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Abstract We give a short proof of Wolff-Denjoy theorem for (not necessarily
smooth) strictly convex domains. With similar techniques we are also able to prove
a Wolff-Denjoy theorem for weakly convex domains, again without any smoothness
assumption on the boundary.
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1 Introduction

Studying the dynamics of a holomorphic self-map f :∆→ ∆ of the unit disk ∆ ⊂ C
one is naturally led to consider two different cases. If f has a fixed point then
Schwarz’s lemma readily implies that either f is an elliptic automorphism, or the
sequence {fk} of iterates of f converges (uniformly on compact sets) to the fixed
point. The classical Wolff-Denjoy theorem ([43,23]) says what happens when f
has no fixed points:

Theorem 1 (Wolff-Denjoy) Let f :∆ → ∆ be a holomorphic self-map without
fixed points. Then there exists a point τ ∈ ∂∆ such that the sequence {fk} of
iterates of f converges (uniformly on compact sets) to the constant map τ .
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Since its discovery, a lot of work has been devoted to obtain similar statements
in more general situations (surveys covering different aspects of this topic are [3,
39,25]). In one complex variable, there are results in multiply connected domains,
multiply and infinitely connected Riemann surfaces, and even in the settings of
one-parameter semigroups and of random dynamical systems (see, e.g., [28,37,10]).
In several complex variables, the first Wolff-Denjoy theorems are due to Hervé [29,
30]; in particular, in [30] he proved a statement identical to the one above for fixed
points free self-maps of the unit ball Bn ⊂ Cn. Hervé’s theorem has also been
generalized in various ways to open unit balls of complex Hilbert and Banach
spaces (see, e.g., [21,41] and references therein).

A breakthrough occurred in 1988, when the first author (see [1]) showed how
to prove a Wolff-Denjoy theorem for holomorphic self-maps of smoothly bounded
strongly convex domains in Cn. The techniques introduced there turned out to
be quite effective in other contexts too (see, e.g., [5,7,12–14]); but in particular
they led to Wolff-Denjoy theorems in smooth strongly pseudoconvex domains and
smooth domains of finite type (see, e.g., [4,31,40]).

Two natural questions were left open by the previous results: how much does
the boundary smoothness matter? And, what happens in weakly (pseudo)convex
domains? As already shown by the results obtained by Hervé [29] in the bidisk, if
we drop both boundary smoothness and strong convexity the situation becomes
much more complicated; but most of Hervé’s techniques were specific for the bidisk,
and so not necessarily applicable to more general domains. On the other hand, for
smooth weakly convex domains a Wolff-Denjoy theorem was obtained in [3] (but
here we shall get a better result; see Corollary 3).

In 2012, Budzyńska [18] (see also [20] and [19] for infinite dimensional general-
izations) proved a Wolff-Denjoy theorem for holomorphic fixed point free self-maps
of a bounded strictly convex domain in Cn, under no smoothness assumption on
the boundary; but she did not deal with weakly convex domains.

In Section 3 of this paper (Section 2 is devoted to recalling a few known prelimi-
nary facts), using only tools already introduced in [1] and no additional machinery,
we shall give a simpler proof of Budzyńska’s result, that is we shall prove

Theorem 2 Let D ⊂⊂ Cn be a bounded strictly convex domain, and f :D → D
a kD-nonexpansive (e.g., holomorphic) self-map without fixed points. Then there
exists a x0 ∈ ∂D such that the sequence of iterates {fk} converges to the constant
map x0.

It is worth mentioning that the final proof is simpler than the proof presented in
[1] for the smooth case.

In Section 4 we shall furthermore show how, combining our ideas with Budzyń-
ska’s new tools, one can obtain a Wolff-Denjoy theorem for weakly convex domains
with no smoothness assumptions, thus addressing the second natural question
mentioned above. In particular, we shall prove the following result (see Section 3
for the definitions of the “convex hulls” ch(E) and Ch(E) of a subset E ⊆ ∂D of
the boundary of a convex domain D, and Section 4 for the definitions of horosphere
sequences and Gz(x, 1,x)):

Theorem 3 Let D ⊂⊂ Cn be a bounded convex domain, and f :D → D a kD-
nonexpansive (respectively, holomorphic) self-map without fixed points. Then there
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exist x ∈ ∂D and a horosphere sequence x at x such that for any z0 ∈ D we have

T (f) ⊆
⋂
z∈D

ch
(
Gz(x, 1,x) ∩ ∂D

)
=
⋂
R>0

ch
(
Gz0(x,R,x) ∩ ∂D

)
if f is kD-nonexpansive, or

T (f) ⊆
⋂
z∈D

Ch
(
Gz(x, 1,x) ∩ ∂D

)
=
⋂
R>0

Ch
(
Gz0(x,R,x) ∩ ∂D

)
if f is holomorphic, where T (f) is the union of the images of limit points of the
sequence of iterates of f .

Finally, in Section 5 we shall specialize our results to the polydisk, and we shall
see that Hervé’s results imply that our statements are essentially optimal.

2 Preliminaries

In this section we shall collect a few more or less known facts on bounded convex
domains in Cn.

2.1 Euclidean geometry

Let us begin by recalling a few standard definitions and notations.

