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Abstract—This paper introduces and illustrates some novel
stochastic policies that assign parking spaces to cars looking for
an available parking space. We analyse in detail both the main
features of a single park, i.e., how a car could conveniently decide
whether to try its luck at that parking lot or try elsewhere, and
also the case when more parking lots are available, and how
to choose the best one. We discuss the practical requirements of
the proposed strategies in terms of infrastructure technology and
vehicles’ equipment and the mathematical properties of the pro-
posed algorithms in terms of robustness against delays, stability
and reliability. Preliminary results obtained from simulations are
also provided to illustrate the feasibility and the potential of our
stochastic assignment policies.

I. INTRODUCTION

Finding a parking space in a densely populated area
is a non-trivial challenge. Furthermore the unavailability
of instantaneous parking causes significant damages, both
economically and environmentally. People cruising for
parking waste not only their own time, which they could
spend working or for leisure, but also consume road capacity,
burn fuel, and produce toxic emissions, thus contributing
significantly to congestion, greenhouse gas emissions and
pollution. It was recently reported that over one year in a
small Los Angeles business district, cars cruising for parking
burned 47,000 gallons of gasoline and produced 730 tons of
carbon dioxide [14f]. Further, the consulting firm McKinsey
recently claimed that the average car owner in Paris spends
four years of his life searching for parking spaces [4].

The parking assignment problem associated with electric
vehicles becomes even more acute. Due to the limited range
of these vehicles, the marginal cost of expending energy to
search for spaces may, in some cities, be prohibitively high.
Thus there is a real and compelling societal and economic need
for parking guidance systems, and this need has given rise not
only to interesting research questions, but also commercial
opportunities of great potential. Indeed, already major compa-
nies are responding to these opportunities. Examples of com-
mercial initiatives in this area include: SFPark (sfpark.org),
parkatmyhouse.com, and BMWi (bmw-i.com), all of which
are investing heavily in parking research and products within
a smart cities context. In parallel, many researchers are also
working on this topic.

II. OVERVIEW OF PRIOR WORK

Within the research community, the topic of parking has
already attracted considerable interest.

Several authors, most notably [[13] but also [2], [L], argue
that the availability of free, or too cheap curb side parking
spaces, incentivises drivers to cruise for a long time instead
of using available off-street parking facilities for a fee. This
has a negative impact on parking space availability, parking
fee revenue, the time spent cruising for a parking space, as
well as pollution levels and congestion. These works try to
determine optimal pricing schemes that drive the system to
an economically optimal state. Related work in this direction
includes SFpark in which pricing mechanisms are used to
regulate the number of free spaces in a given area at a certain
level (for emergency situations), and [15] which focuses on
understanding and modeling the behavioural side of parking.
Note that this latter paper includes an extensive review in the
area of parking.

A completely different approach is advocated in [6].
Here the parking problem is viewed as a dynamic resource
allocation problem. Similarities to problems in communication
networks are drawn, for which a host of tools and methods
have been developed over the last decades. [6] proposes an
online reservation system, where cars communicate their
parking requirements and are assigned a parking space,
which is then reserved and cannot be used by any other
vehicle. A similar approach is proposed in [L16], albeit with
a different assignment routine, that allows the user to book
a parking space in advance, and also allows the user to
choose a price that he is willing to pay. The main focus of
this paper is revenue maximisation, but it is also claimed
that by finding the right number of different price segments
and the correct prices, it is possible to achieve other goals,
such as reducing traffic levels or ensuring some sorts of
fairness between drivers from different social classes. It is
also concluded that the optimal assignment strategy depends
on the vehicle arrival process. It should be noted that [6]]
and [16] both require massive amounts of hardware to be
distributed both to cars and car-parks, and potentially even to
each parking space. Also compliance of all drivers with their
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scheme or a reliable and fast way of reservation enforcement
is needed. This renders their solutions not viable at the
present time. However, even without these problems, realising
such a reservation system seems challenging. For example,
determining the availability of a particular parking space is
error prone, see [9]. Predicting a parking space’s availability
at the time that the customer arrives is even harder. On
top of this it would be necessary to equip all cars and all
car-parks with communication devices. Although equipping
car-parks is certainly feasible, doing the same for cars will
take a significant financial investment and perhaps regulatory
impulses.

A more promising and technologically viable approach to
improve parking has been proposed in [3]] and further studied
in [10]. The authors develop an approach in which car-parks
are able to count the number of arriving and departing cars
as well as the instantaneous occupancy, and communicate
these numbers to participating cars. Cars in turn only have
to be able to listen to broadcasts from the car-parks and
are not required to communicate in the reverse direction.
Their work yields an important technique, that allows cars to
predict the likelihood of a parking space being available at the
estimated time that the car will arrive there. This work uses
ideas from queueing theory to predict the occupancy upon
arrival, with car-parks being modelled as single server queues
with a Poisson arrival process and exponentially distributed
service times. It should be mentioned that this significant
reduction in requirements by using a stochastic approach
comes at the cost of certainty for the customers. The lack
of a reservation system makes it possible that customers
arrive to a fully occupied car-park. The main drawback of
their approach is however, that ultimately the customers will
want to use the information to make a decision whether to
try their luck and drive to the car-park or to go somewhere
else. Accordingly, there is feedback embedded in the system
which needs to be taken into consideration; namely when
drivers choose to drive to a car-park based on the predictions
made, they then affect the arrival process - rendering the
model and predictions no-longer valid. This feedback has
been completely ignored by the authors. One of the goals
of this paper is to investigate the effect of this feedback on
the car-park occupancy prediction problem. In particular we
aim at using ideas that have been employed in the context of
urban pollution control to improve parking, see [12] for details.

III. MATHEMATICAL ASPECTS IN PARKING

Parking gives rise to a number of quite distinct mathematical
problems, depending upon the perspective from which the
problem is approached, the type of search being addressed,
and the amount of infrastructure available to help find/allocate
parking spaces.

