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Abstract 
The minimum zone sphericity tolerance is derived from the ANSI and ISO standards for roundness 

and has extensive applications in the tribology of ball bearings, hip joints and other lubricated pairs. 

The worst-case proposed in this paper provides theoretical evidence that the minimum zone center 

of the two (circumscribed and inscribed reference) spheres with minimum radial separation 

containing the sampled spherical surface is included in a spherical neighborhood centered in the 

centroid of radius 2 π--2EC, where EC is the sphericity error related to the centroid, which can be 

determined in closed form. 

Such linear estimating (about 20% of EC from the centroid, i.e. about one order of magnitude lower 

than the sphericity tolerance to be assessed) can be used to locate the sphere center with a given 

tolerance and as a search neighborhood for minimum zone center-based algorithms, such as 

metaheuristics (genetic algorithms, particle swarm optimization etc.). The proposed upper bound 

has been experimentally assessed, using a genetic algorithm (GA) with parameters previously 

optimized for roundness and extended to three dimensions, which has overcome most of all 

available datasets from the literature that have been tested with center-based minimum zone 

algorithms by different authors. The optimum dataset size on artificially generated datasets is also 

discussed and it is speculated to allow the extension of the proposed upper bound to partial (or 

incomplete) spherical features. 

 

Keywords: form error, minimum zone sphericity (MZS), Chebyshev criterion, search 

neighborhood, upper bound, least squares method, metaheuristics, genetic algorithm (GA), CMM 

 

 

1. Introduction 
Sphericity affects the functional properties, e.g. tribology and lubrication, of various mechanical 

devices, such as ball bearings, hip joints and other spherical couplings and lubricated pairs. 
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According to ANSI [1], sphericity shares the same definition with circularity for form error 

evaluation from ISO [2]. The sphericity evaluation involves the determination of two concentric 

spheres, the circumscribed and inscribed (reference) spheres to the sampled points dataset 

(substitute feature), such that the radial separation between these two spheres is minimum (Figure 

1): minimum zone sphericity (MZS). 

The evaluation of sphericity based on the minimum zone criterion is a non-linear and non-convex 

problem. 

 

X 

Z

θ 

ϕ 

circumscribed reference 
spherical surface 

inscribed reference 
spherical surface 

datapoint 

sampled spherical surface 

minimum radial separation 

Y

 
Figure 1: The reference system and feature. The minimum zone sphericity error EMZ is the 

minimum radial separation between the two concentric spherical surfaces respectively 

circumscribed and inscribed to the sampled dataset, centered in the (unknown) minimum zone 

center CMZ. 

About here 

 

Some approaches to the MZS problem are based on the minimization of the minimum zone error 

EMZ as a function of the minimum zone center CMZ. The inconvenience is that this function has 

several local minima; consequently, the exploration is computationally intensive. The main purpose 

of current work is the definition and reduction of a search area for the CMZ.  

Some examples of center-based approaches are the simplex search / linear approximation [3] [4] 

and metaheuristics like the particle swarm optimization (PSO) [5] [6], ant systems [7], evolutionary 

[8] and genetic algorithms (GAs) [9] [10] [11] [12]. 
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Sphericity can be evaluated by roundness (or circularity) in different equatorial sections of the 

sphere surface.  

Exact methods were proposed to evaluate sphericity based on the minimum zone criterion, such as 

[13], which is based on Voronoi tessellation, however this method is computationally intensive and 

it is not applicable to partial (or incomplete) spherical surfaces. 

Fan and Lee [14] proposed an approach with minimum potential energy analogy to the minimum 

zone solution of spherical form error. The problem of finding the minimum zone sphericity error is 

transformed into that of finding the minimum elastic potential energy of the corresponding 

mechanical system. Chen [15] constructed three mathematical models to evaluate the minimum 

circumscribed sphere, the maximum inscribed sphere and the minimum zone sphere by directly 

resolving the simultaneous linear algebraic equations first. Then, the minimum zone solutions can 

be obtained using only five datapoints, which verify the 4-1, the 1-4, the 3-2 or the 2-3 condition. 

Samuel and Shunmugam [16] established a minimum zone limaçon based on computational 

geometry to evaluate roundness error; with geometric methods, global optima are found by 

exhaustively checking every local minimum candidate.  