Definition 1 Given x, y ∈ Cn let

[x, y] = {sx+(1−s)y ∈ Cn | s ∈ [0, 1]} and (x, y) = {sx+(1−s)y ∈ Cn | s ∈ (0, 1)}

denote the closed, respectively open, segment connecting x and y. A set D ⊆ Cn
is convex if [x, y] ⊆ D for all x, y ∈ D; and strictly convex if (x, y) ⊆ D for all
x, y ∈ D.

An easy but useful observation (whose elementary proof is left to the reader)
is:

Lemma 1 Let D ⊂ Cn be a convex domain. Then:

(i) (z, w) ⊂ D for all z ∈ D and w ∈ ∂D;
(ii) if x, y ∈ ∂D then either (x, y) ⊂ ∂D or (x, y) ⊂ D.

This suggests the following

Definition 2 Let D ⊂ Cn be a convex domain. Given x ∈ ∂D, we put

ch(x) = {y ∈ ∂D | [x, y] ⊂ ∂D} ;

we shall say that x is a strictly convex point if ch(x) = {x}. More generally, given
F ⊆ ∂D we put

ch(F ) =
⋃
x∈F

ch(x) .
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A similar construction having a more holomorphic character is the following:

Definition 3 Let D ⊂ Cn be a convex domain. A complex supporting functional
at x ∈ ∂D is a C-linear map σ:Cn → C such that Reσ(z) < Reσ(x) for all z ∈ D.
A complex supporting hyperplane at x ∈ ∂D is an affine complex hyperplane
L ⊂ Cn of the form L = x+kerσ, where σ is a complex supporting functional at x
(the existence of complex supporting functionals and hyperplanes is guaranteed
by the Hahn-Banach theorem). Given x ∈ ∂D, we shall denote by Ch(x) the
intersection of D with of all complex supporting hyperplanes at x. Clearly, Ch(x)
is a closed convex set containing x; in particular, Ch(x) ⊆ ch(x). If Ch(x) = {x}
we say that x is a strictly C-linearly convex point; and we say that D is strictly C-
linearly convex if all points of ∂D are strictly C-linearly convex. Finally, if F ⊂ ∂D
we set

Ch(F ) =
⋃
x∈F

Ch(x) ;

clearly, Ch(F ) ⊆ ch(F ).

Remark 1 If ∂D is of class C1 then for each x ∈ ∂D there exists a unique complex
supporting hyperplane at x, and thus Ch(x) coincides with the intersection of
this complex supporting hyperplane with ∂D. In particular, Ch(x) is smaller than
the flat region introduced in [3, p. 277] as the intersection of ∂D with the real
supporting hyperplane. But non-smooth points can have more than one complex
supporting hyperplanes; this happens for instance in the polydisk (see Section 5).

2.2 Intrinsic geometry

The intrinsic (complex) geometry of convex domains is conveniently described
using the (intrinsic) Kobayashi distance. We refer to [3,32] and [35] for details and
much more on the Kobayashi (pseudo)distance in complex manifolds; here we shall
just recall what is needed for our aims. Let k∆ denote the Poincaré distance on the
unit disk ∆ ⊂ C. If X is a complex manifold, the Lempert function δX :X ×X →
R+ of X is

δX(z, w) = inf{k∆(ζ, η) | ∃φ:∆→ X holomorphic with φ(ζ) = z and φ(η) = w}

for all z, w ∈ X. In general, the Kobayashi pseudodistance kX :X × X → R+

of X is the largest pseudodistance on X bounded above by δX ; when D ⊂⊂ Cn
is a bounded convex domain in Cn, Lempert [38] has proved that δD is an actual
distance, and thus it coincides with the Kobayashi distance kD of D.

The main property of the Kobayashi (pseudo)distance is that it is contracted
by holomorphic maps: if f :X → Y is a holomorphic map then

kY
(
f(z), f(w)

)
≤ kX(z, w)

for all z, w ∈ X. In particular, biholomorphisms are isometries, and holomorphic
self-maps are kX -nonexpansive.

The Kobayashi distance of convex domains enjoys several interesting proper-
ties. For instance, it coincides with the Carathéodory distance, and it is a complete
distance (see, e.g., [3] or [38]); in particular, kD-bounded subsets of D are relatively
compact in D. We shall also need the following estimates:
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Lemma 2 ([38,33,36]) Let D ⊂⊂ Cn be a bounded convex domain. Then:

(i) if z1, z2, w1, w2 ∈ D and s ∈ [0, 1] then

kD
(
sz1 + (1− s)w1, sz2 + (1− s)w2

)
≤ max

{
kD(z1, z2), kD(w1, w2)

}
;

(ii) if z, w ∈ D and s, t ∈ [0, 1] then

kD
(
sz + (1− s)w, tz + (1− t)w

)
≤ kD(z, w) .

As a consequence we have:

Lemma 3 Let D ⊂⊂ Cn be a bounded convex domain, x, y ∈ ∂D, and let {zν},
{wν} ⊂ D be two sequences converging to x and y respectively. If

sup
ν∈N

kD(zν , wν) = c < +∞

then [x, y] ⊂ ∂D. In particular, if x (or y) is a strictly convex point then x = y.

