

Paramecium tredecaurelia: A Unique Non-Polymorphic Species of the P. aurelia spp. Complex (Oligohymenophorea, Ciliophora)

Ewa PRZYBOڹ, Sebastian TARCZ¹, Marta SURMACZ¹, Natalia SAWKA¹ and Sergei I. FOKIN²

¹ Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland; ² Unit of Protozoology, Department of Biology, University of Pisa, Italy

Abstract. New stands of *Paramecium tredecaurelia*, a rare species of the *P. aurelia* spp. complex, were identified in Thailand and Madagascar on the basis of mating reactions and molecular markers (rDNA and mtDNA). Analysis of DNA fragments showed that all *P. tredecaurelia* strains, the recently recorded ones and the ones known previously from France, Mexico, and Israel, form a monophyletic and well-defined clade in the *P. aurelia* species trees. All of these strains, collected from different localities around the world, represent identical or nearly identical haplotypes in terms of all the studied DNA fragments. Given the huge distances between particular collection sites, such a low level of variability of the studied sequences may result from a slow rate of evolution in *P. tredecaurelia*.

Key words: *P. aurelia* species complex, intraspecific polymorphism, rDNA (ITS1-5.8S-ITS2-5'LSU rDNA), cytochrome c oxidase subunit I gene (*COI*), cytochrome b gene (*CytB*).

Abbreviations: c.m.t. – complementary mating types.

INTRODUCTION

Among the 15 known species of the *Paramecium aurelia* complex (Sonneborn 1975, Aufderheide *et al.* 1983), some are cosmopolitan (*P. primaurelia*, *P. biaurelia*, *P. tetraurelia* and *P. sexaurelia*), while others, such as *P. quadecaurelia*, have been found only in

Address for correspondence: Ewa Przyboś, Sebastian Tarcz, Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland; E-mail: przybos@isez.pan.krakow.pl; tarcz@isez.pan.krakow.pl

a few localities (Sonneborn 1975, Przyboś *et al.* 2003, Przyboś *et al.* 2013).

Paramecium tredecaurelia is also a rare species with only four strains known until recently, that is, from Paris, France; Benenitra, Madagascar; Cuernavaca Valley, Mexico (Rafalko and Sonneborn 1959, Sonneborn 1975), and Kiryat Motzkin, Israel (Przyboś et al. 2002). This species does not conjugate or even enter into any mating reactions with any other species of the complex. It is also characterized by a synclonally inherited (Mendelian) mating type system, unique among the species of the complex (Sonneborn 1975). This means that two mating types are determined by different alleles at the

same locus and the homozygote does not undergo any change of mating type at autogamy. The reference specimens of the species come from strain 209 from France, genetically restricted to mating type O (odd) and from strain 321 from Mexico, genetically restricted to mating type E (even) (Sonneborn 1974). This is also the only species that requires high temperature to mate, as cultures should be grown at 27–31°C. As concerns isozyme patterns (Tait 1970, Allen *et al.* 1973), the species is characterized by two cathodal bands for mitochondrial isocitrate dehydrogenase and two anodal bands for cytoplasmic isocitrate dehydrogenase. No other species has such a combination of two patterns as that shown by *P. tredecaurelia*. Symbionts were not found in that species.

Recently, new stands of this species were recorded in Bangkok, Thailand and St. Luce, Madagascar, and are presented in this paper. The strains were identified at first by molecular markers and then by mating reactions. Three genome fragments: one ribosomal (ITS1-5.8S-ITS2-5'LSU rDNA) and two mitochondrial (cytochrome c oxidase subunit I and cytochrome b gene fragments, designated COI and CytB, respectively) were employed to assist in identification and characterization. We chose them as markers because each of these genome fragment has likely evolved at a different rate, and this in turn leads to different gene trees (Bull et al. 1993). This is especially important in the case of a rapid and recent speciation process (Bull et al. 1993), which was postulated in the species of the Paramecium aurelia complex (Barth et al. 2008, Przyboś et al. 2012b). Furthermore, the proposed DNA fragments were successfully applied for molecular comparison of other species of the genus Paramecium: P. dodecaurelia (Przyboś et al. 2012b), P. novaurelia (Tarcz 2012), P. calkinsi (Przyboś et al. 2012a), P. multimicronucleatum (Tarcz et al. 2012), and P. bursaria (Greczek-Stachura et al. 2012). Besides the above-mentioned markers, the small subunit rRNA gene was used for the characterization of the recently redescribed species P. chlorelligerum Kahl 1935 (Kreutz et al. 2012). Similarly, nuclear genes encoding the H4 histone subunit (Przyboś et al. 2006) and the hsp70 protein (Hori et al. 2006, Przyboś et al. 2003) were applied for species identification and comparison of evolutionary distances among syngens and sibling species of *Paramecium*, respectively.

