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In this paper a framework for the real-time trading of budgeted emission rights between 

a fleet of participating vehicles is presented. The trading problem is formulated as a utility 

maximization or as a utility fairness problem, which can be solved in real-time either in a 

centralized or in a distributed manner. In both cases, we illustrate the basic issues that 

arise when such a framework is realized in practice, and we show the efficacy of the 

approaches by providing several simulation examples and a realistic case study. 

 

1. Introduction 

Within the context of smart-cities research [1-2] collaborative mobility is rapidly becoming one 

of the main growth areas in fields such as: computer science; electrical engineering; applied 

mathematics; operations research; networking, as well as transportation engineering. Motivated 

by the fact that road networks in our cities are often hugely inefficient, and by recent advances 

in technologies such as communication networks, vehicles, optimization, the provision of 

products related to smart mobility is expected to develop into a multi-billion dollar industry 

over the next decade [3-4]. 

Cooperative mobility is not a new topic in transportation research. The notion of vehicles 

communicating with other vehicles and with infrastructure (V2X) to improve the quality of 

service (QoS) to the vehicle owner is closely related to the area of transport telematics [5]. 

Transport telematics has been an active area of research for several decades but its impact has 

always been limited by available technologies. However, due to the aforementioned advances, 

and strict new guidelines from regulatory bodies, the interest in collaborative mobility has never 

been greater. Roughly speaking, transport related regulation is driven by four main factors; 

congestion on our roads (and related inefficiencies); vehicular safety; greenhouse gas 

emissions; and the quality of air in our cities. Each of these issues makes a compelling case for 

investing in smarter transportation systems. Congestion is not only unpleasant to experience, 

but it is also a major inhibitor of economic growth [6]. Similarly, car-related safety issues, both 

for occupants and other road users, are also a major issue [7]. Also, in the EU, transportation 

accounts for 20% of greenhouse gas emissions. However, perhaps the most compelling reason 

to revisit our concept of personal mobility, is due to the fact that the internal combustion engine 

(ICE) is extremely damaging to human health [8]. By-products of the ICE include: CO; NOx; 

SO; Ozone; Benzene; PM10; and PM25 [9]. 

Before proceeding, it is worth noting that governments and municipal authorities have already 

started to respond to the air-quality issue. Cities in some countries ban certain vehicles from 

densely populated areas (low emission zones), or adapt speed limits to respond to pollution 

peaks. Going further in this direction, strict measures are being planned to ban the ICE from 
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our cities in the near future. Degradation of air quality results from the aggregate effect of 

vehicles. But today’s instruments as the ones introduced before are per-vehicle measures. 

Enforcing per-vehicle measures (unless we ban vehicles all together), takes no account of this 

effect. Second, contemporary measures are open-loop measures. The regulation is the same 

irrespective if there is one vehicle in a spatial area (in the middle of the night), or if there are 

millions of vehicles in the same area. In this context it makes little sense restricting vehicle 

access when there is little pollution (one vehicle), but it makes great sense when there are many 

vehicles as critical levels of pollution are due to aggregated effect.  Much of the current 

literature addressing traffic related air pollution focuses on shifting mobility away from dirty 

modes of transportation. In this context an effort is made to improve the perceived and actual 

QoS of electric vehicles and bike sharing systems [42-43]. In a similar manner intermodality is 

advertised as a way to simultaneously decrease inefficiencies in different transport modes [44]. 

Another focus is on developing automated driving systems that take the sometimes erratic and 

wasteful human behavior out of the picture [45]. 

The aggregate effect of vehicles in a geographic region has been recently addressed in [41]. We 

extend the approach by introducing a method to implement a perfect fairness, such that all 

vehicles – considering individual utility functions – experience the same utility from the system. 

But we also broaden the perspective and include the optimization of a vehicle fleet’s emission, 

disregarding their geographic positioning. Here, the basic assumption is that a fleet operator 

wishes to control the aggregate effect of a group of vehicles (e.g., pollution), so that some 

(other) utility function of interest for the fleet operator is maximized. Note that many problems 

in Intelligent Transportation Systems (ITS) and logistics research can be formulated in this 

manner. As a practical example, dispatching companies such as DHL, Schenker, or UPS, are 

usually requested to monitor and control their fleets in regard to their ecological impact. Such 

companies, do already provide information about emissions associated with single trips [34]. 