Proof By Lemma 1 we know that either (x, y) ⊂ D, or (x, y) ⊂ ∂D. Assume by
contradiction that (x, y) ⊂ D. Lemma 2 yields

kD
(
szν + (1− s)wν , tzν + (1− t)wν

)
≤ kD(zν , wν) ≤ c

for each ν ∈ N and for all s, t ∈ (0, 1). Hence

kD
(
sx+ (1− s)y, tx+ (1− t)y

)
= lim
ν→∞

kD
(
szν + (1− s)wν , tzν + (1− t)wν

)
≤ c

for all s, t ∈ (0, 1). But this implies that (x, y) is relatively compact in D, which
is impossible because x, y ∈ ∂D. ut

2.3 Dynamics

In this subsection we recall a few known facts about the dynamics of holomorphic
(or more generally kD-nonexpansive) self-maps of convex domains.

When D ⊂⊂ Cn is a bounded domain, the space Hol(D,D) is, by Montel’s
theorem, relatively compact in Hol(D,Cn). In particular, if f ∈ Hol(D,D) then
every sequence {fkj} of iterates contains a subsequence converging to a holomor-
phic map h ∈ Hol(D,Cn). Analogously, using this time Ascoli-Arzelà theorem, if
f :D → D is kD-nonexpansive then every sequence {fkj} of iterates contains a
subsequence converging to a continuous map h:D → D ⊂ Cn.

Definition 4 Let D ⊂⊂ Cn be a bounded domain, and f :D → D a holomorphic
or kD-nonexpansive self-map. A map h:D → Cn is a limit point of the sequence
{fk} of iterates of f if there is a subsequence {fkj} of iterates converging (uni-
formly on compact subsets) to h; we shall denote by Γ (f) the set of all limit points
of {fk}. The target set T (f) of f is then defined as the union of the images of
limit points of the sequence of iterates:

T (f) =
⋃

h∈Γ (f)

h(D) .
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Definition 5 A sequence {fk} ⊂ C(X,Y ) of continuous maps between topologi-
cal spaces is compactly divergent if for each pair of compact subsets H ⊆ X and
K ⊆ Y there is k0 ∈ N such that fk(H) ∩K = ∅ for all k ≥ k0.

When D is a convex domain, the target set either is contained in D if f has a
fixed point or is contained in ∂D if f has no fixed points. More precisely, we have
the following statement (see [1,4,22,33,36,17]):

Theorem 4 Let D ⊂⊂ Cn be a bounded convex domain, and f :D → D a
kD-nonexpansive (e.g., holomorphic) self-map. Then the following assertions are
equivalent:

(i) f has a fixed point in D;

(ii) the sequence {fk} is not compactly divergent;

(iii) the sequence {fk} has no compactly divergent subsequences;

(iv) {fk(z)} is relatively compact in D for all z ∈ D;

(v) there exists z0 ∈ D such that {fk(z0)} is relatively compact in D;

(vi) there exists z0 ∈ D such that {fk(z0)} admits a subsequence relatively com-
pact in D.

Remark 2 For more general taut domains (and f holomorphic) the statements
(ii)–(vi) are still equivalent. For some classes of domains, these statements are
equivalent to f having a periodic point (see [4] and [31]); however, there exist
holomorphic self-maps of a taut topologically contractible smooth domain satisfy-
ing (ii)–(vi) but without fixed points (see [6]).

When the sequence of iterates of f is not compactly divergent (e.g., when f has
a fixed point if D is convex) then the target set of f has already been characterized
([11,1,5]). In particular, using Theorem 4 and repeating word by word the proof
of [3, Theorem 2.1.29] we obtain

Theorem 5 Let D ⊂⊂ Cn be a bounded convex domain, and f :D → D a kD-
nonexpansive (e.g., holomorphic) self-map of D. Assume that f has a fixed point
in D. Then T (f) is a kD-nonexpansive (respectively, holomorphic) retract of D.
More precisely, there exists a unique kD-nonexpansive (respectively, holomorphic)
retraction ρ:D → T (f) which is a limit point of {fk}, such that every limit point
of {fk} is of the form γ ◦ ρ, where γ:T (f)→ T (f) is a (biholomorphic) invertible
kD-isometry, and f |T (f) is a (biholomorphic) invertible kD-isometry.

In this paper we instead want to describe the target set of fixed points free
self-maps of bounded convex domains.

3 Strictly convex domains

Since Wolff’s proof of the Wolff-Denjoy theorem [43], horospheres have been the
main tool needed for the study of the dynamics of fixed points free holomorphic
self-maps. Let us recall the general definitions introduced in [1,3].
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Definition 6 Let D ⊂⊂ Cn be a bounded domain, z0 ∈ D, x ∈ ∂D and R > 0.
The small horosphere Ez0(x,R) and the big horosphere Fz0(x,R) of center x,
pole z0 and radius R are defined by

Ez0(x,R) =
{
z ∈ D

∣∣ lim sup
w→x

[
kD(z, w)− kD(z0, w)

]
< 1

2 logR
}
,

Fz0(x,R) =
{
z ∈ D

∣∣ lim inf
w→x

[
kD(z, w)− kD(z0, w)

]
< 1

2 logR
}
.