(1) First, associated with each vehicle wishing to find a
parking space are two basic costs. The first is the cost

to the driver of searching for a parking space, while
the second is the cost to the city of that same driver
searching for a parking space. The first is usually a
quality of service (QoS) issue based on, for example, the
expected search time or the expected fuel consumption
while looking for a space. The second cost could be
based on emissions or pollutants being generated by the
searching vehicle. Thus, while prioritising an electric
vehicle over a large ICE based vehicle in assigning a
parking space may make perfect sense in the context
of rewarding responsible vehicle choices, it may be
precisely the wrong assignment from the point of view
of the municipality. Conflicts of this nature give rise to
a number of questions with a game theoretic flavour in
the parking space context.
(i) Second, typically drivers may search for two distinct
kinds of parking spaces. They may either choose to look
for a space in a car-park, or they may search for on-street
parking. The first gives rise to prediction type problems,
where the driver, based on information concerning
current occupancy (perhaps from a street information
system), makes a decision based on the likelihood of
a place being available when his/her vehicle arrives at
the car-park. Problems of this kind are known to give
rise to flapping (where two or more parking facilities
take turns in being full and under-utilised) and highly
localised congestion and pollution peaks [6] due to the
fact that the majority of drivers are known to choose
the car-park with the most available free spaces [6].
The second problem is a probabilistic routing problem.
Drivers compete for spaces by following random routes
chosen to maximise the expectation of finding a free
parking space.
(iii) Third, one may categorise the parking problem according
to the level of dedicated infrastructure that exists in
support of the assignment problem. In some situations all
vehicles and spaces may be instrumented, and in other
situations we may only be able to place a probability
on space availability. The first type of problem gives
rise to optimisation based reservation systems where
vehicles are assigned spaces based on optimality criteria.
As we have already mentioned, problems of this kind
are massively large scale, and give rise to certain
inefficiencies. The second type of problem, typically
arising in situations where drivers have access to the
same information, gives rise to complex dynamic systems
in which delays between drivers making a decision to
opt for a car-park (parking space), and actually arriving
at the location, leads to complications.

In this paper we consider the problem of guiding cars to
a set of car-parks in a way that avoids localised congestion
and pollution peaks. To solve this problem we assume



instrumented car-parks (i.e. car-parks can estimate arrival and
departure rates), and that this information can be broadcasted
to vehicles. We do not assume that vehicles communicate
directly with car-parks in order to make a reservation; rather
vehicles must estimate the availability of a parking place
based on the broadcasted information. Thus, the problem
considered in this paper incorporates aspects of items (ii)
and (iii) above.

Specifically, our objective in this paper is to consider the
problem of assigning searching vehicles to car-parks where
car-parks may broadcast to groups of searching vehicles, but
where there is no direct communication from vehicles to the
car-parks. In particular, we are interested in situations where
broadcast information can be processed on-board (in GPS
units for example) the vehicles to enable drivers to make
decisions as to where to park. Thus, we have a problem
where the effect of delays is present, and where the quality
of service metric is the probability of cars arriving to the
car-park when no spaces are available. In this context we
shall consider two specific problems.

Problem 1: Single Car-Park

First, we shall consider the problem of a single car-park,
where a vehicle makes a choice to go to a car-park based
on occupancy, i.e. the number of vehicles currently parked
in the car-park, and then travels to this location, arriving
some time later. This is a problem in the same vein as
that studied by [I0]. Our main contribution in this context
is that we shall rigorously take into account the fact that
the arrival process at the car-park and the decision of the
individual drivers are coupled. In order to study the effect of
this feedback on the occupancy prediction problem, we use a
mix of queueing theory and ideas from the control theoretic
study of communication networks. Our basic modelling
assumption in solving this problem is that customers query
the occupancy of a car park and decide whether to proceed
to that car-park based on this information. In particular
we assume that their willingness to proceed to the car-park
is a non-increasing function of the occupancy at the time
of their query. This assumption allows us to borrow ideas
from the networking community to solve this problem. In
particular, we adopt the Random Early Detection (RED)
active queue management algorithm [5] to represent the
customers’ behaviom{ﬂ Note that, the literature suggests
that human behaviour with respect to travel mode choice
and parking space choice is very complicated, see [15] and
the references therein. However in a simple scenario with
only one car-park, it is intuitively clear that an adaptive
pricing scheme for the car-park will achieve any desired
level of occupancy. We believe that the proposed price

! Alternatively this can be seen as a dynamic pricing scheme within the car-
park, where the price to use the car-park is a non-decreasing function of the
occupancy and cars make a decision to use a car-park based on the available
price information. Different customers then may be willing to pay different
parking fees to obtain a parking space.

function is efficient and is also a good approximation of the
willingness of people to risk going to the car-park. As we
shall see, the use of a RED-like algorithm is very effective in
this context. An important mathematical contribution of our
work is that take into account the effect of delays due to travel.

Problem 2: Multiple Car-Parks

The second problem that we shall study considers multiple
car-parks. Our goal now is to avoid localised congestion
and to balance searching vehicles amongst a number of
car-parks so that occupancy is balanced. Algorithms of this
nature were proposed in [7l], [8] in the context of electric
vehicles and balanced charging. We assume again that
customers are informed of the occupancy of each car-park
and choose which car-park to go to on the basis of this
information. Our contribution here is to extend the literature
on the charging framework to the parking case, and to
give mathematical proofs that demonstrate convergence of
our algorithms and “flapping free” behaviour. Note that by
developing a decentralised solution for this problem one
arrives at a situation, where car-parks can join and leave
the system at will; namely we obtain a plug-and-play type
solution that does not require any centralised infrastructure.

Thus, our main contributions in this paper are the following

1) We take feedback into account in the prediction of

parking space availability in a single car-park.

2) In this context, we present an analysis to quantify

stability issues that arise as a result of this feedback.

3) We then extend our approach to several car parks.

Specifically, we propose a load balancing algorithm to
balance demand across several car parks.

4) We then realise the balancing solution in a completely

decentralised fashion.

This paper is organised as follows. In Section we give
details on our approach in the single car-park scenario and
provide analytic tools to determine its reliability. In Section [V]
we extend our approach to a scenario with several car-parks
and give a detailed analysis of the systems stability behaviour.
A number of supporting and motivating simulations is given
in Section In Section we discuss commercial oppor-
tunities of our work and conclude the paper in Section [VIII]

IV. SINGLE CAR-PARK MODEL

We now describe problem 1. We consider a single car-park
under the following assumptions.

o We assume that this car-park is instrumented so that its
occupancy can be estimated.

o We assume that this information can be broadcasted to
potential customers on a continuous basis.

o We assume that cars arrive and depart to/from the car-
park according to two Poisson processes.

The Poisson arrival processes throughout the paper. The use

of Poisson processes to model bursty traffic is well established.



Furthermore, the memory-less property of these processes
eases analysis in our case. Recall that a process is described
by a distribution that describes inter-arrival probabilities. In
particular, if the expected time between two arrivals is z > 0
then the variance of this random time is x2.