Most of these methods process data point-by-point in the parameter space and move between 

datapoints by using some transition rules following the given nonlinear constraints one at a time. 

The point-to-point search method is sometime dangerous, because it is very possible to allocate 

false peaks in the multimodal search space for nonlinear optimization problems [17]. 

The main purpose of this work is to provide in closed form the minimum neighborhood of the 

centroid C that includes the minimum zone center CMZ (Figure 2). The definition of a restricted 

spherical volume centered in the centroid of the sampled sphere, which certainly includes the 

minimum zone center, has several applications: it can be used (i) tout court as a conservative first 

estimation of the minimum zone center position and of the minimum zone error; (ii) it may define a 

search neighborhood for a local search, e.g. by metaheuristics, such as genetic algorithms, particle 

swarm optimization etc. By reducing the search area, the algorithm complexity and the computation 

time can be reduced [18]. Apart from [18], which uses a qualitatively adaptable search space size, in 

the literature only the following are available: [19] uses a fixed 1 mm search space size with a GA; 

[8] uses a fixed 2 mm search space size with an immune evolutionary algorithm; and later reduces 

the search space size to 0.1 mm with PSO [20]. All use the least squares center as the search space 

center. Fixed search space size poses, on one hand, the risk that the minimum zone center may not 

be included, particularly with partial features or non-uniformly distributed sampled points; on the 

other hand, too large search spaces increase the complexity and processing time. 
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2. Problem formulation 
The MZT is the solution of the following optimization problem [11]: 

⎥
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⎢
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subject to (x, y, z)∈S 

 

 

where S is the search-space, θi = i
n
π2 , φj = j

2
2 ππ

−
n

, i=0,...,n, j=1,...,
2
n  are the angular locations of 

equiangular data of the sphericity surface s(x, y, z, θi, φj) of the sphere of center (x, y, z).  

 

The solution of problem (1) is the minimum zone error EMZ defined as: 
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where ),,( MZMZMZMZ zyxC =  is the unknown minimum zone center. 

 

 

3. An upper bound for the centroid to minimum zone center distance 
In this section, we will provide the minimum distance between the minimum zone center CMZ 

defined above and the centroid C. 

For this estimation, a worst-case inspired from [21] is proposed, which explores additional 

properties that can be extended to current problem. The worst-case is based on the geometrical 

feature F(α) formed by two concentric-opposite spherical sectors shown in Figure 2 and described 

by: 
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(3) 

 

where rmin <r < R, 
22
παπ

<≤− , rmin is defined by  (19) below and )0,0,(r  is a control point, 

which makes the feature open in θ = ϕ = 0. 

It will be proven that, by construction, the control point generally forces the minimum zone center 

CMZ in the origin (0,0,0) (if the conditions of Lemma 3 below are satisfied). 

As for α, it results that F(α=0) is formed by two concentric-opposite half spherical surfaces; 

⎟
⎠
⎞

⎜
⎝
⎛

2
πF  is a spherical surface of radius R; and, ⎟

⎠
⎞

⎜
⎝
⎛−

2
πF  is a spherical surface of radius r. 
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Figure 2: Worst-case for the maximum distance (enhanced for clarity) between centroid C and 

minimum zone center CMZ. 

About here 

 

The considered feature is axial symmetrical with respect to the X-axis (inset of Figure 2). 

A number of properties of F(α) is given. They can be applied for each feature defined by expression 

(3) and rotated by .20,
2

π
π

<≤ kk  

The worst-case for the centroid to minimum zone center distance is obtained when the asymmetry 

of the feature F(α) in Figure 2 is maximized. Let Fr(α) and FR(α) be the component features of radii 

r and R, respectively, at the left and at the right side of F(α). For α > 0 (α < 0), F(α) is obtained by 

F(0) removing (adding) an axially symmetric feature on the X--axis (X+-axis). The maximum 

asymmetry of F(α) about the Y-axis is achieved by setting α = 0. As it will be proven in the 

following Lemma 1, if α > 0, Fr(α) evaluated for απθπ
+≤≤

22
 is mirrored with respect to the YZ-

plane to FR(α) evaluated for 
22
πθαπ

≤≤− . Analogously if α < 0, FR(α) evaluated for 
2
πθα ≤≤  

is mirrored to Fr(α) evaluated for πθαπ
≤≤+

2
.  