The following lemma contains some basic properties of horospheres, immediate
consequence of the definition and of Lemma 2:

Lemma 4 Let D ⊂⊂ Cn be a bounded domain, z0 ∈ D and x ∈ ∂D. Then:

(i) Ez0(x,R) ⊆ Fz0(x,R) for every R > 0;

(ii) Ez0(x,R1) ∩ D ⊆ Ez0(x,R2) and Fz0(x,R1) ∩ D ⊆ Fz0(x,R2) for every
0 < R1 < R2;

(iii) BD
(
z0,

1
2 logR

)
⊆ Ez0(x,R) for all R > 1, where BD(z0, r) denotes the

Kobayashi ball of center z0 and radius r;

(iv) Fz0(x,R) ∩BD
(
z0,−1

2 logR
)

= ∅ for all 0 < R < 1;

(v)
⋃
R>0

Ez0(x,R) =
⋃
R>0

Fz0(x,R) = D and
⋂
R>0

Ez0(x,R) =
⋂
R>0

Fz0(x,R) = ∅;

(vi) if moreover D is convex then Ez0(x,R) is convex for every R > 0.

Big horospheres are not always convex, even if D is convex; an example is given
by the horospheres in the polydisk (see Section 5). However, the first important
new result of this paper is that big horospheres in convex domains are always
star-shaped with respect to the center:

Lemma 5 Let D ⊂⊂ Cn be a bounded convex domain, z0 ∈ D, R > 0 and
x ∈ ∂D. Then we have [x, z] ⊂ Fz0(x,R) for all z ∈ Fz0(x,R). In particular, x
always belongs to Fz0(x,R).

Proof Given z ∈ Fz0(x,R), choose a sequence {xν} ⊂ D converging to x and
such that the limit of kD(z, xν)− kD(z0, xν) exists and is less than 1

2 logR. Given
0 < s < 1, let hsν :D → D be defined by

hsν(w) = sw + (1− s)xν

for every w ∈ D; then hsν(xν) = xν , and moreover

kD
(
hsν(z1), hsν(z2)

)
≤ kD(z1, z2)

for every z1, z2 ∈ D, because hsν is a holomorphic self-map of D. In particular,

lim sup
ν→+∞

[
kD
(
hsν(z), xν)− kD(z0, xν)

]
≤ lim
ν→+∞

[
kD(z, xν)− kD(z0, xν)

]
< 1

2 logR .

Furthermore we have∣∣kD(sz + (1− s)x, xν
)
− kD

(
hsν(z), xν

)∣∣ ≤ kD(sz + (1− s)xν , sz + (1− s)x
)
→ 0
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as ν → +∞. Therefore

lim inf
w→x

[
kD
(
sz + (1− s)x,w

)
− kD(z0, w)

]
≤ lim sup

ν→+∞

[
kD
(
sz + (1− s)x, xν

)
− kD(z0, xν)

]
≤ lim sup

ν→+∞

[
kD
(
hsν(z), xν

)
− kD(z0, xν)

]
+ lim
ν→+∞

[
kD
(
sz + (1− s)x, xν

)
− kD

(
hsν(z), xν

)]
< 1

2 logR ,

and thus sz + (1 − s)x ∈ Fz0(x,R). Letting s → 1 we get x ∈ Fz0(x,R), and we
have proved the assertion for z ∈ Fz0(x,R). If z ∈ ∂Fz0(x,R), it suffices to apply
the statement to a sequence in Fz0(x,R) approaching z. ut

One of the main points in the proof given in [1] of the Wolff-Denjoy theorem
for strongly convex C2 domains is the fact that in such domains the intersection
between the closure of a big horosphere and the boundary of the domain reduces
to the center of the horosphere. The following corollary will play the same rôle for
not necessarily smooth convex domains:

Corollary 1 Let D ⊂⊂ Cn be a bounded convex domain, z0 ∈ D, and x ∈ ∂D.
Then ⋂

R>0

Fz0(x,R) ⊆ ch(x) . (1)

In particular, if x is a strictly convex point then
⋂
R>0

Fz0(x,R) = {x}.

Proof First of all, Lemma 5 implies that the intersection in (1) is not empty,
and so, by Lemma 4, it is contained in ∂D. Take x̃ ∈

⋂
R>0 Fz0(x,R) different

from x. Then Lemma 5 implies that the whole segment [x, x̃] is contained in the
intersection, and thus in ∂D; hence x̃ ∈ ch(x), and we are done. ut

It is not known whether the equality in 1 always hold; in strictly convex do-
mains and in the polydisks (see Section 5) it does.

Let us turn now to the study of the target set. A first step in this direction is
the following:

Proposition 1 Let D ⊂⊂ Cn be a bounded convex domain. Then:

(i) for every connected complex manifold X and every holomorphic map h:X →
Cn such that h(X) ⊂ D and h(X) ∩ ∂D 6= ∅ we have

h(X) ⊆
⋂
x∈X

Ch
(
h(x)

)
⊆ ∂D .

In particular, if h is a limit point of the sequence of iterates of a holomorphic
self-map of D without fixed points we have

h(D) ⊆
⋂
z∈D

Ch
(
h(z)

)
.



Wolff-Denjoy theorems in non-smooth convex domains 9

(ii) Let f :D → D be a kD-nonexpansive self-map without fixed points, and h:D →
Cn a limit point of {fk}. Then

h(D) ⊆
⋂
z∈D

ch
(
h(z)

)
.

Proof (i) The fact that h(X) ⊆ ∂D is an immediate consequence of the maximum
principle (see, e.g., [8, Lemma 2.1]).