Moreover, there are products from such companies that offer customers the possibility to choose 

whether they are interested in shipping their good either minimizing delivery time or total 

emissions. Another example arises when policy makers wish to determine a speed limit for a 

road segment, such that pollution levels are below or at a certain level, and subject to this 

constraint we wish to minimize fuel consumption. Advances in V2V technologies, 

communications, and in distributed optimization, allow us to implement such a system in real 

time without the need for significant centralized processing, and to respond to changing vehicle 

density levels. We may expect that the demand for such algorithms to increase as OEMs (and 

cities) will be asked to provide information about the environmental impact of products 

throughout their lifecycle [35] (and in the case of municipalities, air quality). Furthermore, 

customers of such services often pay for different levels of service. Such a degree of freedom 

can be usefully adopted to make packets requiring a high level of service “borrow” emissions 

from the other packets, with the objective of maintaining the overall emissions per fleet constant 

[36]. In this paper, we illustrate some algorithms that can be utilized for this purpose. 

To summarize, our main objective in this paper is to present a method to regulate the aggregate 

effect (e.g., pollution) of a fleet of vehicles, so that the utility (benefit) to the vehicle owners is 

at all times maximized. In our particular application examples, we show how a fleet of hybrid 

vehicles has a total budget of CO2 they can emit. Thus, in this example we control the aggregate 

emission of CO2. Clearly, there are many ways to achieve this, and this non-uniqueness creates 

an opportunity to regulate and optimize simultaneously [9-12]. The present setting offers the 

opportunity of not only regulating, say, aggregate CO2, but of doing this in a manner that 

another objective (e.g., maximization of QoS, minimization of CO or PM production) is 

achieved at the same time.  

Specifically, in this manuscript: (i) we formulate the emissions problem, (ii) we discuss 

communication constraints, (iii) we present a hybrid algorithm, and (iv) we show some 



simulations. Our paper follows closely [9] but goes beyond this work by developing algorithms 

that have much faster convergence rates. The paper is structured as follows. In Section II we 

shall discuss the typical constraints that arise in cooperative mobility settings. These constraints 

guide the type of algorithms that can be deployed in such environments.  

In Section III we formally state our problem, and in Section IV we will discuss algorithms for 

solving utility maximization problems in vehicular environments. Simulation results are 

presented in Section V, where we also develop the case study given in [41] to include utility 

fairness constraints. 

 

 

2. Background 

 

We consider the following problem: 

 𝑚𝑎𝑥∑𝑓𝑖(𝐷𝑖)

𝑁

𝑖=1

 (1) 

subject to the constraint that 

 ∑𝐷𝑖 = 𝐶

𝑁

𝑖=1

 

 

(2) 

where the functions fi(Di) map the scalar Di to some utility scalar. As we have discussed, many 

problems in an ITS context map to this scenario. In our context C is a pollution budget assigned 

to a group of vehicles, and Di is the pollution budget assigned to vehicle i, and fi(Di) is the 

benefit of the i’th vehicle using the allocation Di. A rich repertoire of techniques exist to deal 

with such problems and many of these have been successfully applied in other application 

domains [23]. Indeed, given reasonable assumptions on the fi(Di) a centralized optimization is 

always possible. Nevertheless, despite the availability of such techniques, solving problems that 

arise in an ITS context are very challenging due to a number of factors. We now summarise 

some of the basic issues considering the specific ITS context. 

1. Scale: ITS problems tend to be characterized by a large scale level of participation. 

Optimization problems over very large graphs are considered to be some of the most 

challenging in the theory of Operations Research [13]. 

2. Non-homogeneous levels of vehicle participation: ITS problems are also characterized by 

varying level of vehicle participation as vehicles leave and join the optimization problem.  

Algorithms deployed to solve the maximization problem must also respect constraints imposed 

by the communication capabilities of the ITS system. 