 



Page 7 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

 7

Increasing the asymmetry of F(α) about the YZ-plane, the centroid C moves away from the 

minimum zone center MZC . 

 

Lemma 1. The two concentric-opposite half spherical surfaces of F(0) maximize the distance Cx (on 

the X-axis) between the centroid C ≡ (Cx,0,0) and the origin (0,0,0) ≡ CMZ. □ 

 

Proof. Without loss of generality for the feature symmetry about the X-axis for all sections of F(α) 

parallel to the XY-plane, at the Z coordinate R sin ϕ, the centroid abscissa is 
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(4) 

 

which is maximized for α = 0 | ∀ϕ. 

This conclusion, valid for all the two-dimensional sections of the considered feature F(0) parallel to 

section A-A in Figure 2, is also valid for the whole three-dimensional feature F(0) obtained by the 

integration of all the considered sections. ■ 

 

Since Cx for α=0 is the upper bound for the centroid to minimum zone center distance, in the 

remainder only F(0) is considered, although most of the following geometric assumptions are valid 

for F(α). 

 

Corollary 1. The highest distance between the centroid C and the origin (0,0,0) ≡ CMZ is achieved 

when r is low (rmin) with respect to R. 

 

Lemma 2. The centroid of F(0) is 

 

⎟
⎠
⎞

⎜
⎝
⎛ −

= 0,0,2 2π
rRC  (5) 

□ 
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Proof. F(0) is formed by two half spherical surfaces of radii R and r and the centroids of these half 

spherical surfaces are located on the X-axis respectively at 
22/
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−
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Obviously, the control point )0,0,(r  has a negligible weight in the evaluation of C. 

 

Cx =  
2

rR CC +  = 22
π

rR −  (6) 

■ 

 

After discussing the position of the centroid C with respect to the origin for the proposed worst-case 

feature F(0), the conditions to force the position of the minimum zone center CMZ in the origin are 

represented in Figure 3 and discussed below. 
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Figure 3: Condition on the minimum r (rmin of the worst-case feature F(0)) to keep the minimum 

zone center CMZ in position p1, the origin of axes, before jumping in position p2. 

About here 

 

 

It can be noticed that for r high enough with respect to R: 

- CMZ is located in p1=(0,0,0) because the geometry of F(0) is made up of the circumscribed 

reference spherical surface (of radius R) and of the inscribed reference spherical surface (of 

radius r). 

As for the minimum zone error of the feature F(0), according to  (2) 

EMZ = R-r (7) 

 

Vice versa, for lower r with respect to R (also for r→0): 
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- CMZ is located in p2= )0,0,
2

( rR + , because the circumscribed reference spherical surface crosses 

the Y-axis at (0,R,0), (0,-R,0) and (0,0,R) and the inscribed reference spherical surface crosses 

the X-axis at points (r,0,0) and (R,0,0) (according to the 3-2 model [15]); and 

 

⎟
⎠
⎞

⎜
⎝
⎛ −

−+⎟
⎠
⎞

⎜
⎝
⎛ +

=
22

2
2 rRRrREMZ  (8) 

 

The following lemma defines the conditions on the 
R
r  ratio influencing the MZC  in position p1 (or 

p2). 

 

Lemma 3. The minimum zone center CMZ of the feature F(0) is in the p1=(0,0,0), if and only if 

CMZ ≡ p1=(0,0,0) ⇔ EMZ = R-r (9) 

where the ratio 
R
r  is a solution of the equation 

0152
2

≤+−⎟
⎠
⎞

⎜
⎝
⎛

R
r

R
r  (10) 

 

otherwise, if 

0152
2

>+−⎟
⎠
⎞

⎜
⎝
⎛

R
r

R
r  (11) 

 

CMZ ≡ p2= )0,0,
2

( rR +  (12) 

 

□ 

 

Proof. By the definition of minimum zone center EMZ in  (2), CMZ≡p1 if and only if the following 

condition is verified: 

)()()()( 2min2max1min1max pRpRpRpR −≤−  (13) 

 

From expressions (7) and (8), the left and right terms become 
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finally 
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⎟
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⎞

⎜
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■ 

 

Corollary 2. As 1<
R
r  by construction, the interval of feasible solutions of expression  (15) is  

1 
4

17-5
<≤

R
r  (16) 

 

because the contiguous interval 

4
1751 +

≤≤
R
r  (17) 

 

includes unfeasible solutions for F(0). 