Let now L = h(x0) + kerσ be a complex supporting hyperplane at h(x0).
Then Re(σ ◦ h) ≤ Reσ

(
h(x0)

)
on X; therefore, by the maximum principle, σ ◦

h ≡ σ
(
h(x0)

)
, that is h(X) ⊂ L. Since this holds for all complex supporting

hyperplanes at h(x0) the assertion follows.
(ii) Let {fkj} be a subsequence of iterates converging to h. Since f has no fixed

points, we know by Theorem 4 that h(D) ⊆ ∂D. Furthermore

kD
(
fkj (z), fkj (w)

)
≤ kD(z, w) < +∞

for every z, w ∈ D; therefore Lemma 3 implies [h(z), h(w)] ⊂ ∂D, and the assertion
follows. ut

The disadvantage of these statements is that the right-hand side still depends
on the given limit point of the sequence of iterates; instead we would like to
determine a subset of the boundary containing the whole target set. This can be
accomplished as follows:

Lemma 6 Let D ⊂⊂ Cn be a bounded convex domain, and f :D → D a kD-
nonexpansive (respectively, holomorphic) self-map without fixed points. Assume
there exist ∅ 6= E ⊆ F ⊂ D such that fk(E) ⊂ F for all k ∈ N. Then we have

T (f) ⊆ ch
(
F ∩ ∂D

)
if f is kD-nonexpansive, or

T (f) ⊆ Ch
(
F ∩ ∂D

)
if f is holomorphic.

Proof Let h be a limit point of the sequence of iterates of f . Since f has no fixed
points, we know that h(D) ⊆ ∂D. Take z0 ∈ E; by assumption, the whole orbit
of z0 is contained in F . Therefore h(z0) ∈ F ∩ ∂D, and the assertion follows from
Proposition 1. ut

The Wolff lemma [1, Theorem 2.3], whose proof can easily be adapted to the
case of kD-nonexpansive maps, is exactly what we need to apply Lemma 6:

Lemma 7 Let D ⊂⊂ Cn be a convex domain, and let f :D → D be kD-nonexpan-
sive and without fixed points. Then there exists x ∈ ∂D such that for every z0 ∈ D,
R > 0 and k ∈ N we have

fk
(
Ez0(x,R)

)
⊆ Fz0(x,R) .
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We can now give a proof of the Wolff-Denjoy Theorem 2 for kD-nonexpansive
self-maps of strictly convex domains in the same spirit as the proof given in [1]
of the Wolff-Denjoy theorem for holomorphic self-maps of C2 strongly convex
domains, without requiring the machinery introduced in [18] and [20]:

Theorem 6 Let D ⊂⊂ Cn be a bounded strictly convex domain, and f :D → D
a kD-nonexpansive (e.g., holomorphic) self-map without fixed points. Then there
exists a x0 ∈ ∂D such that T (f) = {x0}, that is the sequence of iterates {fk}
converges to the constant map x0.

Proof Fix z0 ∈ D. Lemmas 7 and 6 give x0 ∈ ∂D such that

T (f) ⊆
⋂
R>0

ch
(
Fz0(x0, R) ∩ ∂D

)
.

But D is strictly convex; therefore ch
(
Fz0(x0, R) ∩ ∂D

)
= Fz0(x0, R) ∩ ∂D, and

the assertion follows from Corollary 1. ut

In [2] the first author characterized converging one-parameter semigroups of
holomorphic self-maps of smooth strongly convex domains. Theorem 6 allows us
to extend that characterization to not necessarily smooth strictly convex domains:

Corollary 2 Let D ⊂⊂ Cn be a bounded strictly convex domain, and Φ:R+ →
Hol(D,D) a one-parameter semigroup of holomorphic self-maps of D. Then Φ
converges if and only if

(i) either Φ has a fixed point z0 ∈ D and the spectral generator at z0 of Φ has no
nonzero purely imaginary eigenvalues, or

(ii) Φ has no fixed points.

Proof It follows arguing as in [2, Theorem 1.3], using Theorem 6 instead of the
references to [1]. ut

4 Weakly convex domains

As mentioned in the introduction, this approach works too when D is convex but
not strictly convex. Let f :D → D be a kD-nonexpansive or holomorphic self-map,
without fixed points. Simply applying the same argument used to prove Theorem 6
one obtains

T (f) ⊆
⋂
R>0

ch
(
Fz0(x0, R) ∩ ∂D

)
in the kD-nonexpansive case, and

T (f) ⊆
⋂
R>0

Ch
(
Fz0(x0, R) ∩ ∂D

)
(2)

in the holomorphic case (and it is easy to see that these intersections do not
depend on z0 ∈ D). This already can be used to strengthen the Wolff-Denjoy
theorem obtained in [3, Theorem 2.4.27] for weakly convex C2 domains. Indeed,
we can prove the following:
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Proposition 2 Let D ⊂⊂ Cn be a C2 bounded convex domain, and x ∈ ∂D.
Then for every z0 ∈ D and R > 0 we have

Fz0(x,R) ∩ ∂D ⊆ Ch(x) .

In particular, if x is a strictly C-linearly convex point then Fz0(x,R)∩ ∂D = {x}.

Proof For every x ∈ ∂D let nx denote the unit outer normal vector to ∂D in x,
and put σx(z) = (z,nx), where (· , ·) is the canonical Hermitian product. Then σx
is a complex supporting functional at x such that σx(y) = σx(x) for some y ∈ ∂D
if and only if y ∈ Ch(x).