Objective : Our objective here is to develop algorithms
which allow vehicle owners to make informed decisions
as to whether a car parking space will be available at the
car-park or not. Note, in this context the above assumptions
are standard, see for example [3] and [10]. An important
contribution of our work is that our approach takes into
account the feedback between the decision making process of
the driver and the arrival process at the car-park. Note also
that previous studies on this topic have neglected the inherent
feedback loop between the arrival and decision processes,
thereby rendering results in those papers less useful than the
results presented here [[10].

The critical element in our modelling task is to determine
the likelihood that a driver, upon receiving occupancy infor-
mation from the car-park, will make the choice to travel to
the car-park. We model this in a stochastic framework with
a probability of travelling to the car-park that depends on the
occupancy of the car-park at that time. As already mentioned,
we assume that a reasonable way for people to make decisions
of this nature is to drive to the car-park with a probability
that is higher when the occupancy of that car-park is lower.
Thus, given these facts, it seems reasonable to suggest the
algorithm given in Algorithm for making a decision as to
whether or not to go to the car-park. This algorithm is based
on RED [35] from internet congestion control. In RED a pricing
signal is used to control queue occupancy; in our context, a
probabilistic pricing signal is used to make suggestions based
on car-park occupancy. The probability function used to define
this algorithm is shown in Figure[I} Note, that the drivers will
go to the car-park with probability 1 when the occupancy is
low and will not go there when the occupancy is high. Note
also, that this algorithm can be easily implemented using GPS
devices or smart phones.
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Fig. 1: The probability of proceeding to the car-park using the
RED-approach.

Algorithm IV.1: SINGLE CAR-PARK()

comment: Executed by newly arriving car

N < occupancy of car-park

17 it N < Nmi'ru
D= 0’ it N > Nmawa
Nmaz—N .
Pmaz§, N otherwise,

do Go to car-park with probability p.

In Algorithm [IV.I] we use the parameters 0 < P < 1,
and Noin, Nopaz € N with Npin < Npae < C, where C
is the total capacity of the car-park. The occupancy of the
car-park is broadcasted to all participating cars and will be
updated in regular time intervals.

A. Model I: Case of homogeneous delays

If car ¢ decides to go to the car-park, then we assume
this takes a time 7; (which can be expressed for example in
seconds). In this section, to begin the analysis, we assume that
7, = 7 is the same for all vehicles. For example we might
assume that vehicles make a decision at a certain distance
(measured in km, energy, or time depending on vehicle type)
from the car-park. We now set the time between updates of
the broadcasted occupancy information to be equal to 7. This
yields discrete time steps k = 0,1,..., where the k’th time
interval is [k7, (k 4 1)7]. We further assume that a car which
arrives to the car-park during a period when there are no
free parking spaces will wait outside the car-park until space
becomes available. Denote by N (k) the number of cars parked
in the car-park plus the number of cars waiting for a parking
space at time k7. The evolution of N (k) can be described as
a difference equation of the form

N(k+1) = N(k) + A(k) — D(k), (D

where A(k) is the number of cars that arrive to the car-park
during the interval [k7, (k + 1)7] and D(k) is the number of
cars leaving from the car-park in that same interval. D(k)
takes values in 0, 1,..., N(k) and we model it as a random
variable with distribution depending on N (k). In particular we
assume that cars stay parked for a random time described by
an exponentially distributed random variable with fixed rate
1 > 0. Note in particular that this assumption ensures that the
evolution of the random variable is independent of all other
cars and the occupancy process of the car-park. Finally, if we
assume that cars stay, on average, much longer than the time
between broadcasts, i.e. 7 < 1, then the departure process,
D(k), changes slowly enough, so that we can approximate it
as following a Poisson process that terminates once N (k) car
have left. Further this Poisson process has rate uG(N(k)),
where G(N(k)) = min{N(k),C}, where C is the car-park



capacity. Accordingly, the distribution of D(k) is described by

P(D(k) = tN (k) = n) = e~ Goonur (GO o)

t!
foralln e Nand all t =0,1,...,G(n) — 1 and
P(D(k) = G(n)|N(k) = G(n)) 3)
i efG(n)p,T (G(n)'/j"r)t
t=G(n) &
G(n)—1 ¢
| o~Gln)ur (G()ur)"
=1-e¢ B Z i .
t=0
As 17, = 7 we know that all cars which arrive to the

car-park in [k7,(k + 1)7] must have made the decision in
the time interval [(k — 1)7, k7]. It is important to note now
that the arrival process of cars at the car-park is no longer
a homogeneous Poisson process. It is however piecewise
homogeneous, i.e. for all £ > 1 the arrival process of cars
to the car-park in the interval [k7, (k + 1)7] is homogeneous
with rate p(N(k — 1))~. ~ is the rate at which cars query
the car-park occupancy in order to make a decision, and
p: N — [0,1] is the probability function that was introduced
in Algorithm Clearly, the rate at which cars arrive at the
car-park will be smaller than ~ if some of the cars decide not
to go to the car-park.

The system that we have described clearly allows for the
undesirable situation where customers arrive to a full car-park
and have to wait to gain entrance or leave to find parking
at a different location. The following theorems guide the
choice of algorithm parameters to ensure that this undesirable
situation is a rare event.

To this end let U(k) be the number of customers waiting
outside the car park at the end of the interval [k, (k + 1)7].
U(k) can be described by

U(k) = max{N (k) + A(k) — D(k) —

We can now describe the probability of U (k) being positive.
Note that if U(k) is positive then N(k + 1) > C > Npqz-
According to Algorithm all cars making a decision after
time (k + 1)7 will decide not to drive to the car-park until
such time that the occupancy has dropped below N, ;-

C,0}. “4)

Theorem 1: Given N(k — 1) =m and N(k) = n for some
n,m € N the probability that the number of customers
waiting at time (k + 1)7 is positive is given by

c 1
lz: e —yp(m)T pr(l' ) ) (5)
=0
G(n)—1 C
+ e~ Gur (G(n)pr)" Z e~ Pm)T (yp(m)r )’
| |
t=0 t I=C—G(n)+t+1 i

Proof:
The theorem gives the probability that U (k) is positive given
the values of N (k) and N(k — 1). As U(k) is a non-negative
random variable

PU(k)>O0|N(k—1)=m,N(k) =n)
=1-PU(k)=0|N(k—-1)=m,N(k) =n). (6)
For fixed £ € N the number of vehicles that arrive to the
car-park, A(k), is described by a Poisson process with rate
vp(N(k — 1)). Note that A(k) and D(k) are independent

conditioned on N (k — 1) and N (k). Let us use the following

shorthand notation
Pyo=PUk) = 0|N(k—1)=m,N(k) =n) (7)

Hence for all n,m € N according to Equation (@)

Pyo =P(A(k) = D(k) < C —n|N(k — 1) = m, N(k) = n),

where we have rearranged the terms in the inequality. A(k)
can only take the values 0,1,...,G(n) and hence

Py = Z P(D
-P(A(k) <C—-Gn)+t|N(k—1)=m and D(k) =1t)

As A(k) and D(k) are independent conditioned on N (k —
1) =m and N (k) = n we further obtain

k) = t|N(k) = n)-

G(n)
Pyo = Z P(D

A < € — Gln) + N ( —

k) = t|N(k) = n)-

1) =m).

