
From Hierarchical BIP to Petri Calculus?

Roberto Bruni1, Hernán Melgratti2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Departamento de Computación, FCEyN, Universidad de Buenos Aires -

CONICET, Argentina

Abstract. We focus on Hierarchical BIP, an extension of Joseph Sifakis
et al’s BIP component framework, to provide a semantics-preserving,
compositional encoding in the Petri calculus, a recently proposed algebra
of stateless connectors and one-position buffers.

1 Introduction

In recent years Joseph Sifakis has successfully pursued a research strand focussed
on a component framework called BIP [2], that has also been implemented in a
language and a tool-set. BIP is a component framework for constructing systems
by superposing three layers of modelling:

1) Behaviour, the lowest level, representing the sequential computation of
individual components as automata whose arcs are labelled by sets of ports.
The sets of ports of any two different components are disjoint, i.e., each port is
uniquely assigned to a component.

2) Interaction, the second level, defining the allowed interactions between
components. An interaction is just a set of ports typically of different compo-
nents.

3) Priority, the top layer, assigning priorities to interactions to enforce schedul-
ing policies, typically with the aim of reducing the size of the state space.

In absence of priorities, the interaction layer of BIP admits the algebraic
presentation given in [3] and comparisons with other models have been shown
in [7,1,11], see [8] for an overview. In particular, an equivalent version of BIP
systems is presented in [7] in terms of a compositional encoding in Petri nets
with boundaries [11].

Here we investigate hierarchically structured BIP systems and show that
previous correspondence results on ordinay BIP can be extended to deal with
Hierarchical BIP (HBIP) as defined in [10]. HBIP systems are possibly formed
by the combination of other HBIP systems, each seen as an ordinary compo-
nent whose ports are its interactions. We exploit the Petri calculus, a calculus of
stateful connectors introduced in [11], to encode in a compositional way HBIP

? Research supported by European FET-IST-257414 Integrated Project ASCENS,
Progetto MIUR PRIN CINA Prot. 2010LHT4KM, ANPCyT Project BID-PICT-
2008-00319.

2

systems while flattening them. Notably the encoding of components and of in-
teractions can be given separately in the Petri calculus and then assembled by
ordinary Petri calculus composition.

Structure of the paper. In § 2 we recall the main background on BIP and on the
Petri calculus to keep the paper self-contained. In § 3 we define Hierarchical BIP
and in § 4 we present the main result of the paper, namely the compositional
encoding from HBI(P) to the Petri calculus. In § 5 we give some concluding
remarks and discuss alternative approaches to HBIP. A toy running example of
a client-server system is used to illustrate the main notions and constructions.

2 Background

2.1 The BIP component framework

This section reports on the formal definition of BIP as presented in [4]. Since we
disregard priorities, we call BI(P) the framework presented here.

Definition 1 (Interaction). Given a set of ports P , an interaction over P is
a non-empty subset a ⊆ P .

We write an interaction {p1, p2, . . . , pn} as p1p2 . . . pn and a ↓Pi for the pro-
jection of an interaction a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi= a ∩ Pi.
Projection extends to sets of interactions in the following way γ ↓P= {a ↓P | a ∈
γ ∧ a ↓P 6= ∅}.

Definition 2 (Component). A component B = (Q,P,→) is a transition sys-
tem where Q is a set of states, P is a set of ports, and →⊆ Q × 2P ×Q is the
set of labelled transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. An interac-

tion a is enabled in q, denoted q
a−→, iff there exists q′ s.t. q

a−→ q′. By abusing

notation, we will also write q
∅−→ q for any q.