The boundary condition on 
R
r  for CMZ to move from p1 to p2 is given by 

R
r  = 

4
175 −  (18) 

 

It seems that a spherical feature with 
R
r  as low as about 0.2 provided by (16) and (18) yielding a 

larger search space has no practical interest for the assessment of the sphericity tolerance. 

Consequently, for the sake of straightforwardness of presentation, the case of CMZ = p2 is not 

discussed, and in (3) for F(α) 

 

rmin = 
4

175 −  R (19) 
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The boundary condition in (18) and  (19) for 
R
r  is valid for both 2D (roundness) [21] and 3D 

(sphericity) features because the CMZ position only depends on the ratio between the two radiuses. 

The closed form upper bound of the distance Cx between the centroid C and the minimum zone 

center CMZ can be formulated as a function of the roundness error EC related to the centroid C given 

by the following Theorem. 

 

Theorem 

max Cx = CMZF ECC 2
)0( 2max −≤− π  (20) 

□ 

 

From Corollary 1 the centroid to minimum zone center distance Cx is maximized when r is 

minimized. From Lemma 3 and Corollary 2 this occurs when rmin = 
4

17-5  R: 

max Cx = RRrRrRCC
Rr

MZF 15822.0
2

11722maxmax 22
min

2
4
17-5)0( ≅

−
=

−
=

−
=−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≥ πππ

 (21) 

 

However, equation (8) can be used to evaluate a lower bound of EC. In fact, for Lemma 3 and 

Corollary 2, p2 is a minimum zone center about the just after the border rmin = 
4

17-5  R and for 

definition of minimum zone error EMZ every other error is higher; particularly the one with respect 

to the centroid. It results: 
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From equations (21) and (22): 

2
2 22

max −=≤ π
π w

w
E

C

C

x  (23) 

 

where 

4
117 −

=w  R (24) 

■ 

 

 

4. Application 
The proposed theory includes the following hypotheses that require experimental evaluation. The 

worst-case considered is based on a continuous feature, consequently, equiangular data and large 

datasets are necessary for real applications.  

The condition of uniformly distributed sampled points is fundamental because the centroid position 

could be influenced more by the sampled points distribution than from the sphericity error to be 

assessed. The acquisition of equiangular datapoints is a common strategy in metrology and reverse 
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engineering [22] [23] and does not seem a limitation for the industrial application of the proposed 

theory, except in the case of partial (or incomplete) features, discussed below. 

As for the dataset size, the proposed upper bound has been applied on artificially generated datasets 

as discussed in the next section. Furthermore, to experimentally assess the proposed search 

neighborhood for the minimum zone center CMZ with center-based algorithms, such as genetic 

algorithms, ant colony systems, particle swarm optimization, taboo search etc. a genetic algorithm 

with parameters previously optimized for the roundness problem [11] has been extended to three 

dimensions. Genetic algorithms constitute a class of implicit parallel search methods especially 

suited for solving complex optimization or non-linear problems. They are easily implemented and 

powerful being a general-purpose optimization tool. Many possible solutions are processed 

concurrently and evolve with inheritable rules, e.g. the elitist or the roulette wheel selection, so to 

quickly converge to a solution, which is very close or coincident to the optimal solution. 

In [24], it has been proven that, for genetic algorithms, parents of the first generation included in the 

cube circumscribed to the spherical search neighborhood, generate offspring included in the same 

(or smaller) space. This convergence condition should be verified by the search mechanism of other 

algorithms considered. 

To show a possible application of the method and to provide some orders of magnitude of the 

estimation of the minimum zone center CMZ in different case studies found by different authors, its 

distance |C-CMZ| from the centroid C on datasets from the literature has been compared with the 

upper bound 2 π-2 EC predicted by the theory proven in the previous sections. 

 

 

5. Computation experiments with artificially generated datasets 
For the application of the proposed upper bound on artificially generated datasets, the NPL 

Chebyshev best fit circle certified software [25] cannot be used without post-processing, because 

not only the distribution of the radiuses of points is random, but also their angle, consequently the 

hypothesis of equiangular distribution is not verified. Possible post-processing includes the 

relocation of the angular position of the datapoints, including those satisfying the 1-3, 3-1 or 2-2 

conditions according to [26], after conversion to polar coordinates using the given CMZ as the 

reference origin. 