The aim of our present study was to characterize molecularly and genetically the newly recorded strains of *P. tredecaurelia* as well as intraspecific relationships

within this species. It is worth noting that our study does not only involve a comparison of DNA fragments (the phylogenetic species concept), but also classical genetic crosses (the biological species concept). In particular, in closely related microbial eukaryotes, the assessment of species boundaries requires "more than one line of evidence" (Boenigk *et al.* 2012). This is in concordance with former proposals (Schlegel and Meisterfeld 2003, Duff *et al.* 2008), which suggested the application of combined morphological-molecular approaches to the identification of planktonic protists.

MATERIAL AND METHODS

Identification of species of the *P. aurelia* spp. complex by mating reactions

New strains originating from Bangkok, Thailand and St. Luce, Madagascar, as well as other strains of *P. tredecaurelia* known previously from Paris, France; Cuernavaca, Mexico; and Kiryat Motzkin, Israel (Table 1), were used in the present study. Data concerning other species of the *P. aurelia* complex are given in Table 2.

Paramecia were cultured in a lettuce medium inoculated with *Enterobacter aerogenes* and supplemented with 0.8 mg/ml β-sitosterol (Merck, Darmstadt, Germany). They were identified according to Sonneborn's methods (1950, 1970) by mating reactions. The new strains from Thailand and Madagascar, mature for conjugation, were mated with reactive complementary mating types (c.m.t.) of the reference (standard) strains of several species of the *P. aurelia* complex. The following standard strains were used: *P. primaurelia*, strain 90 (Pennsylvania, USA); *P. tetraurelia*, strain from Sydney, Australia; *P. pentaurelia*, strain 87 (Pennsylvania, USA); *P. sexaurelia*, strain 159 (Puerto Rico); *P. octaurelia*, strain 138 (Florida, USA); *P. dodecaurelia*, strain 246 (Mississippi, USA); and *P. tredecaurelia*, strain 209 (Paris, France) and strain 321 (Cuernayaca, Mexico).

Species determination was based on the occurrence of 85 to 95% initial agglutination of paramecia, followed by the presence of tight conjugating pairs formed by paramecia of the strain from Thailand or Madagascar and the reference strain of *P. tredecaurelia* from France, Paris (strain 209). To make sure that no intra-strain conjugation (selfing) occurred within the c.m.t., controls of non-crossed c.m.t. were also cultured and observed. A temperature of 29°C was optimal for the conjugation of this species.

The $\rm F_1$ generation of hybrids from inter-strain crosses of *P. trede-caurelia* (strains from Thailand or Madagascar, both restricted to the even mating type × strain 209 from France, restricted to the odd mating type; strain 209 from France, odd mating type × strain 321 from Mexico, even mating type) was obtained by conjugation, and $\rm F_2$ by autogamy by the daily isolation lines method (according to Sonneborn 1950, 1970). The occurrence of autogamy was examined in preparations stained by acetocarmine.

The survival of clones in both generations was estimated from a total of 100 clones. Clones were considered survivors after un-

Table 1. Studied Paramecium tredecaurelia strains

Vo.	No. Strain	Strain geographical origin	Collector's name	Reference		GenBank accession numbers	numbers
	designation				ITS1-5.8S-ITS2- 5'LSU rDNA	COI mtDNA	CytB mtDNA
_:	*602	France, Paris	G. Beale	Rafalko and Sonneborn 1959	JF304165	JF304184	HM001352
۲.	321**	Mexico, Cuernavaca, Taxco Valley	T. M. Sonneborn	Rafalko and Sonneborn 1959	JF304166	JF304185	KC432625
~·	IKM^{**}	Israel, Kiryat Motzkin	E. Przyboś 2001	Przyboś et al. 2002	JN998647	689866NI	KC432626
:	MA^{**}	Madagascar, St. Luce, Ambandrika Lake	M. Barresi 2011	Present paper	KC432623	KC432624	KC432628
īć.	TaB**	Thailand, Bangkok	T. Fokina 2010	Present paper	JX661364	JX661440	KC432627

Strain 209 restricted to odd mating type (XXV according Sonneborn 1975).

Strain from Madagascar, Benenitra (designated 238, restricted to even mating type) reported by Rafalko and Sonneborn (1959) was not available for our studies. ** - Strains 321, IKM, MA, TaB restricted to even mating type (XXVI Sonneborn 1975).

dergoing 6-7 fissions during 72 hours following the separation of conjugation partners or post-autogamous caryonids (the two products of the first fission of each autogamous Paramecium). The procedures were carried out following Chen (1956). The percentage of surviving hybrid clones in crosses was compared in F, and F, (Table 3) because *Paramecium* species were identified not only on the basis of their capacity to conjugate with the reference specimens, but also to produce viable recombinant F₂ clones (Sonneborn 1975).

All the reference (standard) strains of particular species of the P. aurelia complex were obtained from the laboratories of Prof. T. M. Sonneborn (Department of Biology, Indiana University, USA) or Prof. G. H. Beale (Institute of Animal Genetics, Edinburgh University, Great Britain). They are kept at the Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Cracow, Poland.