Definition 3 (BI(P) system). A BI(P) system B = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}ni=1 of components Bi = (Qi, Pi,→i) such that
their sets of ports are pairwise disjoint, i.e., Pi∩Pj = ∅ for i 6= j parameterized
by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

The semantics of a BIP system γ(B1, . . . , Bn) is given by the transition sys-
tem (Q,P,→γ), with Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q× 2P ×Q is the least

set of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi−−−→ q′i

(q1, . . . , qn)
a−→γ (q′1, . . . , q

′
n)

3

{{acpt, req}, {ret, resp}, {err, hdle}}

•
acpt

•
ret

•
err

acpt

''DS

ret

kk

err

^^
CS

•
req

•
resp

•
hdle

req

''DC

resp

kk

hdle

^^
CC

Fig. 1. A simple client/server BI(P) system

R ::= © | ©· | I | X | ∆ |

∆

| ⊥ | > | ∧ | ∨ | ↓ | ↑ | R⊗R | R;R

Fig. 2. Petri calculus grammar

Example 1. Consider the BI(P) system shown in Fig. 1, which contains a compo-
nent Server that sequentially interacts with a component Client. The Server

accepts a request from the Client thanks to the interaction {acpt, req}. Then,
the server can successfully answer the request by returning a value to the client
(interaction {ret, resp}) or can fail the request by rising an error signal, which
is handled by the client (interaction {err, hdle}). �

2.2 Petri Calculus

The Petri calculus [11] enriches the algebra of stateless connectors from [5] with
one-place buffers along [1,11,6].

Terms of the Petri Calculus are defined by the grammar in Fig. 2. It consists
of the following constants plus parallel and sequential composition: the empty
place©, the full place©· , the identity wire I, the twist (also swap, or symmetry)
X, the duplicator (also sync) ∆ and its dual

∆

, the mutex (also choice) ∧ and
its dual ∨, the hiding (also bang) ⊥ and its dual >, the inaction ↓ and its dual
↑. The diagrammatical representation of terms is shown in Fig. 3. For n ∈ N, we

write n to denote the finite ordinal n
def
= {0, 1, . . . , n− 1}.

Any term has a unique associated sort (also called type) (k, l) with k, l ∈ N,
that fixes the size k of the left (input) interface and the size l of the right (output)
interface of P . The type of constants are as follows:©,©· , and I have type (1, 1),
X : (2, 2), ∆ and ∧ have type (1, 2) and their duals

∆

and ∨ have type (2, 1),
⊥ and ↓ have type (1, 0) and their duals > and ↑ have type (0, 1). The sort
inference rules for composed processes are in Fig. 4.

The operational semantics is defined by the rules in Fig. 5, where x, y ∈ {0, 1}.
The labels α, β, ρ, σ of transitions are binary strings, all transitions are sort-

4

© : 1→ 1 ◦ ◦ ©· : 1→ 1 ◦ • ◦ X : 2→ 2
◦ ◦

◦ ◦

∆ : 1→ 2

◦
◦

◦

∆

: 2→ 1

◦
◦

◦
>>> : 1→ 0 ◦ �

Λ : 1→ 2

◦
◦ +

◦
V : 2→ 1

◦
◦+

◦
↑↑↑ : 1→ 0 ◦ •

⊥⊥⊥ : 0→ 1
� ◦ ↓↓↓ : 0→ 1 • ◦ I : 1→ 1 ◦ ◦

Fig. 3. Graphical representation of terms

R : (k, l) R′ : (m,n)

R⊗R′ : (k +m, l + n)

R : (k, n) R′ : (n, l)

R;R′ : (k, l)

Fig. 4. Sort inference rules

preserving, and if R
α−→
β

R′ with R,R′ : (n,m), then |α| = n and |β| = m.

Notably, bisimilarity induced by such a transition system is a congruence.
Due to space limitation we omit details here and refer the interested reader

to [9].

Compound terms For the translation presented in § 4, we shall need additional
families of compound terms, indexed by n ∈ N+ and k ∈ N (duals are omitted):

In : (n, n) >>>n : (0, n) ↑↑↑ n : (0, n) Xn : (n+ 1, n+ 1)

∆n : (n, 2n) Λn : (n, 2n) ∆k
n : (n, k ∗ n) Λkn : (n, k ∗ n) dn : (0, 2n)

Intuitively, In, >>>n and ↑↑↑ n correspond to n parallel copies of I, >>> and ↑↑↑ ,
respectively. Connector ∆n (and its dual