3. I2V broadcast: Here vehicles listen to a broadcast from a centralized node. This scenario, 

the Infrastructure-to-vehicle broadcast, is probably the most common and well-established 

communication link in our context. The required technologies to implement I2V broadcasts 

are already available in most vehicles and a feature of broadcasting is, that the total 

communication effort is scalable and does not depend on the number of vehicles in the fleet. 

4. I2V unicast: Direct (IP) communication from the central infrastructure (e.g., a fleet 

management back-office) to individual users using cellular networks is a feature, which 

could not be implemented easily today, due to network address translation (NAT) traversal 

problems. Available technologies for NAT traversal require extra infrastructure and 

communication protocols or control over network infrastructure. 



5. V2I unicast: In contrast to unicast I2V, communicating into the other direction is 

technically easy to implement. A standard cellular communication network is required and 

the communication effort increases linearly with the number of vehicles. 

6. Asymmetric and symmetric V2V: Vehicle-to-vehicle communication using IEEE 

802.11p technology is currently under standardization but not yet deployed. V2V 

communication may be classified as being symmetric and asymmetric, where symmetry 

refers to a situation where vehicle i communicates with vehicle j if and only if j can 

communicate with i.  

A further issue that arises in ITS applications is the ability to solve large scale optimization 

algorithms. For example, in some situations it may not be possible or desirable to solve 

optimization problems in a centralized manner.  

7. Computation: A basic question concerns as to whether the central infrastructure is capable 

of solving large scale optimization problems and communicating bidirectionally to mobile 

vehicles at relatively high sampling rates. 

Finally, a number of very important performance constraints also arise in ITS applications. 

These include the following: 

8. Robustness to failure and uncertainty: A basic requirement is that the optimization 

algorithm should be robust with respect to the effect of failures in the system. Also, in many 

situations, utility functions are not known exactly.  

9. Speed of convergence: A further requirement, in the context of decentralized algorithms, 

is that algorithms should converge to the optimal solution reasonably quickly. 

10. Scalability: Finally, deployed algorithms should function satisfactorily irrespective of level 

of vehicle participation. 

Given the above considerations, the question now arises as to the type of solution that is suitable 

for ITS applications. Roughly speaking, three choices are available to us: 

1. Fully centralized solutions: involve solving the optimization problem defined in Equation 

(1) and Equation (2) centrally. Clearly, the requirements to implement such a solution 

involve perfect knowledge of the fi(Di), bi-directional communication between 

infrastructure and all vehicles, and significant computational ability of the centralized node. 

Advantages of the centralized approach include speed of convergence (instantaneous) and 

that there is no V2V communication requirement. Disadvantages of this approach include 

sensitivity to node failure, sensitivity of solutions to noise and uncertainty, and the 

feasibility of centralized approaches in large scale environments. 

2. Fully decentralized solutions: involve solving the optimization problem defined in 

Equations (1-2) using local computation and communication only. Clearly, such an 

approach involves a V2V communication capability requirement, and advantages include 

that there is no need for a centralized optimization step, the ability to deal with uncertainty 

in the fi(Di), and the robustness with respect to node failures. Disadvantages include the 

very slow convergence rates - especially in large scale applications. 

3. Hybrid solutions: involve using a small amount of centralized 

computation/communication to speed up the convergence of decentralized solutions and to 

mitigate some of the constraints of ITS environments. In the next section we shall present 

two such algorithms. 

2.1 Related work 

Before proceeding it is worth noting that similar problems have been addressed elsewhere in 

the literature, as well as in a cooperative mobility context; see [9, 10-12, 14-15] where some 



related ideas are realized in the context of hybrid vehicles. Cooperative sensing, control and 

optimization, are also closely related to many of the most established techniques in the control 

systems community that have been applied to similar problems. Amongst these related areas, 

distributed control and optimization is perhaps the most relevant one; see [16-18] and the 

references therein. Other related work includes consensus, flocking and multi-agent systems 

[19-20]. Distributed resource allocation is also very relevant with the work [21-22] particularly 

interesting, as [15, 23-26], on implicit consensus. Our proposed work will build heavily on this 

last one, and the more recent [12, 41]. Specific examples of other related work include [27] 

where a fully centralized system was implemented to allocate a (limited) number of parking 

spaces to users respecting their individual (multidimensional) preferences. Drivers shared their 

utilities with the central management center, which maximized the sum of individual utilities 

by allocating well-suited parking spaces to them. Similarly, in [23] a fully distributed approach 

was introduced to distribute load on CPU clusters with the objective to lower aggregate power 

consumption and thus to lower costs. CPUs are able to adjust speed based on demand and 

performance constraints. 