Molecular methods

All strains used for DNA isolation were homozygous, as they passed autogamy previously. Paramecium genomic DNA was isolated from vegetative cells at the end of the exponential phase (approx. 1000 cells were used for DNA extraction) using a NucleoSpin Tissue Kit (Macherey-Nagel, Germany) according to the manufacturer's instructions for DNA isolation from cell cultures. The only modification was centrifugation of the cell culture for 20 min. at 13,200 rpm. The supernatant was removed and the remaining cells were suspended in lysis buffers and proteinase K.

Fragments of rDNA, COI, and CytB genes were sequenced and analyzed. First, rDNA fragments were amplified with ITS1 and ITS4 universal eukaryotic primers (White et al. 1990) and ITS3zg and 3pLSU primers developed with OligoAnalyzer 3.1 (http:// www.eu.idtdna.com/analyzer/applications/oligoanalyzer) (Table 4). F388dT and R1184dT primers (Table 4) and the protocol previously described by Strüder-Kypke and Lynn (2010) were used for the amplification of the COI fragment of mitochondrial DNA. In some cases, when the above COI pair of primers did not yield a well-defined product, the internal primer CoxH10176 (Barth et al. 2006) was used instead of R1184dT. To amplify the CytB gene fragment, the primer pair CytBF/PaCytR and the protocol previously described by Barth et al. (2008) were used.

PCR amplification for all analyzed DNA fragments was carried out in a final volume of 40 µL containing 30 ng of DNA, 1.5 U Taq-Polymerase (EURx, Poland), 0.8 μL of 20 μM of each primer, 10 × PCR buffer, and 0.8 µL of 10 mM dNTPs.

In order to assess the quality of the amplification, PCR products were electrophoresed in 1% agarose gel for 45 min. at 85 V with a DNA molecular weight marker (Mass Ruler Low Range DNA Ladder, Fermentas, Lithuania). NucleoSpin Gel and PCR Clean-up (Macherey-Nagel, Germany) was used for purifying PCR products. In some PCR products, additional sub-bands were obtained apart from the main band. In these cases, 30 µL of each PCR product was separated on 1.8% agarose gel (100 V/60 min.) with a DNA molecular weight marker (Mass Ruler Low Range DNA Ladder, Fermentas, Lithuania). Then the band representing the examined fragment was cut out and purified.

Sequencing was done in both directions with the application of BigDye Terminator v3.1 chemistry (Applied Biosystems, USA). The primers used in PCR reactions were applied for sequencing the rDNA region, and the primer pair M13F/M13R was used for se-

 Table 2. Other strains of Paramecium aurelia species used in this studies. Strains of P. multimicronucleatum were used as an out-group.

;				8		
No.	Species	Strain designation	Strain geographical origin	GenBa	GenBank accession numbers	
				ITS1-5.8S-ITS2-5'LSU rDNA	COI mtDNA	CytB mtDNA
1.	P. primaurelia	90 (SO-90*)	USA, Pennsylvania	JF304163	JF304182	AM949780*
2.	P. primaurelia	SS	Spain, Andalusia, Sevilla	JN998643	JN998685	N/A
3.	P. primaurelia	PR-08*	Russia, Astrakhan Nature Reserve	N/A	N/A	AM949779*
4.	P. biaurelia	Rieff	Great Britain, Scotland, Rieff	JX010640	JX010661	N/A
5.	P. biaurelia	UB2	USA, Boston	JX010641	JX010662	N/A
.9	P. biaurelia	PR-34*	Russia, Irkutsk	N/A	N/A	AM949784*
7.	P. biaurelia	DB-05*	Germany, Saidenbach Reservoir	N/A	N/A	AM949785*
%	P. triaurelia	324 (SO-324*)	USA, Florida	JX010642	JX010663	AM949778*
9.	P. triaurelia	SCM	Spain, Castile	JX010643	JX010664	N/A
10.	P. triaurelia	HH-05*	Germany, Hannover	N/A	N/A	AM949777*
11.	P. tetraurelia	S (PR-92*)	Australia, Sydney	JF304164	JF304183	AM949771*
12.	P. tetraurelia	FP	France, Paris	JN998645	JN998687	N/A
13.	P. tetraurelia	SO-51*	USA, Indiana	N/A	N/A	AM949770*
14.	P. pentaurelia	87 (SO-87*)	USA, Pennsylvania	JX010644	JX010665	AM949782*
15.	P. pentaurelia	HBB	Hungary, Balatonfüzfo	JX010645	JX010666	N/A
16.	P. pentaurelia	NA-05*	Italy, Naples	N/A	N/A	AM949781*
17.	P. sexaurelia	159 (SO-159*)	Puerto Rico	JX010646	JX010667	AM949765*
18.	P. sexaurelia	SAS	Spain, Andalusia, Seville	JX010647	JX010668	N/A
19.	P. sexaurelia	FO-128*	Japan, Yamaguchi	N/A	N/A	AM949764*
20.	P. septaurelia	38 (SO-38*)	USA, Florida	JX010648	JX010669	AM949766*
21.	P. septaurelia	AZ24-4	Russia, Astrakhan Nature Reserve	JX010649	JX010670	N/A
22.	P. septaurelia	PO-162*	Russia, Astrakhan Nature Reserve	N/A	N/A	AM949768*
23.	P. octaurelia	138 (SO-168*)	USA, Florida	JX010650	JX010671	AM949767*
24.	P. octaurelia	IEA (PR-169*)	Israel, Ein Effek	JX010651	JX010672	AM949772*
25.	P. novaurelia	CS	Czech Republic, Ceske Skalnice	JX010652	EU056250	N/A
26.	P. novaurelia	UG (PR-175*)	Ukraine, Gorgany Mts.	JX010653	EU056263	AM949776*
27.	P. novaurelia	ED-05*	UK, Edinburgh	N/A	N/A	AM949775*
28.	P. decaurelia	223 (SO-223*)	USA, Florida	JX010654	JX010673	AM949769*
29.	P. decaurelia	H	Japan, Honshu Island	JX010655	JX010674	N/A
30.	P. undecaurelia	219 (SO-219*)	USA, Texas	JX010656	JX010675	AM949783*
31.	P. dodecaurelia	246 (SO-246*)	USA, Mississipi	JN998639	JN998681	AM949763*