We now use that A(k) is Poisson with rate yp(m) and thus
the probability of [ cars arrwmg in 7 seconds is given by
P(A(k) = 1) = e~ w(m)7T Q2T for 411 | € N, This together
with Equations (2) and (3) then yields Py o =

G(n)—1 t C—G(n)+t

_ Z e*G(’I’L)[JT(G(n)ILLT) Z e*'yp(m)‘r(’yp(m)’r)l
t! !
t=0 =0
G(n)—1 " (e} l
—Gmyur (G()pT) —p(m)r (P(M)T)
+1_Ze()“TZGW()#

t=0 =0

where we separated the case t = G(n) from the rest of the
sum over t. Rearranging yields the claim.
|
Comment : Theorem [l| gives a formula for calculating the
probability of an overflow occurring at the car-park. Thus, it
provides a tool to evaluate the performance of Algorithm
in a given scenario.

To give a qualitative idea of the order of magnitude of the

" | probability that the number of arriving customers exceeds

the available capacity in Theorem 1, Figure [2] shows such



a probability for different values of + and u. In particular,
we assume that the car-park has a capacity for 100 vehicles,
m = 80 and n = 90, we choose parameters N,,q,, = 90,
Nopin = 75 and pyq, = 0.75 for the RED algorithm, 7 equal
to 5 minutes for all vehicles, and let the average time between
queries (i.e., 1/7) vary between 10 and 30 seconds, and the
average staying time between 0.5 and 1.5 hours (i.e., 1/pu).
Clearly, as would obviously be expected, the most critical
situations (i.e., highest probabilities of not finding a place)
occur when cars arrive more frequently and stay for a longer
period.

Figure [3] depicts the probability that the number of arriving
customers exceeds the available capacity as a function of the
car-parks occupancies at the present and one step back in the
past, m = N(k — 1) and n = N(k). Here we choose the
parameters C' = 100, Nyin, = 75, Nppaz = 90, Prgz = 0.75,
Y = 55, 4 = 3555 and T is equal to 5 minutes. It can be seen
that the probability of an overflow is quite low. In fact it is
always 0, when m > N,,4,. The overflow probability is high
only when n is close to C or n > C, and at the same time
m < Npmag. In this sense the figure is slightly misleading:
Even though there are some situations that yield a significant
probability of an overflow occurring at the next step, these
situations themselves occur extremely rarely as they require
a large number of cars to arrive during the &’th time interval.
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Fig. 2: Probability that the number of arriving customers
exceeds the available capacity as a function of average time
of arrival and average time of staying.

It should be noted that QoS measure given in Theorem [T]
gives the probability of an overflow occurring at discrete
time steps of length 7 and disregards the probability that
an overflow occurs and vanishes between the time steps. It
thus underestimates the overflow probability. We now give
a complementary result that gives an upper bound for the
overflow probability.

T
i
”I”Wmﬂﬂz%%%'f"”ﬂm
i,
it
T,
gl
i

Probability

Fig. 3: Probability that the number of arriving customers
exceeds the available capacity as a function of the car-parks
occupancy.

Theorem 2: Given N(k — 1) =m and N(k) = n for some
n,m € N the probability that at least one vehicle is rejected
during the time interval [k, (k + 1)7] is given by the last
entry of the vector 7x41 computed according to

®)

where 7, is a column vector with a 1 in the G(n) + 1 entry
and O everywhere else, exp denotes the matrix exponential
and Q) is the (C' + 1) x (C' 4 1) dimensional tri-diagonal
matrix given by

g1 = mg exp(QrT),

o . .
s —(s+r) r 0
: ) , )
s —(s+7) r
0 s —(s+r) r
0 ... 0 0 0 0

with r = yp(m) and s = G(n)p.

Proof: During the update epoch [k, (k + 1)7] we can
model the system as a continuous time Markov chain with
C+2states 0,1,2,...,C+1, in which transitions from states
N to N + 1 happen with rate yp(m) and from N + 1 to N
with rate G(n)u for all N =0,1,...,C — 1. The state C'+1
corresponds to the situation where at least one car arrives to
the car park and cannot park. As we are interested in whether
this state is reached during the regarded time interval or not,
we may make it an absorbing state. Transitions from state C'
to C' + 1 thus occur with rate yp(m) while transitions from
states C' + 1 to C' occur with rate 0. The rate matrix of this
chain is given by Q. 7 is the distribution of the chain at
time k7, which is concentrated in the state G(n). 7., is the
distribution of the states after time 7 for our model starting in
7, and accordingly it is given by Equation (8); with the last



entry corresponding to the probability of reaching state C'+ 1.
|
Note that in Theorem [2| the vectors 7, and 741 give the
probability of the system being in a certain state at times k7
and (k + 1)7 respectively, i.e. the probability with which we
observe a certain occupancy in the car park. As we know
what the occupancy at time k7 is, the vector 7 is a unit
vector, while 7y is the prediction our model allows on the
distribution after the time 7.

Theorem [2] gives an upper bound to the car parks overflow
probability. To give a quantitative idea of this bound, we refer
to Figures [4] and [5} which were created in the same setup and
with the same parameters as Figures [2] and [3] for Theorem [1]
From visual inspection it seems that Figures [2] and [] and [3]
and [3] are practically the same. This indicates that the upper
and lower bounds computed according to Theorems [T] and 2]
are quite close, and thus they give practical insight into the
dynamics of our proposed assignment scheme. However, the
figures are not identical, as can be seen in Figure [6] where we
compare Figures [2] and 4] for a fixed average staying time of
an hour, and in Figure [7] where we compare Figures [3] and [3]
for a fixed value of N(k — 1) = 75. In both cases, the true
probability has to lie between the lower and the upper bounds
suggested by the aforementioned theorems.
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Fig. 4: Probability that the number of arriving customers
exceeds the available capacity as a function of average time
of arrival and average time of staying.