The above discussion presents only a very brief overview of related work. Nevertheless, the 

need for new algorithmic developments is highlighted by noting the constraints under which 

each of the studies was conducted. For example, the classical distributed control techniques 

found in the literature are unable to deal with the massive scale encountered in a cooperative 

mobility setting. Similarly, the work by Stanojevic assumes symmetric communication 

channels, and this is clearly very restrictive in a cooperative mobility setting. This assumption 

is later removed by Knorn, but at the cost of very slow algorithmic convergence. Finally, the 

work by Geng [27] assumes massive centralized computational power and perfect knowledge 

of the agents utility when computing the utility maximization step. Our objective is to now 

develop algorithms which alleviate all or most of these assumptions. 

3. Problem Statement and Assumptions 

Given a network of N nodes (vehicles) with individual utility functions fi(Di), and a constraint 
N

i
i 1

D C


 , find an allocation Di that solves  
N

i i
i 1

max f D


   subject to 
N

i
i 1

D C


 . 

Comment: In some applications we may be interested in solving a minimization problem. 

3.1 Assumptions 

The following assumptions appear to be a reasonable reflection of current and near future state-

of-the-art in ITS systems, and suggest a hybrid solution whereby the optimization is solved 

using decentralized computation with aid of limited signaling from the centre.  

 Utility functions fi(Di) are concave. If we are interested in minimizing the sum of utility 

functions (e.g., minimum CO), then we assume that the utility functions are convex. In 

addition, the precise nature of the fi(Di) may be unknown, but the vehicles have access to a 

measurement or a-posteriori calculation based on observable variables of fi(Di) at each time 

step. In some cases, e.g. the utility fairness case, we will also assume that the utility 

functions are increasing (decreasing) in the maximization (minimization) case. 

 We assume that an optimal and feasible solution exists. For instance, this corresponds to 

assuming that vehicles have the ability to achieve the optimal QoS or to produce the optimal 

quantity of CO emissions. 

 We assume that all vehicles can communicate directly (or indirectly through a 

measurement) with a centralized infrastructure. 

 We assume that the centralized infrastructure may broadcast information to the vehicles, 

but not communicate directly with each vehicle.  



3.2 Solution 

Equations (1) and (2) define a classical optimization problem whose solution may be found 

with the aid of Lagrange multipliers. Let  be the Lagrangian associated with the 

problem, i.e. 

  (3) 

The optimal solution of the maximization problem is given by finding the allocation *

i
D  such 

that  * *

i i i
f D / D , i 1,...,N      , subject to the linear constraint being satisfied. The form of this 

equation suggests two (hybrid) approaches to solve the maximization problem. First, it suggests 

that the maximization problem can be solved using feedback in combination with local on-

vehicle computational power. Namely, by regulating the outputs of the vehicle functions in such 

a way that they follow the λ, which is broadcasted from a centralized infrastructure. The task 

of the central infrastructure then becomes to find the appropriate multiplier λ so that the utility 

maximization problem can be solved. As we shall see, this can be solved by embedding the 

multiplier as part of a feedback loop as is done in subgradient methods. This approach requires 

no V2V or I2V unicast capabilities, can deal with uncertainty in the utility functions, and 

requires no centralized computation. A disadvantage of the approach is that it is not robust to 

failure of the centralized node and selecting the control gains can be an issue. A second 

approach is based on the fact that optimality is also achieved when each of the vehicles achieve 

consensus of the values of the functions . This observation was first 

exploited in [23] in the context of symmetric communication graphs, and later extended to the 

asymmetric case in [15], and to the case where the outputs of the vehicle are adjusted as part of 

a feedback loop. Advantages of these approaches are that no I2V unicast capabilities are 

required, and the techniques can deal with uncertainty in the utility functions. In addition no 

centralized computation is required, and the technique is robust with respect to node failure. 