∆

n) is similar to ∆ but duplicates n
wires in the other interface, while ∆k

n (and its dual

∆

n) replicates k-times the
n wires of the other interface. Connector dn (and its dual en) stands for the
synchronisation of n pairs of wires. We now give the definitions:

In =
⊗

n I X1 = X Xn+1 = (Xn ⊗ I); (In ⊗ X)

↑↑↑ n =
⊗

n ↑↑↑ ∆1 = ∆ ∆n+1 = (∆⊗∆n); (I⊗ Xn ⊗ In)

>>>n =
⊗

n>>> Λ1 = Λ Λn+1 = (Λ⊗ Λn); (I⊗ Xn ⊗ In)

dn = >>>n; ∆n ∆0
n = >>>n ∆k+1

n = ∆n; (∆k
n ⊗ In)

Λ0
n = ↑↑↑ n Λk+1

n = Λn; (Λkn ⊗ In)

The behaviour of compound terms is characterised by the next proposition.

Proposition 1 (from [6]). For n > 0,

5

(TkI)
© 1−→

0 ©•
(TkO1)

©• 0−→
1 ©

(Id)
I

1−→
1 I

(Tw)
X

ab−−→
ba X

(⊥⊥⊥)
⊥⊥⊥ 1−→⊥⊥⊥

(>>>)
>>> −→1 >>>

(∆)
∆

1−→
11 ∆

(

∆

)∆11−−→
1

∆

(Λa)
Λ

1−−→
(1−a)a Λ

(Va)
V

(1−a)a−−−−→
1 V

C : (k, l) a basic connector
(Refl)

C
0k−−→
0l

C

P
α−→
γ Q R

γ−→
β S

(Cut)
P ; R

α−→
β Q ; S

P
α−→
β Q R

γ−→
∆ S

(Ten)
P ⊗R αγ−−→

β∆ Q⊗ S

Fig. 5. Operational semantics for the Petri Calculus

1. Xn
α−→
β
t iff t = Xn, α = h0 . . . hn and β = h1 . . . hnh0.

2. ∆n
α−→
β
t iff t = ∆n, #α = n, #β = 2n and αi = βi = βn+i for all i < n.

3.

∆

n
α−→
β
t iff t =

∆

n, #α = 2n, #β = n and αi = αn+i = βi for all i < n.

4. Λn
α−→
β
t iff t = Λn, #α = n, #β = 2n, αi = βi + βn+i for all i < n.

5. Vn
α−→
β
t iff t = Vn, #α = 2n, #β = n, βi = αi + αn+i for all i < n.

6. Λnl
α−→
β
t iff t = Λnl , #α = l, #β = nl and αi = Σj<nβjl+i for all i < l.

7. Vnl
α−→
β
t iff t = Vnl , #α = nl, #β = l and βi = Σj<nαjl+i for all i < l.

8. ∆n
l

α−→
β
t iff t = ∆n

l , #α = l, #β = nl and βlj+i = αi for all i < l ,j < n.

9.

∆n
l

α−→
β
t iff t =

∆n
l , #α = nl, β = l and βi = αlj+i for all i < l and j < n.

10. dn
α−→
β
t iff t = dn, #α = 0, #β = 2n and βi = βn+i for all i < n and j < n.

Relational forms The encoding proposed in § 4 uses two classes of terms of the
Petri calculus, called the left and right relational forms, that represent functions
as Petri calculus terms [11].

For any h ∈ N, there is a bijection p q : 2h → {0, 1}h with

pUqi
def
=

{
1 if i ∈ U
0 otherwise

For Θ a set of Petri calculus terms, let TΘ denote the set of terms generated
by the following grammar:

TΘ ::= θ ∈ Θ | I | TΘ ⊗ TΘ | TΘ ; TΘ.

We shall use tΘ to range over terms of TΘ.

6

•
log

logdd
L

Fig. 6. Component Logging

Definition 4. A term t : (k, l) is in right relational form when it is in

T{⊥⊥⊥} ; T{∆} ; T{X} ; T{V} ; T{↑↑↑ }.

Dually, t is said to be in left relational form when it is in

T{↓↓↓ } ; T{Λ} ; T{X} ; T{ ∆

} ; T{>>>}.