B. Model II: Heterogeneous Delays

We now relax the assumption on 7;. Specifically, here we
allow a different 7; to be associated with each vehicle as
follows. For car ¢ we model the time 7; between making a
decision and arriving at the car-park as a random variable. We
assume that 7; is bounded for all n and uniformly distributed
on [0,T7], for some T € R,. We set the time between updates
of the occupancy information to 7. Then, on average, half
of the cars making their decision in [(k — 1)T, kT] and half

o
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Fig. 5: Probability that the number of arriving customers
exceeds the available capacity as a function of the car-parks
occupancy.
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Fig. 6: Comparison of Figures |4 and |2 for an average staying
time of one hour as functions of the average time between
queries of vehicles.

of the cars making their decision in [kT, (k + 1)T] arrive to
the car-park in [kT, (k + 1)T]. Accordingly, we obtain a new
equation for the number of the parked and waiting vehicles

N(k+1) = N(k) + Ay (k) + Ay (k) — D(k),  (10)

where Aj(k) is the arrival process of cars that make their
decision to drive to the car-park in [(k — 1)T,kT] and
Ay (k) is the arrival process of cars that make their decision
in [KT,(k + 1)T]. As in the case with constant 7; we are
interested in the probability of customers arriving to a full car-
park in this scenario. To this end again let U (k) be the number
of customers waiting outside the car-park at time (k + 1)7.
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Fig. 7: Comparison of Figures |5 and [3|for N(k — 1) = 75 as
functions of N (k).

Here it can be described by

U(k) = max{N (k) + A1 (k) + As(k) — D(k) — C,0}. (11)

The following theorem quantifies the probability of the
car-park being full at the end of the interval [kT, (k + 1)T).

Theorem 3: Given N(k — 1) = m and N (k) = n for some
n,m € N the probability that the number of customers
waiting at time (k + 1)7 is positive is given by

C
e ()
1- Ze Il
=0
G(n)—1 C

T S L0 T A

n’
t=0 I=C'—G(n)+t+1

12)

where we used the abbreviation v = 1v(p(m) + p(n)).

Proof: Here again we use that

P(U(k) 2 0[N (k = 1) = m, N (k) = n)
=1—PU(k)=0|N(k—-1)=m,N(k) =n) (13)

Due to 7; being uniformly distributed on [0,7] for all i,
in the time interval (KT, (k + 1)T) the processes A; (k) and
As (k) are Poisson processes with rates 2yp(m) and 1vp(n)
respectively, where again p(-) is the probability function
introduced in Algorithm Hence A;(k) + Az(k) is again
Poisson with rate 1+(p(m)+p(n)). The claim is now a direct
corollary of Theorem

|

Comment : As in Section [[V-A] Theorem [3| gives a lower
bound on the probability of an overflow occurring at the
car-park.

Following the approach in Section we now obtain an
upper bound on the overflow probability as a corollary.
Theorem 4: Given N(k — 1) =m and N (k) = n for some
n, m € N the probability that at least one vehicle is rejected
during the time interval [k7, (k + 1)7] is given by the last
entry of the vector 741 computed according to

Fny1 = exp(QrT), (14)

where 7, is a column vector with a 1 in the G(n) 4 1 entry
and O everywhere else, exp denotes the matrix exponential
and Qy, is the (C'+ 1) x (C' + 1) dimensional tri-diagonal
matrix given by

o , -
s —(s+v) v 0
: - , (15
s —(s+v) v
0 s —(s+v) v
o ... 0 0 0 0]

with v = 1~ (p(m) + p(n)) and s = G(n)p.

C. Relaxing the Assumption on the Distribution of T;

7; being uniformly distributed on [0,7] may not be a
realistic assumption as some cars may be closer to the car-
park than others upon deciding to find a parking space. The
model can easily be extended to take this into account. In
the following, we outline a procedure that shows that for any
given distribution of 7;, the process Aj(k) + Aa(k) is still
Poisson with rate 7 (ap(m) + (1 — a)p(n)), where a € [0, 1]
is a parameter determined by the distribution of 7;. To see this
it is helpful to consider an isolated update interval, say [0, 1.
Assume that cars query the infrastructure and decide to drive to
the car-park with rate ¥ = yp(N(0)). This process generates
an infinite number of vehicles, but we are only interested in
Ay, the number of vehicles that arrive to the car-park before
T. Let fori € N

)1
%=1

Now, the 7'th car makes a decision at time ¢; and then arrives
at the car-park after a delay of ;. We will only assume that 7;
is a non-negative random variable which is independently and
identically distributed for all ¢ € N with cumulative probability
density function F; : [0,7] — [0, 1]. We assumed that ¢; is
generated from a Poisson process with rate 7, and hence it is
distributed according to an Erlang distribution with parameters
(4,%) and thus its probability density function f;, is given by

, if car ¢ reaches the car-park before 7',

, else. (16)

,?ixiflef’?w

fr.(z) = W

Accordingly, the probability that a; = 1 is given by, P(a; =
1) = Fy,4+r,(T), where Fy, ., is the cumulative probability

a7



density function of ¢; + 7;, which can be computed according
to

Fran() = [ BT~ 0)fu(e) ds (1)
T ci i1~
_ e "

f/o F (T —z) ] dx, (19)

where we used Equation and the fact that 7; and ¢;
are positive random variables to change limits of integration.
Using Equation (T6), we obtain A; = ) ;°, a; and using
the linearity of the expectation operator, we can rewrite the
expected number of cars that arrive to the car-park before T’
as

BlA =E]Y a]=) Ela]=> Pla;=1) (20)
OCz:lT =1 =1
= EA(T —x)f:,(x) d 2
> | P —a)fie) do e
>© T Figi—le=Fe
= Z/O Fr(T =)=y i dz. (22)

According to Lebesgue’s monotone convergence theorem, we
may exchange summation and integration and obtain

T Xz
Bl = [ F-wier S U5 g e
=0 A
T -
= f*y/ F(T —x) dz (24)
0

The remaining integral is independent of the Poisson arrival
process and is further known to be equal to (T — E[7]) < T
and this yields

E[A] =A(T - Elr)). (25)

The total number of cars expected to make a decision in [0, T']
is 4T, hence a fraction of T%E[T] arrives to the car-park

in [0,7] and the rest, i.e. a fraction of % arrives in the
interval [T, 27].