32.	P. dodecaurelia	GM	Germany, Münster	JN998615	JN998657	N/A
33.	P. dodecaurelia	SK-199*	USA, Hawaii	N/A	N/A	AM949762*
34.	P. quadecaurelia	328 (SO-328)*	Australia, Emily Gap near Alice Springs	JX010635	JX010657	AM949773*
35.	P. quadecaurelia	AN1-1 (DO-207)*	Namibia, Vindhoek, Pond in park	JX010636	JX010658	AM949774*
36.	P. sonneborni	ATTC 30995 (AU-208*)	USA, Texas	JF304167	JX010676	AM949786*
37.	P. multimicronucleatum	AB9-20	USA, Boston	JF741241	JF741273	N/A
38.	P. multimicronucleatum	BR	USA, Louisiana, Baton Rouge	JF304172	JF304189	N/A
39.	P. multimicronucleatum	GMA-2*	Germany, Martinfeld	N/A	N/A	AM949757*
40.	P. multimicronucleatum	ISN-11*	Italy, Naples	N/A	N/A	AM949756*

Designations and GenBank numbers as in (Barth et al. 2008)

quencing the COI fragment (Table 4). The sequencing reaction was carried out in a final volume of 10 µL containing 3 µL of template, 1 μL of BigDye (1/4 of the standard reaction), 1 μL of sequencing buffer, and 1 µL of 5 µM primer. Sequencing products were precipitated using Ex Terminator (A & A Biotechnology, Poland) and separated on an ABI PRISM 377 DNA Sequencer (Applied Biosystems, USA). The sequences are available in the NCBI GenBank database (see Tables 1 and 2).

Data analysis

Sequences were examined using Chromas Lite (Technelysium, Australia) to evaluate and correct the chromatograms. The alignment of the studied sequences was performed using ClustalW (Thompson et al. 1994) within the BioEdit software (Hall 1999) and checked manually. All of the obtained sequences were unambiguous and were used for analysis. Phylograms were constructed for the studied fragments with Mega v5.0 (Tamura et al. 2011), using neighbor-joining (NJ) (Saitou and Nei 1987), maximum parsimony (MP) (Nei and Kumar 2000), and maximum likelihood (ML) (Felsenstein 1981). All positions containing gaps and missing data were eliminated. NJ analysis was performed using Mega v5.0 program, by bootstrapping with 1000 replicates (Felsenstein 1985). MP analysis was evaluated with the min-mini heuristic parameter (at level 2) and bootstrapping with 1000 replicates. Bayesian inference (BI) was performed with MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003); analysis was run for 5,000,000 generations and trees were sampled every 100 generations. All trees for BI analysis were visualized with TreeView 1.6.6 (Page 1996). Analysis of uncorrected p-distance estimation for NJ analysis, and identification of substitution models (T92 + G + I for rDNA and COI mtDNA fragments or HKY + G + I for *CytB* mtDNA fragments) for ML and BI analysis were done with Mega v5.0 (Tamura et al. 2004, 2011).

RESULTS AND DISCUSSION

New stands of *P. tredecaurelia* were found in Bangkok, Thailand (the first discovery of the species in Eastern Asia) and St. Luce, Madagascar. Previously, P. tredecaurelia had been recorded in Madagascar (Rafalko and Sonneborn 1959), but in a different locality (Benenitra). However, that strain was not available for our study. Currently, the species is known from isolated localities in America, Europe, Africa, and Asia.

The viability of the offspring of the hybrid exconjugant clones of inter-strain crosses (strains from: Thailand × France; Madagascar × France; France × Mexico) observed in F₁ was high (88–94%), but in the F₂ generation it was low (21–26%) (Table 3). Similar results were obtained previously, when the strain from Israel was crossed with the strain from France: 90% hybrid clones survived in F₁, but only 26% in F₂ (Przyboś et al. 2002). Rafalko and Sonneborn (1959) also reported very high mortality in the F₂ generation of crosses

262 E. Przyboś et al.

Table 3. Percentage of surviving clones of Paramecium tredecaurelia inter-strain hybrids.