4 Algorithms 

4.1 Algorithm I. Feedback control and local computation 

The basic idea in Algorithm 1 is to use an integral control to asymptotically find the Lagrange 

multiplier λ*. For this purpose, the centralized infrastructure updates iteratively according to: 

  (4) 

where we have assumed that the centralized infrastructure either receives communication of the  

 i
D k  from each vehicle, or measures it. Each node (vehicle) receives a broadcast of  and 

updates its utility (implicitly) according to: 

  i i i i i i
D ( k 1) D ( k ) ( k ) f ( D ( k )) / D ( k )      . (5) 

Roughly speaking, this corresponds to a classic subgradient method from optimization theory, 

see [28-29] and the gains can be selected using methods from nonlinear control theory. The 

convergence of the algorithm, and the choice of the model parameters is beyond the scope of 

this paper. Inappropriate choice of gains will lead to oscillations which is a problem for some 

applications (leading to breakage of mechanical systems) [GIVE CITATION]. In otherwords, 

the system converges to a ball in the neighbourhood of the optimal point. In our case oscillations 

are not a problem; rather they lead to a reduction in performance [28]. The convergence 

argument and choice of gains follows from standard systems theory ideas [16, 23, 33] and 

appropriate assumptions on the nonlinearities. Typically, one assumes sector bounds for the 

nonlinear functions. Note that Algorithm 1 is a variant on a standard optimisation algorithm, 

the dual subgradient descent algorithm, where we replaced the primal optimisation step with a 

second ascend type update. This kind of algorithms is sometimes denoted as saddle point 

algorithms, see [29]. 

),,...,( 1 nDDH

).()(=),,...,(
1=1=

1 CDDfDDH i

N

i

ii

N

i

n   

iiiii DDfDg  /)(=)(

1

( 1) ( ) ( ) ,
N

i

i

k k C D k  


 
    

 


)(k



 

4.2 Algorithm II. Implicit consensus with input 

As previously mentioned, it was observed in [23] that utility maximization problems can be 

formulated as a consensus problem where all agents achieve the same value of the derivative 

 of their own utility function. Note that this solution is particularly attractive 

as it can be realized in a fully decentralized manner. However, consensus based solutions 

usually require symmetric communication graphs, to guarantee that  
N

i
i 1

D k C


  for all k, and 

might suffer from other convergence related issues. Some of these issues are addressed in [15] 

in which a basic feedback error signal,  
N

i
i 1

C D k


 , from the infrastructure is used to yield a 

modified integral control of the following form: 

  (6) 

in which 
i

  is the set of nodes that send information to node i. Note that if node i has Ni 

neighbors that can send information to node i, then Equation (6) can be rewritten as  

  (7) 

Thus, by denoting εi=ε·Ni,the problem can be stated in a consensus-like form, as: 

 

 

𝐷𝑖(𝑘 + 1) = 𝐷𝑖(𝑘) + 𝜀𝑖 (𝑔𝑖(𝐷𝑖(𝑘) −
1

𝑁
∑𝑔𝑗(𝐷𝑗(𝑘))

𝑗∈ℵ𝑖

)+ 𝛾(𝐶 −∑𝑔𝑗(𝐷𝑗(𝑘))

𝑁

𝑞=1

) (8) 

where j ranges over all neighbours of i. Roughly speaking, the first term of the update equation 

(8) is used to achieve a consensus around the optimal value, while the second term ensures that 

the global equality constraint is satisfied.  

As before, the stability and convergence properties of Algorithm II, and the choice of γ and ε 

can again be determined using ideas from systems theory (see [25]). While a proper discussion 

of this issue is again beyond the scope of the present paper we note that Algorithm 2 requires 

V2V communication, and has slow convergence properties [9]. As we outline extensions or 

different version of this approach, we refer to this algorithm in the following as algorithm 2.a. 