We can now argue as in the proof of [3, Proposition 2.4.26] replacing the
P -function Ψ : ∂D × Cn → C given by Ψ(x, z) = exp

(
σx(z) − σx(x)

)
, with the

P -function Ψ̂ : ∂D × Cn → C given by

Ψ̂(x, z) =
1

1−
(
σx(z)− σx(x)

) .
ut

Corollary 3 Let D ⊂⊂ Cn be a C2 bounded convex domain, and f :D → D a
holomorphic self-map without fixed points. Then there exists x0 ∈ ∂D such that
T (f) ⊆ Ch(x0). In particular, if D is strictly C-linearly convex then the sequence
of iterates {fk} converges to the constant map x0.

Proof It follows from (2), Proposition 2, and the fact that in C2 convex domains
each point in the boundary admits a unique complex supporting hyperplane. ut

Remark 3 We conjecture that the final assertion of this corollary should also hold
for not necessarily smooth strictly C-linearly convex domains.

In weakly convex non-smooth domains big horospheres might be too large, and
the right-hand side of (2) might coincide with the whole boundary of the domain
(see Section 5 for an example in the polydisk); so to get an effective statement we
need to replace them with smaller sets.

Small horospheres might be too small; as shown by Frosini [26], there are
holomorphic self-maps of the polydisk with no invariant small horospheres. We
thus need another kind of horospheres, defined by Kapeluszny, Kuczumow and
Reich [34], and studied in detail by Budzyńska [18]. To introduce them we begin
with a definition:

Definition 7 Let D ⊂⊂ Cn be a bounded domain, and z0 ∈ D. A sequence
x = {xν} ⊂ D converging to x ∈ ∂D is a horosphere sequence at x if the limit of
kD(z, xν)− kD(z0, xν) as ν → +∞ exists for all z ∈ D.

Remark 4 It is easy to see that the notion of horosphere sequence does not depend
on the point z0.

Remark 5 In [20] it is shown that every sequence in D converging to x ∈ ∂D
contains a subsequence which is a horosphere sequence at x. In strongly convex
C3 domains all sequences converging to a boundary point are horosphere sequences
(see [3, Theorem 2.6.47] and [16]); in Section 5 we shall give an explicit example
of horosphere sequence in the polydisk.
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Definition 8 Let D ⊂⊂ Cn be a bounded convex domain. Given z0 ∈ D, let
x = {xν} be a horosphere sequence at x ∈ ∂D, and take R > 0. Then the
sequence horosphere Gz0(x,R,x) is defined as

Gz0(x,R,x) =
{
z ∈ D

∣∣ lim
ν→+∞

[
kD(z, xν)− kD(z0, xν)

]
< 1

2 logR
}
.

Remark 6 Actually, as mentioned in [3, p. 280], sequence horospheres are a par-
ticular instance of a general notion of horospheres valid in locally complete metric
spaces; see, e.g., [24] and [9] for more details. In the latter book it is also proved
that in a complete Riemannian manifold of nonpositive curvature this very general
notion of horosphere coincides with the horospheres defined by taking sequences
contained in a geodesic escaping to infinity. In the setting of complex geometry,
horospheres defined by using (complex) geodesics are sometimes called Busemann
horospheres, and have been used in [42], [15] and [27].

The basic properties of sequence horospheres are contained in the following:

Proposition 3 ([34,18,20]) Let D ⊂⊂ Cn be a bounded convex domain. Fix
z0 ∈ D, and let x = {xν} ⊂ D be a horosphere sequence at x ∈ ∂D. Then:

(i) Ez0(x,R) ⊆ Gz0(x,R,x) ⊆ Fz0(x,R) for all R > 0;

(ii) Gz0(x,R,x) is nonempty and convex for all R > 0;

(iii) Gz0(x,R1,x) ∩D ⊂ Gz0(x,R2,x) for all 0 < R1 < R2;

(iv) BD(z0,
1
2 logR) ⊂ Gz0(x,R,x) for all R > 1;

(v) BD(z0,−1
2 logR) ∩Gz0(x,R,x) = ∅ for all 0 < R < 1;

(vi)
⋃
R>0

Gz0(x,R,x) = D and
⋂
R>0

Gz0(x,R,x) = ∅.

Remark 7 If x is a horosphere sequence at x ∈ ∂D then it is not difficult to check
that the family {Gz(x, 1,x)}z∈D and the family {Gz0(x,R,x)}R>0, with z0 ∈ D
given, coincide.

It turns out that we can always find invariant sequence horospheres:

Lemma 8 Let D ⊂⊂ Cn be a convex domain, and let f :D → D be kD-nonexpan-
sive and without fixed points. Then there exists x ∈ ∂D and a horosphere sequence
x at x such that

f
(
Gz0(x,R,x)

)
⊆ Gz0(x,R,x)

for every z0 ∈ D and R > 0.

Proof Arguing as in the proof of [1, Theorem 2.3] we can find a sequence {fν}
of kD-contractions with a unique fixed point xν ∈ D such that fν → f and
xν → x ∈ ∂D as ν → +∞. Up to a subsequence, we can also assume (Remark 5)
that x = {xν} is a horosphere sequence at x.