No.	No. Strain designation / origin Percentage of surviving clon		e of surviving clones	Reference
		F ₁ obtained by conjugation	F ₂ obtained by autogamy	
1.	209 × 321 (France x Mexico)	88	21	Present paper
2.	$TaB \times 209$ (Thailand x France)	94	22	Present paper
3.	MA × 209 (Madagascar x France)	91	22–25	Present paper
4.	IKM × 209 (Israel x France)	90	26	Przyboś et al. 2002

Table 4. Primers used for amplification and sequencing of studied DNA fragments.

DNA fragment	Primer	Sequence 5'–3'	References
ITS1-5.8S-ITS2	ITS1	TCCGTAGGTGAACCTGCGG	White et al. (1990)
ITS1-5.8S-ITS2	ITS4	TCCTCCGCTTATTGATATGC	White et al. (1990)
LSU rDNA	ITS3zg	CryAwCGATGAAGAACGCAGCC	Tarcz et al. (2012)
LSU rDNA	3pLSU	CAAGACGGGTCAGTAGAAGCC	Tarcz et al. (2012)
CytB mtDNA	CytF	GGWACMATGCTRGCTTTYAG	Barth et al. (2008)
CytB mtDNA	PaCytR	GGYCTAAAATATCAATGRGGTGC	Barth et al. (2008)
COI mtDNA	F388dT*	TGTAAAACGACGGCCAGT GGwkCbAAAGATGTwGC	Strüder-Kypke and Lynn (2010)
COI mtDNA	R1184dT*	CAGGAAACAGCTATGACTAdACyTCAGGGTGACCrAAAAATCA	Strüder-Kypke and Lynn (2010)
COI mtDNA	CoxH10176	GAAGTTTGTCAGTGTCTATCC	Barth et al. (2006)
sequencing primer	M13F	TGTAAAACGACGGCCAGT	Strüder-Kypke and Lynn (2010)
sequencing primer	M13R	CAGGAAACAGCTATGAC	Strüder-Kypke and Lynn (2010)

^{* –} primers used for amplification of *COI* fragment are composed of two parts – first one is a degenerate primer (Forward or Reverse), specific to amplified *COI* sequence and the second is a sequencing primer M13 (Forward or Reverse) (bold).

of strain 238 from Benenitra, Madagascar with strain 209 from Paris, France, and of strain 321 from Mexico with strain 209 from France. Similar results were obtained in the present study and in our previous studies (Przyboś *et al.* 2002, 2007). Autogamy was observed in Madagascar and Thailand strains after 12–16 fissions (the growth rate of the cultures was 4 fissions per day) in daily isolation lines cultivated at 27°C, according to Sonneborn's method (1970). It is noteworthy that the majority of known *P. tredecaurelia* strains are restricted to the even mating type. These are strains from Thailand, Madagascar (both localities), Israel, and Mexico. Only the strain from France is characterized by and restricted to the odd mating type.

In the present analyses, based on a comparison of rDNA and mtDNA (COI and CytB) fragments, the average genetic distance (uncorrected p-distance) between the studied strains of P. tredecaurelia is

0.000/0.003/0.004 (rDNA/COI/CytB). This means that the studied strains are identical in the compared ribosomal fragments and differ in 5 (COI) and 6 (CytB) nucleotide positions. Variation among all of the studied Paramecium strains is presented in Tables S1–S3 (supplementary material). Previous studies revealed similar, very low variability in P. tredecaurelia strains (Przyboś et al. 2007, Tarcz et al. 2006). For example, in RAPD fingerprint analyses, strains from France and Israel showed a 92% similarity of band patterns, which differed only by the presence of only one band at about 1000 bp in the strain from Israel (Przyboś et al. 2007). The alignment of both rDNA gene fragments containing 3'SSU rDNA-ITS1 and 5'LSU rDNA revealed only one polymorphic nucleotide position which differentiated the strains from Israel and France (Tarcz et al. 2006).