Comment: The sign of the parameter ε in Equations (6-8) depends on the choice of the 

functions g. In particular, the sign will be positive if functions g are decreasing, and negative if 

functions g are increasing. Note that different policies can be implemented by replacing 

functions  in Equation (8) with other appropriate functions. For example, if 

we use gi(Di)=fi(Di) instead of the partial derivatives, a utility fairness policy will be 

implemented. A discussion on the properties of the candidate functions gi is beyond the 

purposes of this paper, but conditions on the functions gi and a related discussion can be found 

in [15] and [23]. 

Modified algorithm: One of our contributions in this paper is to present a modification to 

Algorithm II (Algorithm II.a) to speed up convergence, which can be outlined as: “At each time 

step the vehicles communicate the maximum and minimum values of  i i i
f D ( k ) / D ( k )   to the 

central infrastructure. These values are then broadcasted to all nodes who then augment their 

neighborhood information to encorporate the new values”. Simulation results show that speed 
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of convergence is indeed dramatically increased, and in the next paragraph we give a 

plausibility argument of why this occurs. We refer to this modified algorithm as algorithm II.b 

The completely distributed version without any feedback from the infrastructure with an update 

function shown in Equation 9 is referred as Algorithm II.c. 

 𝐷𝑖(𝑘 + 1) = 𝐷𝑖(𝑘) + 𝜀𝑖 (𝑔𝑖(𝐷𝑖(𝑘) −
1

𝑁
∑ 𝑔𝑗(𝐷𝑗(𝑘))

𝑗∈ℵ𝑖

) (9) 

 

4.3 Some details of Algorithm 2 

As simulation examples show, the implicit consensus algorithm appears to reach convergence 

in a faster manner when the maximum and the minimum value of the second term in Equation 

(8) are also revealed to the other nodes. This result is not totally unexpected. It is well known 

that in undirected graphs, the second smallest eigenvalue of the graph Laplacian, also called 

algebraic connectivity, quantifies the speed of convergence of consensus algorithms, see for 

instance [37]. Also, it is well known that in this case the algebraic connectivity of a new graph 

G2, a(G2), obtained from adding a new edge to graph G1 is characterised by: 

       1 2 1
a G a G a G 2    (10) 

thus establishing that adding a new edge can potentially increase the speed of convergence, or 

at least does not decrease it [38]. Note that having two more nodes broadcasting their own value, 

as suggested from the improvement to Equation (8), corresponds in practice to adding up to 

2·(n-1) new edges. 

The case of directed graphs is notoriously more difficult to handle, and there is not even a 

unique definition of the graph Laplacian. As a consequence, there are no theorems similar in 

spirit to Equation (8), at least to the knowledge of the authors, however the following result 

from [39] 

    v w 0 0
a G min d (v ) d ( w)


   (11) 

where v and w are two nodes of the graph G, can be used to state that increasing the outdegree 

do of some nodes of the graph (as in practice occurs when the algorithm is modified to circulate 

the minimum and the maximum values) does also increase (or at least, does not decrease) an 

upper bound of the algebraic connectivity of the graph. 

Finally, we also mention that similar strategies to improve the convergence of network 

consensus algorithms in directed graphs were also devised in [40], where the authors claim that 

having as many as possible vertices with the maximum out-degree of n-1, and having the in-

degree of each vertex around m/n, where m is the number of edges and n that of nodes, can 

improve the convergence speed. 

 

5 Simulations 

5.1 Utility minimization 

In the first simulation, we assume that a fleet of 20 hybrid vehicles has a total budget of CO2 

they can emit, and the objective is to minimize the total quantity of emitted PM. Furthermore, 

as in [15], we assume that vehicles can regulate the quantity of emissions by deciding which 

fraction of the desired speed is supplied by the ICE or by the electric motor. This is consistent 

with a power split hybrid vehicle. In our simulations, we compute emissions using a simple 

“average speed model”, and data taken from [30] set in an urban setting where vehicle speeds 

vary between 10 and 50 Km/h. Then, according to the data from [30] (vehicle code R019, 

corresponding to petrol LDVs with an ICE equivalent of class EURO4, data can be found on 



page 164 and 106 for CO2 and PM respectively), one can approximate the relationship between 