Now, for every z ∈ D we have∣∣kD(f(z), xν
)
− kD

(
fν(z), xν

)∣∣ ≤ kD(fν(z), f(z)
)
→ 0
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as ν → +∞. Therefore if z ∈ Gz0(x,R,x) we get

lim
ν→+∞

[
kD
(
f(z), xν

)
− kD(z0, xν)

]
≤ lim sup

ν→+∞

[
kD
(
fν(z), xν

)
− kD(z0, xν)

]
+ lim sup
ν→+∞

[
kD
(
f(z), xν

)
− kD

(
fν(z), xν

)]
≤ lim
ν→+∞

[
kD(z, xν)− kD(z0, xν)

]
< 1

2 logR

because fν(xν) = xν for all ν ∈ N, and we are done. ut

Putting everything together we can at last prove the following Wolff-Denjoy
theorem for (not necessarily strictly or smooth) convex domains:

Theorem 7 Let D ⊂⊂ Cn be a bounded convex domain, and f :D → D a kD-
nonexpansive (respectively, holomorphic) self-map without fixed points. Then there
exist x ∈ ∂D and a horosphere sequence x at x such that for any z0 ∈ D we have

T (f) ⊆
⋂
z∈D

ch
(
Gz(x, 1,x) ∩ ∂D

)
=
⋂
R>0

ch
(
Gz0(x,R,x) ∩ ∂D

)
if f is kD-nonexpansive, or

T (f) ⊆
⋂
z∈D

Ch
(
Gz(x, 1,x) ∩ ∂D

)
=
⋂
R>0

Ch
(
Gz0(x,R,x) ∩ ∂D

)
if f is holomorphic.

Proof The equality of the intersections is an immediate consequence of Remark 7.
Then the assertion follows from Lemmas 8 and 6. ut

In the next section we shall show how this statement is essentially optimal in
the polydisk; we end this section by stating a corollary valid for strictly C-linearly
convex domains:

Corollary 4 Let D ⊂⊂ Cn be a bounded strictly C-linearly convex domain, and
f :D → D a holomorphic self-map of D without fixed points. Then there exist
x ∈ ∂D and a horosphere sequence x at x such that for any z0 ∈ D we have

T (f) ⊆
⋂
z∈D

Gz(x, 1,x) =
⋂
R>0

Gz0(x,R,x) .

Proof It follows immediately from Theorem 7 and the definition of strictly C-
linearly convex domain. ut
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5 The polydisk

The polydisk ∆n ⊂ Cn is the unit ball for the norm ‖z‖ = max{|zj | | j = 1, . . . , n},
and therefore (see, e.g., [3])

k∆n(z, w) =
1

2
log

1 + ‖γz(w)‖
1− ‖γz(w)‖

for every z, w ∈ ∆n, where

γz(w) =

(
w1 − z1
1− z1w1

, . . . ,
wn − zn
1− znwn

)
is an automorphism of the polydisk with γz(z) = 0.

Thanks to the homogeneity of ∆n, we can restrict ourselves to consider only
horospheres with pole z0 at the origin, and we have (see [3, chapter 2.4.2] for
detailed computations) the following description for horospheres with center ξ ∈
∂∆n and radius R > 0:

EO(ξ,R) =

{
z ∈ ∆n

∣∣∣∣ max
|ξj |=1

{
|ξj − zj |2

1− |zj |2

}
< R

}
and

FO(ξ,R) =

{
z ∈ ∆n

∣∣∣∣ min
|ξj |=1

{
|ξj − zj |2

1− |zj |2

}
< R

}
.

On the other hand, given ξ ∈ ∂∆n, a not difficult computation shows that

ch(ξ) =
⋃

|ξj |=1

{η ∈ ∂∆n | ηj = ξj} and Ch(ξ) =
⋂

|ξj |=1

{η ∈ ∂∆n | ηj = ξj} .

This implies that in the polydisk big horospheres are too large to give a sensible
Wolff-Denjoy theorem. Indeed we have

ch
(
FO(ξ,R) ∩ ∂∆n

)
= Ch

(
FO(ξ,R) ∩ ∂∆n

)
= ∂∆n

as soon as ξ has at least two components of modulus 1, and

ch
(
FO(ξ,R) ∩ ∂∆n

)
= Ch

(
FO(ξ,R) ∩ ∂∆n

)
= ∂∆n \ {η ∈ ∂∆n | ηj0 6= ξj0 , |ηj | < 1 for j 6= j0}

if |ξj0 | = 1 and |ξj | < 1 for j 6= j0.
Let us then compute the sequence horospheres. Fix a horosphere sequence

x = {xν} converging to ξ ∈ ∂∆n. Arguing as in [3, chapter 2.4.2], we get

GO(ξ, R, x)

=

{
z ∈ ∆n

∣∣∣∣ max
|ξj |=1

{
|ξj − zj |2

1− |zj |2
lim

ν→+∞
min
h

{
1− |xν,h|2

1− |xν,j |2

}}
< R

}
.

Since if |ξj | = 1 we clearly have

αj := lim
ν→+∞

min
h

{
1− |xν,h|2

1− |xν,j |2

}
≤ 1 ,
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we get

GO(ξ,R,x) =

{
z ∈ ∆n

∣∣∣∣ max
j

{
αj
|ξj − zj |2

1− |zj |2

∣∣∣∣ |ξj | = 1

}
< R

}
.