The following result spells out the significance of the relational forms.

Lemma 1 (From [11]). For each function f : k → 2l there exists a term ρf :
(k, l) in right relational form, the dynamics of which are characterised by the
following:

ρf
α−→
β ρf ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u 6= v ⇒ f(u) ∩ f(v) = ∅, α = pUq

and β = pf(U)q

The symmetric result holds for functions f : k → 2l and terms t : (l, k) in
left relational form. That is, there exists λf : (l, k) in left relational form with
semantics

λf
α−→
β λf ⇔ ∃U ⊆ k s.t. ∀u, v ∈ U. u 6= v ⇒ f(u) ∩ f(v) = ∅, β = pUq

and α = pf(U)q

3 Hierarchical BIP systems

In this section we address the hierarchical composition of BI(P) systems, i.e.,
BI(P) systems can be taken as components of larger systems.

Example 2. Consider the scenario introduced in Example 1, which should be
extended with a logging functionality in order to record all error responses sent
by the component Server. Assume we already have the simple component for
logging depicted in Fig. 6. In this case, we would like to consider the system in
Fig. 1 as a single component to define a new BI(P) system, as the one shown
in Fig. 7. We remark that the interface (i.e., the set of ports) exposed by the
client/server subsystem is just its set of interactions. This ensures that the com-
posed system does not change the behaviour of the underlying subsystems. �

Next definition formally introduces the notion of hierarchical composition of
systems

7

{ {{acpt, req}}, {{ret, resp}}, {{err, hdle}, log} }

{ {acpt, req}, {ret, resp}, {err, hdle} }

•
acpt

•
ret

•
err

acpt

''DS

ret

kk

err

^^
CS

•
req

•
resp

•
hdle

req

''DC

resp

kk

hdle

^^
CC

•
log

logdd
L

Fig. 7. A simple BI(P) system

Definition 5 (HBI(P) system). A Hierarchical BI(P) system (HBI(P)) is
either

− a BI(P) component B = (Q,P,→) with interface ι(B) = P ; or
− a composite system B = γ(B1, . . . , Bn) with interface ι(B) = γ where
{B1, . . . , Bn} is a set of hierarchical BI(P) systems with pairwise disjoint
interfaces, i.e., ι(Bi) ∩ ι(Bj) = ∅ for i 6= j, and γ is a set of interactions
over]ni=1ι(Bi).

The semantics of HBI(P) systems is defined analogously to that of BI(P)
systems as the synchronous execution of the transitions of its constituent com-
ponents matching one defined interaction. We start by defining the state space
QB of a HBI(P) system B as follows:

− QB = Q if B = (Q,P,→)
− QB = QB1

× . . .×QBn if B = γ(B1, . . . , Bn).

Then, the semantics of a composite HBI(P) system B is given by the transi-
tion system (QB , ι(B),→) where →⊆ QB × ι(B)×QB is the least set of transi-
tions satisfying the following inference rules

a ∈ ι(B) ∀i ∈ 1..n : qi
a↓ι(Bi)−−−−→ q′i

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

4 HBI(P) systems as Petri calculus terms

This section gives an encoding of HBI(P) systems into the Petri calculus. Note
that, differently from BI(P), the Petri calculus uses consecutive natural numbers
to designate ports over interfaces. In order to establish a correspondence between
HBI(P) systems and Petri calculus terms, we will map names into natural num-
bers, i.e., given a finite set S with k = #S, we use wS to denote an injective

8

◦ ◦
+

◦

◦ ◦
(a) ρtarget→

◦ ◦

◦
◦ ◦ +

◦
(b) λsource→

◦ ◦

◦ ◦

◦ ◦
(c) ρtargetlbl

Fig. 8. Petri calculus terms for relational forms

function wS : S → k that orders the elements of S. By abusing notation, we
write wS to also denote its expected extension wS : 2S → 2k.

4.1 Encoding of basic components

We first address the encoding of basic components (Definition 2) as Petri calculus
terms. The encoding of components follows along the lines of the encoding of
Petri nets proposed in [9], although it is simpler due to the fact that components
are just sequential systems.