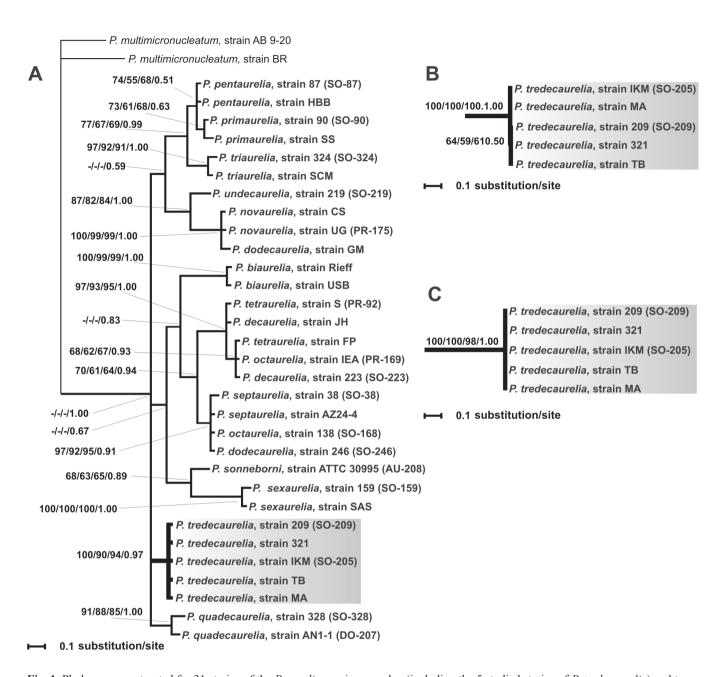


Fig. 1. Phylogram constructed for 31 strains of the P. aurelia species complex (including the 5 studied strains of P. tredecaurelia) and two strains of P. multimicronucleatum used as an outgroup. The trees were constructed on the basis of a comparison of sequences from the ITS1-5.8S-ITS2-5'LSU rDNA fragment (A), COI (B), and CytB (C) using the Bayesian inference method. Bootstrap values for neighbor joining, maximum parsimony analysis, maximum likelihood, and posterior probabilities for Bayesian inference are shown. Bootstrap values smaller than 50% (posterior probabilities < 0.50) are not shown. Dashes represent no bootstrap or posterior value at a given node. All positions containing gaps and missing data were eliminated. Phylogenetic analyses were conducted using MEGA 5.0 (NJ/MP/ML) and MrBayes 3.1.2 (BI).

All P. tredecaurelia strains, the new ones recorded recently from Madagascar and Thailand and the ones known previously from France, Mexico, and Israel, differ only minimally based on the studied DNA fragments

and form a separate and well-supported clade in all the constructed trees (Fig. 1A, B, C). Each tree reveals differences in the mutual relationships of P. tredecaurelia representatives. Thus, it is difficult to hypothesize about the place of origin of *P. tredecaurelia* and the direction in which it spread. Based on over 60 years of sampling for the P. aurelia species complex, it can be concluded that P. tredecaurelia is an extremely rare member of the complex as only 6 strains have been found to date (Rafalko and Sonneborn 1959, Przyboś et al. 2002). We are aware that the tropics and generally the southern hemisphere are poorly studied with regards to the occurrence of the P. aurelia species complex and future investigations may possibly reveal new stands of *P. tredecaurelia*. The present results suggest that in the past the *P. trede*caurelia population (predecessors of the present population) probably went through a bottleneck, and its current distribution is the result of a recent dispersal by natural or anthropogenic factors. Such a low level of variability of the studied sequences despite the huge distances between particular localities of the strains may have also been caused by a slow rate of *P. tredecaurelia* evolution. Catania et al. (2009) claimed that the above phenomenon can be explained by strong selection against nucleotide substitutions at silent sites, which plays a significant role in sharing very similar or even identical haplotypes in distant populations.

Similar examples of low molecular variability have also been described in some ciliates and other protists. Weisse et al. (2008) found that the SSU rDNA and ITS sequences of clones of the freshwater spirotrich ciliate Meseres corlissi originating from distant areas (Austria and Australia) were identical, and the clones differed only slightly in morphology and temperature response. According to the authors, these features were typical of rare species. Also, different morphotypes of tintinnids (ciliates) were found to have identical sequences at the ITS locus by Snoeyenbos-West et al. (2002) (cited in Foissner et al. 2008). In their paper devoted to protist distribution, Bass and Boenigk (2011) presented a study by Logares et al. (2007), which showed that two dinoflagellate morphospecies Scrippsiella hangoei and Peridinium aciculiferum reveal morphological differences, but have identical ITS, 5.8S, ITS2 and partial LSU rDNA sequences.

In contrast to the monophyletic nature of the *P. tredecaurelia* cluster, other species of the *P. aurelia* complex exhibit different levels of intraspecific polymorphism. This was previously revealed by molecular methods based on PCR fingerprinting (Stoeck *et al.* 1998, 2000; Przyboś *et al.* 2007) as well as sequencing gene fragments in several species, e.g., in *P. pentaurelia* (Przyboś *et al.* 2011), *P. sexaurelia* (Przyboś *et*

al. 2010), P. octaurelia (Przyboś et al. 2009). Among the species of the complex, P. dodecaurelia shows a high level of intraspecific variation. It seems to be a polyphyletic species with several haplotypes similar or even shared with other members of the P. aurelia species complex (Przyboś et al. 2012b). Differentiation of strains was also observed in P. quadecaurelia (Przyboś et al. 2013), another rare species of the P. aurelia complex, known only from four localities. Trees based on genome fragments similar to those studied in the present paper showed that *P. quadecaurelia* strains form a monophyletic but differentiated clade. The genetic differentiation among P. quadecaurelia strains was equal to or even greater than the distances between some other *P. aurelia* species. These two rare species of the P. aurelia complex, i.e., P. quadecaurelia and the presently studied *P. tredecaurelia*, also differ in the manner of their mating type inheritance system. The former possesses a caryonidal system, while the latter has a synclonal one (Sonneborn 1975). However, there is no scientific evidence for a clear connection between the system of mating type inheritance and the rate of speciation within species.