V. MULTIPLE CAR-PARKS

So far we have concentrated on a single car-park and cars
could only decide to either go to the car-park or go somewhere
else. Clearly “somewhere else” is most likely going to be
another parking facility. In this section we investigate how
our approach can be extended to the more realistic situation,
where the vehicles’s drivers have to make a decision between
several parking facilities. To this end, we assume a situation,
where a number of car parks are close together and the driver
is not inconvenienced too much by having to go to anyone

of them. In particular, vehicles make a decision to travel to
a particular car-park based on Algorithm [V.I] This can be
viewed as an extension of Algorithm to the multiple
car-park case.

Algorithm V.1: MULTIPLE CAR-PARKS()

comment: Executed by newly arriving car

for j < 1ton
do X; < number of free spaces in car-park i
for j < 1ton

X

=1 <1

do Go to car-park j with probability p;.

Objective : Our objective here is to develop algorithms
that balance the demand on multiple car-parks in a plug-
and-play manner. Balancing demand has the advantage that
it avoids localised congestion and pollution peaks as not all
cars make their way to a single car-park. Again, feedback
between the arrival process and the decision process in
individual vehicles is considered, as is the interaction between
competing car-parks.

We now consider a region or zone with L parking lots. As
cars arrive into the zone, they are each assigned to one of
the available parking lots. We assume that this assignment
occurs in a randomised way depending on the current number
of free spaces in each lot. We also assume that each car
proceeds to its assigned lot. The protocol is one-way, in the
sense that information flows from the parking lots to the
cars, but not in the reverse direction. Thus, as before, there
is no system of reservation. Again, as before, there is also
a delay between the time when a parking lot is assigned,
and the time when the car arrives at the lot. Finally we also
assume that cars leave the parking lots in a random fashion,
in such a way that the total arrival rate on average is equal
to the total departure rate, so that the system is in equilibrium.

The behaviour of the system is determined by the following
factors: (1) the statistics of the arrival process for the cars, (2)
the statistics of the departure process, (3) the assignment rule,
(4) the delays between assignment and parking. We make the
following assumptions:

(1) The arrival process is Poisson with rate A

(2) Each car independently departs after an exponential park-
ing time. Let C, ..., Cr, be the capacities of the parking
lots, and let X;(¢),..., X (t) be the numbers of free
spaces at time t. Then the probability that the next
departure occurs from parking lot j at time ¢ is

5(0) = =

= (26)
S Ci— Xi(t)



(3) Let pi(t),...,pr(t) be the probabilities that an arrival at
time ¢ is assigned to lot 1,..., L respectively. Then we
assume that the probabilities p;(t) are determined by the
numbers X (), in some way that favours lots with more
free spaces. For example, one particular rule is

pi(t) = 0
22 Xi(t)

(4) Each arrival experiences a delay 7 which depends on
its location and the location of the assigned parking
lot, and perhaps also some exogenous factors causing
randomness.

27)

A refers to the rate at which cars make a decision. Note
that in this case this corresponds to the aggregate arrival rate
at all car-parks.

In this case it possible to calculate the probability that
the number of arriving customers exceeds capacity, in a
manner similar to above. A more pressing issue in this
case is whether the protocol balances the load, and whether
flapping is avoided. Flapping is a manifestation of instability
and occurs when car-parks take turns being full. Clearly,
this situation should be avoided, and thus, the main question
of interest now is to analyse the stability and fairness of
the protocol, and to find the dependence on the number of
parking lots, the number of available spaces, the arrival rate
and the delays.

Comment : The assignment rule (Equation (7)) can
be chosen to achieve a number of different objectives. For
example they can be tuned to divert traffic from certain areas
as may be necessary to mitigate congestion or pollution peaks
or to reflect a pricing structure.

A. Analysis: the fluid model limit

It is challenging to analyse the stochastic model in
full detail, so we begin with the analysis of a simplified
deterministic model which describes the so-called fluid limit.
This model should apply in the case where the arrival rate
and the capacities of the parking lots are very large. In this
limit the discrete model is replaced by a continuous model,
and we can view the traffic as a fluid which flows into and
out of the parking lots. Note that fluid models have been often
employed to describe urban traffic, see for example [17]. The
traffic enters and leaves the zone as a steady stream. The
entering stream is split into L parts, which proceed to the L
parking lots. The amount in each substream varies over time,
depending on the available capacity at each lot. There is a
delay before arrival at the parking lots. Each lot generates
a departing stream, and these combine to form the outgoing
stream. The evolution of this deterministic fluid model is
described by a delay differential equation.

Let C1,...,CL be the capacities of the parking lots, and
let X1(t),...,Xr(t) be the amount of free space in each lot
at time ¢. Note that 0 < X; < Cj, and that X; is now a

continuous random variable. We use the assignment rule
according to Algorithm [V.I] and the departure rule 26). Thus
the variables satisfy

dX;(t) X;(t—5) Cj — X;(t)

di YuXit—m7) 3 (Ci— Xi(1)
where 7; is the delay associated with lot j, and where
6(X,;(t)) = 1 for X;(t) > 0 and O else. Note that \ is
now the flow rate of the fluid limit and is in fact the same
quantity that defines the Poisson arrival process (hence the
use of the symbol \). The factor 6(-) enforces the condition
that the solution to the delay differential satisfies X;(t) > 0
for all ¢. If we now further assume that X (¢) > 0, for all ¢,
then we obtain:

= —AO(X; (1)) +A

d
- Z X;(t)=0
J
and hence the total number of available parking spaces is
constant. Define this total to be

N =) X(t)
and also define the total capacity of the zone to be
C=>Y Ci

Then still assuming that the variables X; are always positive,
we can use Equations (Z8) and (29) to obtain the equation

dX;(t) A

A
pTa _NXj(t - 7))+ TN (C5 — X;(1))-

This is a delay differential equation. Note first that there is
a constant solution, namely

(28)

(29)

(30)

N
C
This is the ‘reasonable’ situation where the traffic is shared
among the lots according to their capacities. However in the
presence of delays it is not clear whether this solution is stable.
To investigate stability we look for a solution of the form
(under the usual assumptions on initial conditions of the delay
differential equation)

X;(t) = aj + bje™

Xj(t):aj: Cj.