PM and CO2 as  

   2

2 2 2
PM CO 50CO 19CO 6.4   , (12) 

where PM is expressed in mg/km and CO2 in kg/km, which is a good approximation for speeds 

included between 10 and 50 Km/h. Our objective is thus  
N

( i )

i 2
i 1

min f CO


   subject to 
N

( i )

2
i 1

CO C


 , 

where C is the overall CO2 budget allocated to the fleet of vehicles, and ( i )

2
CO   is the amount of 

CO2 allocated to the i’th vehicle. Note that this problem is equivalent to the one described by 

Equations (1-2) which has already been discussed in the previous sections. We assume that the 

vehicles have slightly different parameters, due to characteristics specific of the particular 

vehicle (e.g., brand, age), and we use the parameter values 0.1   and 0.01  . Figure 1 shows 

how the CO2 budget is shared among the fleet of vehicles in order to minimize PM emissions 

using Algorithm II.a.  

  

Fig. 1. Figure 1.a shows how the CO2 budget is shared among the fleet of vehicles in 

order to minimize PM emissions. At the same time, the CO2 budget is asymptotically 

respected, Figure 1.b. 

 

5.2 Utility fairness 

The objective of the previous simulation was to minimize the production of PM while keeping 

the total amount of CO2 equal to a desired threshold. However, such an optimal solution might 

be unfair in some circumstances. In fact, in some situations it may be of interest to make all 

vehicles produce an equal amount of pollution. In many countries road users pay a flat fee for 

road useage irrespective of the damage that they are doing to the environment (road tax). The 

idea here is to make users share the available budget fairly, and to implicitly make those cars 

that are dirty pay more by forcing them to use more of their electrical energy budget. In this 

situation dirty vehicles pay more by using more electrical vehicle energy (thus they are forced 

to recharge earlier). This idea is easily accommodated in our framework. In the next simulation 

we are therefore interested in making the vehicles produce the same quantity of PM, while still 

respecting the total CO2 budget. While such a solution is clearly not overall optimal for the 

environment (i.e., more PM than before is overall produced), it provides a solution that is fairer 

for the hybrid vehicle owners.  

We now compare the three algorithms discussed in Section IV (algorithm 2.a., 2.b and 2.c), and 

for simplicity, we assume that the utility function of node i is given by a function of the form 

i i i
f log D , which is increasing and concave. The choice of this function is motivated by 

dispatch type problems where economic utility is an increasing function of allocated emissions. 

Also, we initially consider    i i i i
g D(k ) f D(k ) .  



Figure 2 compares the performance of Algorithm I (Figure 2.b), Algorithm 2.c (Figure 2.b), 

and Algorithm 2.b (Figure 2.d) in a simulation example involving 41 overall vehicles, with a 

communication graph shown in Figure 2.a. In the described example, parameters ε and γ of 

Equation (6) in the distributed algorithms are chosen as 0.002 and 0.0024 respectively. In the 

case of the centralised algorithm, µ in Equation (4) is chosen as 0.01, while βi of Equation (5) 

is chosen equal to 0.02. We further assume that the budget C is initially equally divided between 

the vehicles. In the shown example, we assume that vehicles are able to communicate along the 

roads, while buildings do not allow vehicles travelling along different roads to communicate 

with each other. Note the increased convergence speed in Figure 2.d over that in Figure 2.b. 

2.a 

 

2.b (Algorithm II.a or II.b?) 

 

 

2.c (Algorithm II.c) 

 

 

2.d (Algorithm I) 

 

Fig. 2: The CO2 budget is shared in such a way to equalize the production of PM. In Fig. 

2.d the infrastructure communicates the value of λ(k) as explained in Algorithm I, and 

the vehicles do not communicate among themselves; in Fig. 2.c there is no I2V 

communication (Algorithm II.c), and vehicles can communicate only with the 

neighbouring vehicles, see equation (9); in 2.b vehicles further receive some more 

information from the infrastructure as explained in Algorithm II.b (or is it Algorithm 

II.a???). Note that this last opportunity algorithm improves the time of convergence of 

the hybrid algorithm with respect to II.d. 