Given a component B = (Q,P,→) with s transitions (i.e., #→= s), we rely
on the functions wQ, wP and w→ that respectively order the elements in Q, P
and→. In addition, we will use the following three functions source→, target→,
lbl→, which map a labelled transition belonging to → into its source, target and
labels, when considering the sets of names just as ordinals.

source→ : s→ #Q s.t. source→(w→(q
a−→ q′)) = wQ(q)

target→ : s→ #Q s.t. target→(w→(q
a−→ q′)) = wQ(q′)

lbl→ : s→ 2#P s.t. lbl→(w→(q
a−→ q′)) = wP (a)

Thanks to Lemma 1, we know that the relational forms λsource→ , ρtarget→ and
ρlbl→ exist and their behaviours are in tight correspondence with the associated
functions.

Example 3. Consider the component Server in Fig. 1 and assume the following
ordering functions

wQ(DS) = 0 wP (acpt) = 0 w→(DS
acpt−−−→ CS) = 0

wQ(CS) = 1 wP (ret) = 1 w→(CS
ret−−→ DS) = 1

wP (err) = 2 w→(CS
err−−→ DS) = 2

Then, the relational forms associated to the above functions are defined as
follows and depicted in Fig. 8.

ρtarget→ = (X⊗ I) ; (X⊗ I) ; (V ⊗ I) λsource→ = (I⊗ Λ) ρtarget→ = I3
�

Definition 6. Let B = (Q,P,→) be a component. The Petri Calculus term
corresponding to the behaviour of B in state q ∈ Q is [[B]] : 0 → #P , which is
defined as follows

9

� ◦

� ◦

+

•
� ◦

+

d3

�//�oo oo
I3⊗ρtarget→

�// oo
I3⊗QDS

�// oo
I3⊗λsource→

�// oo ∆

3

�// oo
ρlbl→

�//

Fig. 9. Encoding of the BI(P) component Server

TBq
def
= ds ; (Is ⊗ (ρtarget→ ; Q{q} ; λsource→)) ;

∆

s; ρlbl→

where

QQ′
def
=

⊗
i<#Q

qi where qi
def
=

{
©• if i ∈ wQ(Q′)

© otherwise

Example 4. Consider the component Server introduced in Example 1. Figure 9
shows the term TBDS

corresponding to the encoding of the component Server

for the initial state DS and the ordering functions given in Example 3. �

The following results formalise the relation between the behaviour of com-
ponents and their encodings. The first lemma is auxiliary and characterises the
behavior of terms of the form QQ′

Lemma 2. QQ′
pZq−−−→
pWq R iff R = QQ′′ , W ⊆ Q′, Z∩Q′ = ∅ and Q′′ = (Q′\W)∪

Z.

Proof. Examination of either rules (⊥⊥⊥1) and (>>>1), together with the rule (Cut)

(when p = 0) or rules (TkI) and (TkO), together with the rule (Ten) (when p > 0).�

Next result ensures that the transitions of a component are in one-to-one
correspondence with the moves of the corresponding Petri calculus term.

Theorem 1. Let B = (Q,P,→) a basic component. Then,

(i) if q
a−→ q′ then TBq −−−−−→

pwP (a)q
TBq′ .

(ii) if TBq −→
β
R then there exists q′ s.t. q

a−→ q′, R = TBq′ and β = pwP (a)q.

10

Proof. 1) By Lemma 2, Qq
pwQ(q′)q−−−−−−→
pwQ(q)q

Qq′ . Then, by Lemma 1 and rule (Cut)

after noting that source→(w→(q
a−→ q′)) = wQ(q) and target→(w→(q

a−→ q′)) =
wQ(q′), we have

(ρtarget→ ; Q{q} ; λsource→))
pw→(q

a−→q′)q−−−−−−−−−→
pw→(q

a−→q′)q
(ρtarget→ ; Q{q} ; λsource→))

and subsequently by Proposition 1 and rules (Cut) and (Ten)

ds ; (Is ⊗ (ρtarget→ ; Q{q} ; λsource→)) ;