€1y

where z is a possibly complex parameter. Substituting into (30)
gives the delay differential equation’s characteristic equation

z = _A ey _A .

N C—-N

According to [18, Chapter VII, Section 28, Theorem B], if all
solutions to Equation (32) have negative real part this assures
exponential stability of constant solution. We now investigate

under which conditions on 7; this property holds.

(32)

When 7; = 0, the solution is

AC

TTONC-N)



which implies exponential stability of the constant solution.

For 7; sufficiently small all solutions of lie in the left
half of the plane, and thus the constant solution @]} is still
stable. However as 7; increases, the solutions of @I) move
toward the imaginary axis. Instability occurs when the first
solution crosses the imaginary axis. Letting z = x + ¢y, this
instability occurs when x = 0. In this case the Equation (32)
becomes

. A . A
W=-7 (cos(yr;) — isin(yr;)) — e (33)
which is equivalent to the two equations:
0 = 4 coslym) - o G4)
= —y o0 - s
y = N sin(y7;) (35)
The Equations (34) and (35) have no solution if
N>Y (36)

So if at least half the parking spaces are empty then the
constant solution is stable.

Comment : This is a remarkable result. Given that there
is enough free capacity, our approach yields a stable solution
independent of the delay 7. It will be an objective of our
future research to investigate how this result regarding the
fluid limit carries over to the original system.

If N < C/2 then the solution is stable for 7 sufficiently
small. We now determine 7..;;, the precise threshold value
where instability occurs. To this end, we can rearrange Equa-

tion to
N
YT = cos™! (C — N) . 37
Substituting this in Equation (33) yields
y = (38)

X i (eost (Y
N Sin | Cos C N
y

N \?2
= 1 — _—
wi-(e5x)
where we used a standard trigonometric identity. Substituting
y from Equation (38) into Equation and rearranging yields

(39)

(N cos™! (——C]_VN)
Terit =\ v | —F7/7/——m—m—m—
A ) 2
N
1= ()
If the condition (36) does not hold, and 7 > 7., then the

constant solution is unstable, and some parking lot will com-
pletely empty or completely fill. Approximately, the condition

for stability is

ATjgﬂ

3 (40)

Note that A7; is the total number of arrivals during
the interval between assignment of the parking lot and
arrival at the parking. So the condition says that the
constant solution is stable if this total arrival number during a
delay is less than the total number of available parking spaces.

VI. SIMULATIONS

In this section we present simulations to illustrate the
efficacy of our algorithms. We use the open-source mobility
simulator Sumo [11] together with Matlab. For this purpose,
we designed a grid-like road network, depicted in Figure [§]
which is artificial but similar to many planned cities. All
traffic in Sumo consists of cars being routed between an
origin and a destination street along the shortest path. To
obtain the desired simulation results, we choose roads in
the city that are supposed to contain a car park or are an
entry or exit point for cars to the city; these virtual locations
are not explicitly taken into account in Sumo, rather we use
Matlab to keep track of car park occupancies and origin and
destinations of vehicles. In practise we use Sumo to run the
simulation until a new car arrives to the city and makes a
decision or a previously parked car finishes its service and
departs from the car park. Each of these events is generated in
Matlab, which adds the new event to Sumo and consecutively
starts a new Sumo simulation.

Om 100m
L

Fig. 8: Grid-like road network used for our simulations.



A. Single car-park scenario

In this section we show some results obtained from simula-
tions of a scenario with a single car park, coloured in red,
in the centre of our grid-like city depicted in Figure [§] It
has capacity for 100 cars and is empty at the begin of our
simulation. Over a time of 3 hours vehicles appear at random
locations throughout the city. We model the arrival of new
cars as a Poisson process with expected inter-arrival time of
10 seconds. Cars that decide to drive to the car park and find
an available spot stay parked for an exponentially distributed
random time with mean 20 minutes and then they disappear.
We simulate two scenarios. In the first scenario occupancy
information is not available to the cars and all cars decide to
go to the car-park. In the second scenario cars have access
to the occupancy information. The occupancy information is
updated every 100 seconds. So not only do cars experience
a delay between making a decision and arriving to the car-
park, they are also using non-realtime data to make their
decisions. In this scenario cars make their decision randomly
according to Algorithm with N,,in = 80, Nypae = 95
and py,q, = 0.75. In Figure[9] the number of cars that are at the
car park in both scenarios is depicted. We can see that in the
scenario with feedback (green line) the car-parks occupancy
stays below the capacity, so that no car arrives to a full car-
park and there are always some spare spaces available. In the
scenario without feedback (red line) on the other hand we can
clearly see that that the available capacity of the car-park is not
enough to satisfy the demand. A large number of cars arrives
to a car-park with no free spaces. The drivers have to wait
for someone to leave or have to find an alternative parking
facility. This causes an unnecessary waste of time and fuel
and contributes to congestion and pollution.

— with feedback
— without feedback

occupancy
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o
o
:

Y
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Fig. 9: Comparison of occupancy with (red line) and without
(blue line) feedback. The dotted lines show the desired lower
and upper occupancy of the car park.

B. Multiple car-park scenario

We now present a simulation with several car parks. We
regard 4 car parks in our grid-like city coloured in blue and
green in Figure [§] with capacity for 40 cars each, distributed
over the city as well as 4 main access roads. Over a time
of about 3 hours 1000 cars arrive to the city according
to a Poisson process with average inter-arrival time of 10
seconds and they arrive on each access road with the same
probability. Upon arrival they query the occupancies of the
car parks and choose one of them according to Algorithm [V.1]
then they drive to the chosen car park. Vehicles then stay
parked for an exponentially distributed time with mean 20
minutes. The available car park occupancy information is
updated only when cars arrive at or leave the car park, so no
communication from the vehicles to the car parks is required.
In Figure [I0a] we plot the occupancy of each car park at
the time instants at which new cars arrive to the city. As
we can see, our approach reasonably balances the occupancies.

In Figure we present the same result for a slightly
different simulation, where we use a different assignment rule.
Namely, we assign cars always to the car park with the lowest
occupancy at the time of the vehicles query. Although this
assignment rule intuitively seems reasonable, if it takes a long
time for cars to drive to their car park and if many other
vehicles arrive in this time, then its performance is poor. By
comparing Figures and it can clearly be seen that
our algorithm outperforms the deterministic assignment rule
in the sense that cars are better balanced among the available
car-parks. Specifically, our stochastic approach decreases the
time averaged variance of the distribution of parked cars over
all car-parks from 29.85 to 9.23.