As an alternative, a simple program [27] has been implemented to generate equiangular datasets of 

given size n, on three roundness profiles on the XY-, XZ- and YZ-planes. The listing is available 

for direct execution in Appendix and it can be used with given random seeds. 

The centroid Cn for a set of n points sampled on a spherical surface is 
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nCE  can be determined from (1) and (25) by 
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The exact minimum zone center CMZ of artificial datasets is known by construction, by applying the 

2-2 condition in [26]. The result of this numerical analysis on random data is represented in Figure 

4, where the position of the minimum zone center within the (theoretical) search area S is compared 

with the theoretical spherical radius of 2 π-2
nCE  obtained with artificial datasets, which can be 

reproduced with the parameters in caption. 
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Figure 4: Effect of the proposed upper bound for the |C-CMZ| distance with datasets artificially 

generated as in Appendix [27], for different values of n (×3) = 8, 16, 32, 64, 128, 256, 512, 

CMZ=(0,0,0), random seed=0 (XY-plane), 1 (XZ-plane), 2 (YZ-plane), nominal radius Rn = 20, EMZ 

= 0.02. Data are normalized to the maximum: 2 π-2
nCE  (n = 24) = 0.0046. 

About here 

 

From Figure 4, it can be clearly observed that the search space size and the minimum zone to 

centroid distance have a similar trend with the increase of the dataset size; the amount of the 

overestimate (in the range 6 to 59%) is also visible. 

The decreasing trend of |C-CMZ| is not strictly monotonous (e.g. from 96 and 192 and from 768 and 

1536), as opposed to real features at increasing sample rate, e.g. characterized by a manufacturing 

based signature [28] [29]). The random generation of artificially generated datapoints does not 

necessarily increase the accuracy of the description of the same profile of a feature; instead, 

artificial profiles with increasing random generated datapoints can be seen more as profiles of 

different features. This phenomenon is also described by the displacement of the control point 

described in the Proposition and shown in Figure A1 in Appendix A of [21], which can be seen as 

the effect of the profile signature on the form tolerance. 

The sharp decrease before 96 datapoints is probably due to the beneficial increase of the sampling 

error as a function of the required tolerance to be assessed and seems an optimum compromise 

between dataset size and accuracy.  
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6. Computation experiments with datasets from the literature 
All the (five) datasets available from the literature, which have been tested with center-based 

methods and where the minimum zone center CMZ is declared, are listed in Table 1 with the 

reference to the original works and with the results achieved by other authors by their respective 

methods. Minimum zone centers are not available from [7], [30] and [31], and from the authors of 

dataset 1 [14]. 

A genetic algorithm, with parameters previously optimized in [24] for roundness, has been used for 

minimum zone sphericity assessment with the addition of the third chromosome (coordinate Z) and 

is listed. 

Unfortunately, no datasets are equiangular. For the above-mentioned reason, the sampled points 

distribution influences the centroid position up to one order of magnitude higher than the minimum 

zone error EMZ to be assessed. Because of the lower influence of the sampled points distribution on 

the least squares center CLS and error ELS, in Table 1 they have been used as estimators for the 

centroid C and of the sphericity error with respect to the centroid EC. 

From Table 1 it can be noticed that, not only all values for the difference parameter are positive, but 

also that they almost exploit all the available range (between 22.12% of cases # 1.2 and 1.3 and 

99.62% of case # 1.7) and make it a very tight upper bound. In this regard, the least squares center 

CLS and error ELS can be considered good estimators for the centroid C and error EC. 

The genetic algorithm in [24] extended from roundness to the three dimensional problem has 

achieved the following minimum zone errors EMZ on the five datasets from the literature detailed in 

Table 1: 0.00766, 0.008329 (0.008329 [14]), 0.0096779 (0.00966 [8]), 1.0000, 3.407569 (3.332518 

[20]). The current best known results in bold have also been indicated. This shows that the proposed 

genetic parameters optimized for roundness are effective for the sphericity problem as well. 