∆

s
pw→(q

a−→q′)q−−−−−−−−−→

ds ; (Is ⊗ (ρtarget→ ; Q{q} ; λsource→)) ;

∆

s

The proof is completed by noting that lbl→(w→(q
a−→ q′)) = wP (a) and using

Lemma 1 and rule (Cut) to conclude

TBq −−−−−→
pwP (a)q

TBq′

2) If TBq −→
β
R, then by rule (Cut) ρlbl→

α−→
β
ρlbl→ ,

∆

s; ρlbl→
αα−−→
β

∆

s; ρlbl→ and

(Is ⊗ (ρtarget→ ; Q{q} ; λsource→))
αα−−→
αα

(Is ⊗R)

Hence,
(ρtarget→ ; Q{q} ; λsource→)

α−→
α
R

The only non trivial transition implies Q{q}
pQ′q−−−→
pqq

Q′Q. By Lemma 1 and wQ(q) =

source→(w→(q
a−→ q′)), we conclude

λsource→
pwQ(q)q−−−−−→

α
λsource→

with α = pw→(q
a−→ q′)q. By reasoning analogously, on ρtarget→ , we have that

ρtarget→
α−−−−−−→

pwQ(q′)q
ρtarget→

Hence, R = (ρtarget→ ; Q{q′} ; λsource→). The proof is completed by using

Lemma 1 to conclude that ρlbl→
α−−−−−→

pwP (a)q
ρlbl→ . �

Example 5. It can be easily checked that the term TBDS
introduced in Example 4

has the following transitions:
TBDS

−−→
000

TBDS
TBDS

−−→
100

TBCS
TBCS

−−→
010

TBDS
TBCS

−−→
001

TBCS

that correspond to the transitions

DS
∅−→ DS DS

acpt−−−→ CS CS
ret−−→ DS CS

err−−→ DS �

11

4.2 Encoding of interactions

We now focus on the encoding of a interaction as a stateless connector. For
α ∈ {0, 1}h a binary string of length h > 0, we let Rα : (h, 1) denote the process
inductively defined by:

R0 =↓;> R1 = I Rxα = (Rx ⊗Rα);

∆

Intuitively, the term Rα synchronizes the ports associated to the positions of α
that are set to 1.

Lemma 3. The process Rα is stateless for any α, i.e., whenever Rα
β−→
β′

R′ then

R′ = Rα.

Proof. The thesis follows simply by noting that LγMI is composed out of stateless
connectors, i.e., the encoding does not exploit the constants ©,©· . �

Lemma 4. Rα
β−→
β′

R′ iff

1. β = 0#α and β′ = 0; or
2. β = α and β′ = 1.

Proof. The thesis follows by induction on the length of α. �

Definition 7. Let γ be a finite set of interactions over a finite set of ports I,
j = #I and k = #γ. After fixing wI and wγ , the encoding for the set γ is

[[γ]]I = Λkj ; LγMI ; ∆k; (Ik ⊗ (Vk1 ;⊥))

where

L{a}MI = RpwI(a)q

L{a} ∪ γ′MI = RpwI(a)q ⊗ Lγ′MI when a is the minimum in {a} ∪ γ′ w.r.t. wγ

Example 6. Consider the set γ = {{acpt, req}, {ret, resp}, {err, hdle}} de-
fined over I = {acpt, ret, err, req, resp, hdle} with the ordering functions de-
fined as follows:

wγ({acpt, req}) = 0 wγ({ret, resp}) = 1 wγ({err, hdle}) = 2

wI(acpt) = 0 wI(ret) = 1 wI(err) = 2

wI(req) = 3 wI(resp) = 4 wI(hdle) = 5

Figure 6 shows the subterm Λ3
6; LγMI (we use a compact representation in

which a chain of several identical connectors like Λ or

∆

are collapsed in a unique
node). Note that LγMI = RpwI({acpt,req})q ⊗ RpwI({ret,resp})q ⊗ RpwI({err,hdle})q

stands for the parallel evaluation of the three interactions in γ. The term Λ3
6

ensures that conflicting interactions (i.e., the ones sharing a common action) are
performed in mutual exclusion. We remark that the term Λ3