C. Effectiveness of balancing strategies in the multiple car-
park scenario

The objective of the previous simulations was to
demonstrate the effectiveness of feedback strategies in
terms of efficient usage of the infrastructures. We claim
that balancing the vehicles among the available car-parks
is an efficient way of utilising the available infrastructure
efficiently. Clearly, this is not the only strategy. Another
naive strategy would be to simply associate a vehicle with
the car-park that has more available places at that time
instant that a request for parking is made. The objective of
this simulation is to show that stochastically balancing the
vehicles among the available car-parks is in fact a smart
strategy that does outperform the naive deterministic strategy
of associating vehicles with the emptiest car-park. For this
purpose, we take the perspective of the users, and as a
measure of effectiveness, we consider the percentage of
unsatisfied users with respect to the overall number of users.
Unsatisfied users are users that arrive to find a car-park full.
To this end we ran a number of three hour simulations, each
of them for a different value of the average time between
the assignment of a driver to a car-park and the arrival to
the car-park. These values range from 5 to 25 minutes. For
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Fig. 10: Number of occupied spaces at each parking lot
using Algorithm in Figure and using the deterministic
assignment rule in Figure Vehicles are clearly more
balanced in @ as the variance is lower.

each car a random number, uniformly distributed between
—2 minutes and +2 minutes is added to the average delay.
Figure [I1] clearly shows that the percentage of unsatisfied
users increases when the average travel time before getting to
a car-park increases.

D. The benefit of load balancing to the user

The objective of balancing is to avoid localised congestion,
pollution peaks, and to increase the probability of a given
driver finding a space available. To do this, drivers are directed
to a number of nearby car-parks. The cost of this strategy could
sometimes be, increased driving time for individual drivers
and some drivers being further away from their destination.
Quantifying these effects in a very detailed manner is beyond
the scope of the present paper. However, we give the following
simulation to showcase the potential benefits of our approach

25

—— Deterministic Emptiest car-park

—S ic Balancing

= Y N
=] o o
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Fig. 11: The percentage of unsatisfied users increases if the
naive “emptiest car-park” strategy is used, when the distance
from the car-park increases. On the other hand, the stochastic
balancing strategy performs well even in case of long dis-
tances, thanks to the intrinsic feedback flavour in the strategy.

to the users, and to address in some manner the above concern.
We consider again the grid-like network depicted in Figure
We assume there are the two car-parks coloured in blue,
located at the left centre and the right centre of the map. Each
of these has capacity for 100 cars and is initially empty. Now
assume that there is an event happening close to the left car-
park (car-park A), which 200 vehicles, uniformly distributed
over the map, wish to attend. They all start their journey at
the same time. We regard two scenarios: (i) All vehicles drive
to the car-park A and the first 100 to arrive find a space, the
rest has to drive to the right car-park (car-park B) from where
the drivers will have to use public transport or walk to arrive
at car-park A. (ii) All vehicles use our stochastic assignment
rule and thus toss a fair coin to decide which car-park to go
to. Once one of the car-parks is full, all later arriving vehicles
have to drive to the other car-park. All drivers that end up
in car-park B again have to use public transport to reach car-
park A. In the first scenario 100 cars have to relocate from
car-park A to car-park B, while in the second scenario this
number is significantly smaller. In our simulation, only two
cars had to relocate, a significant reduction in unnecessary
travel, saving time and reducing congestion and pollution.
Further, even without the additional relocation journeys, the
second scenario is already superiour. Fig. 12| reports the travel
times from the original position to the first car-park that is
reached in both scenarios. It can clearly be seen that almost
all travel times are higher in the first scenario. In fact the
average travel time is 258 seconds in the first scenario and
174 seconds in the second scenario. This is due to local
congestion around car-park A due to the mass of vehicles
driving there. A short video showing the junction at which
car-park A is located and the surrounding streets can be found
at http://www.hamilton.ie/aschlote/sumo_movie.mov.
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Fig. 12: All recorded travel times to the first car-park measured
from both scenarios.

VII. COMMERCIAL OPPORTUNITIES

Before concluding we note that the multiple car-park al-
gorithm gives rise to certain commercial opportunities. Office
block car-parks are usually empty at certain times (evenings),
and thus could compete for parking business. The plug-and-
play nature of our algorithms, with appropriate H/W to count
cars departing and arriving at car-parks, could enable such
office blocks to compete for business during times in which
they are not in office use. Similarly, there are frequently
situations where there is local parking scarcity, but in the
vicinity, there is parking availability. For example, university
campuses are often in residential areas, which have lots of
parking availability during working hours. Our plug-and-play
system could also be used to integrate such spaces into the
campus parking system during working hours.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we propose and describe stochastic policies
to associate cars with parking spaces. We first illustrate this
problem from the perspective of a single car-park, where the
main concern of the vehicle is whether it should be more
convenient to go to that car-park, being aware that in the
meanwhile it could get full, or to search for a place elsewhere.
We then extend our approach to the scenario where several
car-parks are available. In this case the interest is how to
assign the vehicle to one particular parking lot. Differently
from other works in the same area, we explicitly take into
account several aspects of interest: the effect of feedback
on the choice of the car-park; the benefits of stochastic
assignment policies vs. more conventional deterministic
strategies; the effect of delays between the communication of
real-time occupancies and the moment when the cars in fact
occupy the desired parking space. All such aspects have been
tackled by using mathematical arguments, and have been
illustrated by means of simulations.

The proposed policy does not suffer from the known
drawbacks of reservation strategies, where non-cooperative
vehicles (i.e., vehicles that take a parking space without
reservation) interfere with the rest of the framework. Also,
we provided a bound on the delays (i.e., time to get
to the car-park) that guarantees that the car assignment
solution remains stable. Finally, the proposed policy can
be realistically and efficiently implemented in practice to
achieve the desired goal. In our simulations, we generally
assumed that the vehicles followed the indications given
by the infrastructure, but showed that the algorithm is
robust even if this does not occur for all vehicles. From
a practical point of view, simple pricing mechanisms can
be employed to make the vehicles go to the assigned car-parks.

Currently, we are interested in validating the proposed
algorithms beyond the simulation level. Mainly we would
like to implement at the infrastructure level. We further wish
to investigate the most convenient ways to communicate
the relevant information to the vehicles (e.g., directly
communicate the number of available places, or simply the
probabilities, or only the chosen car-park).
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