The present results also reveal a notable discordance between the lack of (rDNA) or very low (mtDNA) sequence variability in P. tredecaurelia strains and the low viability of F_2 inter-strain hybrids. Currently, it is difficult to determine whether this is due to the gradual appearance of a reproductive barrier between the studied strains or rather the result of certain characteristics of strain 209 from France: this strain was the only representative of the mating type O (odd) used in all the genetic crosses (Table 3). Future sampling may lead to finding other strains with an odd mating type, which would allow us to test whether the low viability of the F_2 generation observed in the present study is a characteristic feature of P. tredecaurelia.

Acknowledgments. This study was carried out in the context of the CNRS-supported European Research Group "Paramecium Genome Dynamics and Evolution" and the European COST Action BM 1102.

REFERENCES

Allen S. L., Farrow S. W., Golembiewski P. A. (1973) Esterase variations between the 14 syngens of *Paramecium aurelia* under exenic growth. *Genetics* **73:** 561–573

Aufderheide K. J., Daggett P.-M., Nerad T. A. (1983) *Paramecium sonneborni* n. sp., a new member of the *Paramecium aurelia* species complex. *J. Protozool.* **30:** 128–131

- Barth D., Krenek S., Fokin S. I., Berendonk T. U. (2006) Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. J. Eukaryot. Microbiol. **53:** 20-25
- Barth D., Przyboś E., Fokin S. I., Schlegel M., Berendonk T. U. (2008) Cytochrome b sequence data suggest rapid speciation within the Paramecium aurelia species complex. Mol. Phylogenet. Evol. 49: 669-673
- Bass D., Boenigk J. (2011) Everything is everywhere: a twenty-first century de-/reconstruction with respect to protists. In: Biogeography of Microscopic Organisms: Is Everything Small Everywhere? (Ed. D. Fontaneto). The Systematics Association, Cambridge University Press, New York, 88–110
- Boenigk J., Ereshefsky M., Hoef-Emden K., Mallet J., Bass D. (2012) Concepts in protistology: species definitions and boundaries. Eur. J. Protistol. 48: 96-102
- Bull J. J, Huelsenbeck J. P, Cunningham C. W, Swofford D. L, Waddell P. J. (1993) Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384-397
- Catania F., Würmser F., Potekhin A. A., Przyboś E., Lynch M. (2009) Genetic diversity in the Paramecium aurelia species complex. Mol. Biol. Evol. 26: 421-431
- Chen T. T. (1956) Varieties and mating types in Paramecium bursaria. II. Variety and mating types found in China. J. Exp. Zool. **132:** 255–268
- Duff R. J., Ball H., Lavrentyev P. J. (2008) Application of combined morphological-molecular approaches to the identification of planktonic protists from environmental samples. J. Eukaryot. Microbiol. 55: 306–312
- Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376
- Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791
- Foissner W., Chao A., Katz L. A. (2008) Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodiversity Conserv. 17: 345-363
- Greczek-Stachura M., Potekhin A., Przyboś E., Rautian M., Skoblo I., Tarcz S. (2012) Identification of Paramecium bursaria syngens through molecular markers - comparative analysis of three loci in the nuclear and mitochndrial DNA. Protist 163: 671-685
- Hall T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
- Hori M., Tomikawa I., Przyboś E., Fujishima M. (2006) Comparison of the evolutionary distances among syngens and sibling species of Paramecium. Mol. Phylogenet. Evol. 38: 697–704
- Kreutz M., Stoeck T., Foissner W. (2012) Morphological and molecular characterization of Paramecium (Viridoparamecium nov. subgen.) chlorelligerum Kahl 1935 (Ciliophora). J. Eukaryot. Microbiol. 59: 548-563
- Logares R., Rengefors K., Kremp A., Shalchian-Tabrizi K., Boltovskoy A., Tengs T., Shurtleff A., Klaveness D. (2007) Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution? Microb. Ecol. 53: 549-561
- Nei M., Kumar S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York.
- Page R. D. M. (1996) TreeView: An application to display phylogenetic tress on personal computers. *Bioinformatics* **12:** 357–358
- Przyboś E., Barth D., Berendonk T. U. (2010) Paramecium sexaurelia – intra-specific polymorphism and relationships with other