However, making all vehicles produce the same amount of pollution might not be itself a fair 

choice in some circumstances. For instance, vehicles that travel longer distances should be 

allowed to pollute more. In this case, we take a different fairness approach, and choose 

, as discussed in Section 3.2 and 4.2. Accordingly, Figure 3 compares again 

Algorithms I, II.a, II.b and II.c in Figures 3.a, 3.b and 3.c respectively. The multipliers ε and γ 

of Equations (4), (5) and (6) are the same of Figure 2. 
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3.a (Algorith I) 

 

3.b (Algorithm II.c) 

 
 

3.c (Algorithm II.b)   

 
 

 

 

Fig. 3: The time evolution of the pollution of some of the vehicles is depicted in the case 

we are interested in equalizing the derivatives of the utility functions. In 3.a the 

infrastructure communicates the value of λ(k), and the vehicles do not communicate 

among themselves (Algorithm I); in 3.b there is no I2V communication, and vehicles can 

communicate only with the neighbouring vehicles (Algorithm II.c); in Fig. 3.c vehicles 

further receive some more information from the infrastructure as explained in the 

Algorithm II.b, and convergence is faster than in 3.b. 

 

5.3 Utility fairness: a case study 

In this simulation we present a more realistic application of the utility fairness paradigm through 

a case study, which is an extension of a previous work within the so-called TwinLIN initiative 

[41]. In order to control the CO pollution in urban areas, the TwinLIN work implemented a 

central control approach, which forced hybrid vehicles to travel either in electric or ICE mode 

in order to maintain the control variable below, or close to, a desired level. The objective was 

achieved by assuming that the infrastructure could broadcast a probability pev to all vehicles. 

This probability was then used locally by the vehicles, and possibly modified to achieve other 

objectives at the same time, to decide whether they should travel in electric or ICE mode. To 

support the TwinLIN idea, a proof-of-concept vehicle had been constructed, by customizing a 

2008 Toyota Prius, so that it is possible to influence the drive mode choice, by accessing the 

Toyota CAN-bus via Smartphone.  

We now extend the TwinLIN framework to further implement the utility fairness strategy, and 

test our ideas using the mobility simulator SUMO, with its HBEFA-emission model and TRACI 
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interface [32]. We simulate traffic in an arbitrary area of Berlin, shown in Figure 4, which we 

divided into nine equivalent rectangular zones of the same size (in a 3x3 grid).  

 
 

Fig. 4. Road network imported from 

OpenStreetMap [31], area around 

Rosenthaler Platz in Berlin, Germany 

Fig. 5. The level of CO2 is maintained 

equal to the CO2 budget in each subzone 

of the Berlin area of interest. 
 

Then, we apply a simplified version of Algorithm 2 to every single sub-area of the Berlin region 

of interest. In practice, we assume that there is a central infrastructure in each sub-area that 

broadcasts the feedback error signal  
N

i
i 1

C D k


 , in order to maintain the level of CO2 equal to 

the desired one. At the same time, each vehicle in the sub-area uses the error signal to further 

adjust the proportion of speed generated from the ICE in order to minimise the overall quantity 

of emitted CO, according to the algorithm the Equation (8). SUMO simulation results are given 

in Figure 5, which shows the level of CO2 in each sub-zone of the Berlin area of interest, and 

in Figure 6 which shows the normalised CO produced by vehicles belonging to 5 different 

classes of vehicles (with ICEs equivalent to EURO 1 to 5 vehicles). Overall, we have 

approximately the same level of CO2 in each sub-zone of Berlin, and we have that each car 

produces the same quantity of CO, independently from its specific vehicle class. 

 

Fig. 6. Vehicles belonging to different classes produce the same quantity of CO. 

 

6 Conclusions 

 



Following a detailed discussion about typical constraints in the design of agorithms to address 

topics in intelligent transportation systems, a framework for real-time trading of emission rights 

between a fleet of vehicles has been presented in this paper. Building on a recently proposed 

cooperative emission control approach, a number of algorihms are presented and discussed for 

distributed emissions trading in a fleet of vehciles. It is worth noting that these algorithms 

operate directly on the engine of the vehicles and do not require behavioural change of the 

driver. Future work will involve hardware in the loop testing to validate the concepts and to test 

the proposed algorithms. 
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