 

7. Computation experiments with real datasets 
The same genetic algorithm has been tested on four new real datasets summarized in Table 2. The 

processing time of the proposed genetic algorithm along with the minimum zone error EMZ and 

radius rMZ have been provided. The raw sampled data are available as supplementary material. The 

recommendation on the dataset size coming from experiments on artificial datasets of about one 

hundred sampled points has been followed; however the less favorable conditions of not 

equiangular distribution and partial feature sampling have been applied. 

From Table 2 it can be noticed that again all values for the difference parameter are positive. It can 

also be observed that they exploit a wide range of available values (between 1.67% of case 7 to 

61.82% of case 8). 
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The parameter EMZ/ELS is a quantitative estimate of the benefit of using the MZ versus the least 

squares criterion for part inspection, yielding between 10% (case 8) to 18.50% (case 7) more of 

acceptable parts. 

The difference and the EMZ/ELS parameters (last two columns of Table 2) show a mild direct 

correlation also found on the dataset in Table 1, which seems reasonable, but requires further 

investigation. 
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Table 1: The proposed upper bound (2 π-2 EC) compared with the distance between centroid C and minimum zone center CMZ ≡ (xMZ, yMZ, zMZ) estimated by different 
authors on five spherical surfaces from the literature. The least squares center (xLS, yLS, zLS) and the least squares error ELS are considered to estimate the difference = 

2 π-2 EC – |C – CMZ|. Rounding is as given in references. 
 

dataset 
#/ref. n xLS yLS zLS ELS 

case 
# ref. algorithm xMZ yMZ zMZ |C-CMZ| 2 π-2 EC difference difference 

2 π-2 EC 

1.1. [8] IEA 0.002495 -0.000097 0.000479 0.001330887 0.001720434 +0.000389546 22.64% 

1.2. [10] GA 0.0025 -0.0001 0.0005 0.001339942 0.001720434 +0.000380491 22.12% 

1.3. [16] Limacoid 0.0025 −0.0001 0.0005 0.001339942 0.001720434 +0.000380491 22.12% 

1.4. [18] GA 0.000993 0.000024 0.000058 0.000216546 0.001720434 +0.001503888 87.41% 

1.5. [20] PSO 0.002506 -0.000097 0.000481 0.001342059 0.001720434 +0.000378375 21.99% 

1.6. [24] GA 0.0025 -0.0001 0.0005 0.001339942 0.001720434 +0.000380491 22.12% 

1 [14] 50 0.00085 -0.00037 0.00078 0.00849 

1.7. [32] IEA 0.001118 
0.000414

9 
-0.0001727 6.58344E-06 0.001720434 +0.00171385 99.62% 

2.1. [8] IEA 0.003910 0.002536 0.004556 0.000196801 0.001823781 +0.00162698 89.21% 

2.2. [10] GA 0.0039 0.0025 0.0046 0.000207798 0.001823781 +0.001615983 88.61% 

2.3 [15] Analytic 0.003911 0.002535 0.004562 0.000207798 0.001823781 +0.001615983 88.61% 
2 [15] 40 0.0041 0.0033 0.0035 0.0090 

2.4. [24] GA 0.0039 0.0025 0.0046 0.000201208 0.001823781 +0.001622574 88.97% 

3.1. [8] IEA 0.003506 -0.003308 -0.000292 0.00186766 0.002674879 +0.000807219 30.18% 

3.2. [10] GA 0.0038 -0.0031 -0.0001 0.001943664 0.002674879 +0.000731215 27.34% 

3.3 [15] Analytic 0.003509 -0.003305 -0.000292 0.001943664 0.002674879 +0.000731215 27.34% 
3 [15] 36 0.0006 -0.0029 -0.00001 0.0132 

3.4. [24] GA 0.0038 -0.0031 -0.0001 0.001867785 0.002674879 +0.000807094 30.17% 

4.1 [10] GA 0 0 0 0.093000323 0.233484536 +0.140484213 60.17% 

4.2. [13] Voronoi 0 0 0 0.093000323 0.233484536 +0.140484213 60.17% 4 [13] 100 -0.0191 0.0893 0.0176 1.1522 

