync(P)

α−→
β Q′ in the P/T

calculus with Q′ 'tb Q.

Proof. If sync(P)
ᾱ−→̄
β
Q, by Lemma E.25 we know that P

ᾱ−→̄
β
P ′ in the Petri tile calculus

and Q = sync(P ′) for some P ′. Then, by Lemma 10.9 we know that P
α−→
β P ′′ in the P/T

calculus for some P ′′ 'tb P
′. Therefore, sync(P)

α−→
β sync(P ′′) in the P/T calculus. We

conclude by taking Q′ = sync(P ′′), since tile bisimilarity is a congruence and therefore
Q′ = sync(P ′′) 'tb sync(P ′) = Q. �

Lemma E.28. If sync(P)
α−→
β Q in the Petri tile calculus, sync(P)

α−→
β Q′ in the P/T cal-

culus with Q′ 'tb Q.

Proof. If sync(P)
α−→
β Q, by (Epoch) and (Vert) we know also that sync(P)

ᾱ−→̄
β
Q and conclude

by Lemma E.27. �

Proof of Theorem 10.15. By Lemma E.25, a and b are valid and coetaneous and Q =
sync(P ′) for some P ′ such that P

a−→
b P ′. By Lemma E.19, there exist k elementary observa-

tions α1, ..., αk with ᾱ1; · · · ; ᾱk = ā, k elementary observations β1, ..., βk with β̄1; · · · ; β̄k = b̄,

and k terms P1, P2, ..., Pk such that P
ᾱ1−−→̄
β1

P1, then P1
ᾱ2−−→̄
β1

P2, ..., Pk−1
ᾱk−−→
β̄k

Pk = P ′. Then,

we proceed by straightforward induction on the length k of the computation, exploiting
Lemma E.27. �

	1. Introduction
	2. Background
	2.1. Petri Nets

	3. C/E Nets with boundaries
	3.1. Labelled semantics of C/E nets with boundaries

	4. P/T nets with boundaries
	4.1. Labelled semantics of P/T nets with boundaries

	5. Properties of nets with boundaries
	6. Petri calculus
	6.1. Circuit diagrams
	6.2. Relationship between strong and weak semantics

	7. P/T Calculus
	8. Translating terms to nets
	8.1. Translating Petri calculus terms to C/E nets
	8.2. Translating P/T calculus terms to P/T nets.

	9. Translating nets to terms
	9.1. Functional forms
	9.2. Relational forms
	9.3. Contention
	9.4. Translating C/E nets
	9.5. Translating P/T nets (and weak C/E nets)
	9.6. Multirelational forms

	10. Petri Tile Calculus
	10.1. The tile model
	10.2. Petri Tile Calculus
	10.3. Correspondence with P/T calculus (strong case)
	10.4. Correspondence with P/T calculus (weak case)

	11. Related work
	12. Conclusions
	Acknowledgement
	References
	Appendix A. Proofs from Section 3 (C/E Nets with boundaries)
	Appendix B. Proofs from Section 4 (P/T nets with boundaries)
	Appendix C. Proofs from Section 7 (P/T Calculus)
	Appendix D. Proofs from Section 9 (Translating nets to terms)
	Appendix E. Proofs from Section 10 (Petri Tile Calculus)