- Paramecium aurelia spp., revealed by cytochrome b sequence data. Folia biol. (Kraków) 58: 55-60
- Przyboś E., Hori M., Fokin S. I. (2003) Strains of Paramecium quadecaurelia from Namibia, Africa; genetic and molecular studies. Acta Protozool. 42: 357-360
- Przyboś E., Maciejewska A., Skotarczak B. (2006) Relationships of species of the Paramecium aurelia complex (Protozoa, Ph. Ciliophora, Cl. Oligohymenophorea) based on sequences of the histone H4 gene fragment. Folia biol. (Kraków) 54: 37-42
- Przyboś E., Nevo E., Pavliček T. (2002) Paramecium tredecaurelia of the Paramecium aurelia complex in Israel. Folia biol. (Kraków) 50: 221–222
- Przyboś E., Prajer M., Greczek-Stachura M., Skotarczak B., Maciejewska A., Tarcz S. (2007) Genetic analysis of the Paramecium aurelia complex by classical and mlecular methods. Syst. Biodivers. 5: 417-434
- Przyboś E., Tarcz S., Dusi E. (2013) New Paramecium quadecaurelia strains (P. aurelia spp. complex, Ciliophora) identified by molecular markers (rDNA and mtDNA). Eur. J. Protistol. 10.1016/j.ejop.2012.11.001
- Przyboś E., Tarcz S., Greczek-Stachura M., Surmacz M. (2011) Polymorphism of Paramecium pentaurelia (Ciliophora, Oligohymenophorea) strains revealed by rDNA and mtDNA sequences. Eur. J. Protistol. 47: 138-143
- Przyboś E., Tarcz S., Potekhin A., Rautian M., Prajer M. (2012a) A two-locus molecular characterization of Paramecium calkinsi. Protist 163: 263-273.
- Przyboś E., Tarcz S., Prajer M., Surmacz M., Rautian M., Sawka N. (2012b) Does high intraspecific variability of two genome fragments indicate a recent speciation process of Paramecium dodecaurelia (P. aurelia species complex, Ciliophora, Protozoa)? Syst. Biodivers. 10: 289-304
- Przyboś E., Tarcz S., Schmidt H., Czubatinski L. (2009) First stand of Paramecium octaurelia in Europe and molecular characteristics of other known strains of this species. Folia biol. (Kraków) **57:** 65–70
- Rafalko M., Sonneborn T. M. (1959) A new syngen (13) of Paramecium aurelia consisting of stocks from Mexico, France and Madagascar. J. Protozool. 6 (suppl.): 30
- Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574
- Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.
- Schlegel M., Meisterfeld R. (2003) The species problem in protozoa revisited. Eur. J. Protistol. 39: 349-355
- Snoeyenbos-West O. L., Salcedo T., McManus G. B., Katz L. A. (2002) Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci. Int. J. Syt. Evol. Microbiol. 52: 1901–1913
- Sonneborn T. M. (1950) Methods in the general biology and genetics of Paramecium aurelia. J. Exp. Zool. 113: 87-147
- Sonneborn T. M. (1970) Methods in Paramecium research. In: Methods in Cell Physiology, vol. 4, (Ed. D. M. Prescott). Academic Press, New York, London, 241-339
- Sonneborn T. M. (1974) Paramecium aurelia. In: Handbook of Genetics, vol. 2, (Ed. R. C. King). Plenum Press, New York,
- Sonneborn T. M. (1975) The Paramecium aurelia complex of fourteen sibling species. Trans. Amer. Micros. Soc. 94: 155–178

- Stoeck T., Przyboś E., Schmidt H. J. (1998) Combination of genetics with inter- and intra-strain crosses and RAPD-fingerprints reveals different population structures within the *Paramecium aurelia* species complex. *Eur. J. Protistol.* 34: 348–355
- Stoeck T., Przyboś E., Kusch J., Schmidt H. J. (2000) Intra-species differentiation and level of inbreeding of different sibling species of the *Paramecium aurelia* complex. *Acta Protozool*. 39: 15–22
- Strüder-Kypke M. C., Lynn D. L. (2010) Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. *Syst. Biodivers.* 8: 131–148
- Tait A. (1970) Enzyme variation between syngens in *Paramecium aurelia*. *Biochem. Genet.* **4:** 461–470
- Tamura K., Nei M., Kumar S. (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. *Proc. Natl. Acad. Sci. U.S.A.* 101: 11030–11035
- Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28: 2731–2739
- Tarcz S. (2012) Intraspecific differentiation of *Paramecium novau-relia* strains (Ciliophora, Protozoa) inferred from phylogenetic analysis of ribosomal and mitochondrial DNA variation. *Eur. J. Protistol.* 49: 50–61

- Tarcz S., Potekhin A., Rautian M., Przyboś E. (2012) Variation in ribosomal and mitochondrial sequences demonstrates the existence of intraspecific groups in *Paramecium multimicronucleatum* (Ciliophora, Oligohymenophorea). *Mol. Phylogenet. Evol.* 63: 500–509
- Tarcz S., Przyboś E., Prajer M., Greczek-Stachura M. (2006) Intraspecific variation of diagnostic rDNA genes in *Paramecium dodecaurelia*, *P. tredecaurelia* and *P. quadecaurelia* (Ciliophora: Oligohymenophorea). *Acta Protozool.* 45: 255–263
- Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific penalties and weight matrix choice. *Nucl. Acids Res.* 22: 4673–4680
- Weisse T., Strüder-Kypke M. C., Berger H., Foissner W. (2008) Genetic, morphological, and ecological diversity of spatially separated clones of *Meseres corlissi* Petz & Foissner, 1992 (Ciliophora, Spirotrichea). J. Eukaryot. Microbiol. 55: 257–270
- White T. J., Bruns T., Lee S., Taylor J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, (Eds. M. A. Innis, D. H. Gelfand, J. J Sninsky, T. J White). Academic Press, Inc., New York, 315–322

Received on 3^{rd} January, 2013; revised on 27^{th} March, 2013; accepted on 11^{th} April, 2013