4.3. [24] GA 0 0 0 0.093000323 0.233484536 +0.140484213 60.17% 

5.1. [18] GA -0.412356 -0.335014 -0.326140 0.09983803 0.733206895 +0.633368865 86.38% 

5.2. [20] PSO -0.388729 -0.355488 -0.299887 0.284379168 0.733206895 +0.448827727 61.21% 5 [18] 25 -0.284417 -0.662540 -0.0568719 3.618231 

5.3. [24] GA -0.2751 -0.2675 -0.2130 0.117100342 0.733206895 +0.616106553 84.03% 
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Table 2: The proposed upper bound (2 π-2 EC) compared with the distance between centroid C and minimum zone center CMZ ≡ (xMZ, yMZ, zMZ) estimated on four new 
spherical surfaces from real parts. The least squares center (xLS, yLS, zLS) and the least squares error ELS are considered to estimate the difference = 2 π-2 EC – |C – CMZ|.  

 
dataset 

# 
item 

Partial 

feature 
n xLS yLS zLS ELS rLS time xMZ yMZ zMZ EMZ rMZ |C-CMZ| 2 π-2 EC difference 

difference

2 π-2 EC 
MZE  

ELS 

6 
spherical 

joint 
hemisphere 100 0 0 0 0.046 27.4685 0.109 

-

0.0003 
0.0084 0.0018 0.0401 27.4637 0.00859593 0.009322 0.000726 7.78% 87.17% 

7 
eccentric 

cam 

spherical 

segment 
79 0 0 0 0.040 22.047 0.078 0.0034 0.0066 0.0029 0.0326 22.046 0.00797057 0.008106 0.000135 1.67% 81.50% 

8 
qualification 

sphere 
hemisphere 99 0 0 0 0.017 32.1325 0.094 0.0012 0.0002 0.0005 0.0153 32.1472 0.00131529 0.003445 0.00213 61.82% 90.00% 

9 billiard ball hemisphere 99 0 0 0 0.053 30.3345 0.110 0.0015 0.0045 0.0077 0.0466 30.3317 0.00904378 0.01074 0.001696 15.79% 87.92% 
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8. Conclusions 
The minimum zone tolerance EMZ is determined by the two concentric spherical surfaces, with 

minimum radial separation or minimum zone error, centered in the minimum zone center CMZ. 

The worst-case, described in Figure 2, has been built to estimate the maximum distance (upper 

bound) of the (unknown) minimum zone center from the centroid (known, by expression (25) for 

equiangular datapoints, otherwise estimated by the least squares method). 

This distance can be used as the radius of a spherical search neighborhood, e.g. for center-based 

algorithms, and equals 2 π-2 EC, where EC is the sphericity error related to the centroid, which can 

be evaluated in closed form, from expression (26). 

As opposed to past research, not only the search space size is adaptable, but there is also no risk that 

the minimum zone center to be searched is outside. 

The funding hypothesis of continuous profiles, can be easily coped with current equiangular 

sampling strategies applied in metrology and reverse engineering. 

Experimental tests with all (five) available datasets from the literature and four new sampled 

datasets have shown that the upper bound estimated by the least square error is able to overestimate 

the CLS to CMZ distance in the whole range up to almost 100%, making it a tight upper bound. 

A direct correlation between “how much” of the search space is used (the difference parameter) and 

the benefit of using the MZ versus the least squares criterion (the EMZ/ELS parameter) has been 

observed and requires further investigation both under the experimental and theoretical viewpoints. 

Computation experiments have also shown that the least square center CLS and error ELS are good 

estimators of the centroid C and error EC. This makes the proposed upper bound potentially suitable 

for partial features, where the uniform datapoint distribution hypothesis is not satisfied. Future 

research may address the quantitative evaluation of the distribution and uniformity by the proposed 

upper bound, e.g. as a norm involving a combination of C and CLS to compare the sphericity error 

versus the sampling error. 

The genetic algorithm previously optimized by the authors for the roundness problem and adapted 

to the three dimensional problem has been confirmed to be fast (below one second processing time) 

and shown to meet or exceed the competing center-based algorithms for sphericity evaluation on 

the mentioned datasets. 

Existing and future minimum zone center-based algorithms and algorithms that approach the 

minimum zone method by iterative center evaluations (e.g. the mentioned genetic algorithms and 

other metaheuristics) can benefit of the lower search space size to a neighbor of the centroid C. 
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