In other words, we can write GO(ξ,R,x) as a product

GO(ξ,R,x) =
n∏
j=1

Ej ,

where, denoting by E∆(σ,R) ⊂ ∆ the standard horocycle of center σ ∈ ∂∆, pole
the origin and radius R > 0, we have put

Ej =

{
∆ if |ξj | < 1,

E∆(ξj , R/αj) if |ξj | = 1.

As a consequence,

ch
(
GO(ξ,R,x)∩∂∆n

)
= Ch

(
GO(ξ,R,x)∩∂∆n

)
=

n⋃
j=1

∆×· · ·×Cj(ξ)×· · ·×∆ ,

where

Cj(ξ) =

{
{ξj} if |ξj | = 1,
∂∆ if |ξj | < 1.

Notice that the right-hand sides do not depend either on R or on the horosphere
sequence x, but only on ξ.

So Theorem 7 in the polydisk assumes the following form:

Corollary 5 Let f :∆n → ∆n be a k∆n-nonexpansive (e.g., holomorphic) self-
map without fixed points. Then there exists ξ ∈ ∂∆n such that

T (f) ⊆
n⋃
j=1

∆× · · · × Cj(ξ)× · · · ×∆ , (3)

where

Cj(ξ) =

{
{ξj} if |ξj | = 1,
∂∆ if |ξj | < 1.

This is the best one can do, in the sense that while it might be true (for instance
in the bidisk; see below) that the image of a limit point of the sequence of iterates
of f is always contained in just one of the sets appearing in the right-hand side
of (3), it is impossible to determine a priori in which one it is contained on the
basis of the point ξ only; it is necessary to know something more about the map f .
Indeed, Hervé has proved the following:

Theorem 8 ([29]) Let F = (f, g):∆2 → ∆2 be a holomorphic self-map of the
bidisk, and write fw = f(·, w) and gz = g(z, ·). Assume that F has no fixed points
in ∆2. Then one and only one of the following cases occurs:

(i) if g(z, w) ≡ w (respectively, f(z, w) ≡ z) then the sequence of iterates of F
converges uniformly on compact sets to h(z, w) = (σ,w), where σ is the com-
mon Wolff point of the fw’s (respectively, to h(z, w) = (z, τ), where τ is the
common Wolff point of the gz’s);
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(ii) if Fix(fw) = ∅ for all w ∈ ∆ and Fix(gz) = {y(z)} ⊂ ∆ for all z ∈ ∆
(respectively, if Fix(fw) = {x(w)} and Fix(gz) = ∅) then T (f) ⊆ {σ} × ∆,
where σ ∈ ∂∆ is the common Wolff point of the fw’s (respectively, T (f) ⊆
∆× {τ}, where τ is the common Wolff point of the gz’s);

(iii) if Fix(fw) = ∅ for all w ∈ ∆ and Fix(gz) = ∅ for all z ∈ ∆ then either
T (f) ⊆ {σ} × ∆ or T (f) ⊆ ∆ × {τ}, where σ ∈ ∂∆ is the common Wolff
point of the fw’s, and τ ∈ ∂∆ is the common Wolff point of the gz;

(iv) if Fix(fw) = {x(w)} ⊂ ∆ for all w ∈ ∆ and Fix(gz) = {y(z)} ⊂ ∆ for all
z ∈ ∆ then there are σ, τ ∈ ∂D such that the sequence of iterates converges
to the constant map (σ, τ).

All four cases can occur: see [29].
We end this paper providing, as promised, an example of horosphere sequence.

Given ξ ∈ ∂∆n, put xν = (1 − 1/ν)1/2ξ; we claim that x = {xν} is a horosphere
sequence. Indeed, arguing as in [3, chapter 2.4.2] we see it suffices to show that

max
|ξj |=1

{
min
h

{
1− |xν,h|2

1− |xν,j |2

}
|1− zjxν,j |2

1− |zj |2

}
converges as ν → +∞. But indeed with this choice of xν we have

max
|ξj |=1

{
min
h

{
1− |xν,h|2

1− |xν,j |2

}
|1− zjxν,j |2

1− |zj |2

}
= max

|ξj |=1

{
min
h

{
ν(1− |ξh|2) + |ξh|2

} |1− zjxν,j |2
1− |zj |2

}
= max

|ξj |=1

{
|1− zjxν,j |2

1− |zj |2

}
→ max

|ξj |=1

{
|ξj − zj |2

1− |zj |2

}
.

In particular, using this horosphere sequence one obtains GO(ξ,R,x) = EO(ξ,R).
Finally, it is worth mentioning that in [27] Frosini, using Hervé’s Theorem 8,

has established in the bidisk which points x ∈ ∂∆2 admit f -invariant (sequence or
Busemann) horospheres, i.e., horopsheres satisfying the statement of Lemma 8.
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21. Budzyńska, M., Kuczumow, T., S lodkowski, T.: Total sets and semicontinuity of the

Kobayashi distance. Nonlinear Anal. 47, 2793–2803 (2001)
22. Ca lka, A.: On conditions under which isometries have bounded orbits. Colloq. Math. 48,

219–227 (1984)
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29. Hervé, M.: Itération des transformations analytiques dans le bicercle-unité. Ann. Sci. Éc.
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