6; LγMI still would
allow for the concurrent execution of non-conflicting interactions (e.g., involving
different sets of components). Since the semantics of BI(P) is purely sequential,
we need to forbid the concurrent execution of disjoint interactions. This is en-
sured in the complete encoding by the subterm ∆3; (I3 ⊗ (V3

1;⊥)). �

12

•
�

•
�

◦

_OO

_��
•

�
•

�

RpwI ({acpt,req})q

◦+ •
�

◦+

◦+ •
�

◦+ •
� ◦

_OO

_��

◦+

◦+ •
�

RpwI ({ret,resp})q

•
�

•
�

•
� ◦

_OO

_��
•

�
RpwI ({err,hdle})q

Λ3
6

�oo �// �oo �//
LγMI

Fig. 10. Graphical representation of Λ3
6; LγMI

The following results characterise the behaviour of [[γ]]I and are instrumental
to the proof of our main result (Theorem 2).

Lemma 5. Let γ be a synchronization set over I with #I = j and #γ = k, and
wI and wγ the functions sorting the elements of I and γ.Then

1. LγMI : (j ∗ k, k).

2. LγMI is stateless for any γ, i.e., whenever LγMI
α−→
β
R then R = LγMI .

3. LγMI
α−→
β
R iff ∀0 ≤ h ≤ k − 1 either

− βh = 0 and ∀j ∗ h ≤ i ≤ j ∗ (h+ 1)− 1 : αi = 0, or
− βh = 1, and ∃a ∈ γ s.t. wγ(a) = h and αj∗h..j∗(h+1)−1 = pwI(a)q.

Proof. (1) Follows by induction on #γ. (2) Follows by noting that LγMI is com-
posed out of stateless connectors, i.e., the encoding does not exploit the constants
©,©· . (3) By induction on h and using Lemma 4. �

Lemma 6. Let γ be a synchronization set over I with #I = j and #γ = k, and
wI and wγ the functions sorting the elements of I and γ.Then

1. [[γ]]I : (j, k).

13

2. [[γ]]I is stateless for any γ, i.e., whenever [[γ]]I
α−→
β
R then R = [[γ]]I .

3. [[γ]]I
α−→
β
R iff ∃a ⊆ γ s.t. #a ≤ 1, α = pwI(a)q and β = pwγ(a)q.

Proof. (1) Follows from the fact that: Λk#I : (j, j ∗ k) ; LγMI : (j ∗ k, k) by

Lemma 5(1); ∆k : (k, 2k); and (Ik⊗ (Vk1 ;⊥)) : (2k, k). (2) Follows by noting that
LγMI is composed out of stateless connectors, i.e., the encoding does not exploit
the constants ©,©· . (3) By Proposition 1(5),

Vk1
α′−→
β

Vk1

with #α′ = k, #β = 1 and β =
∑
j<k α

′
j . Therefore,

∑
j<k α

′
j ≤ 1. By the

semantics of ⊥ and ;, we have

Vk1 ;⊥ α′−→ Vk1 ;⊥

By using Proposition 1(2) and the inference rules for ; and ⊗

∆k; (Ik ⊗ (Vk1 ;⊥))
α′−→
α′

∆k; (Ik ⊗ (Vk1 ;⊥))

The proof is completed by using Lemma 6(3), Proposition 1(6) and the semantics
of ;. �

4.3 Encoding of HBI(P) systems

The encoding of HBI(P) systems is defined by a suitable combination of the
encoding of basic components and interactions.

Definition 8. Let B be a HBI(P) system with initial q ∈ QB. The corresponding
Petri Calculus term is inductively defined as follows.

[[B]]q =

TBq ifB = (Q,P,→)
([[B1]]q1 ⊗ . . .⊗ [[Bn]]qn); [[γ]]I ifB = γ(B1, . . . , Bn), q = (q1, . . . , qn),

I = ∪ni=1ι(Bi), and wI s.t. ∀a : wI(a) = wι(Bi)(a) +
∑i−1
j=1 #ι(Bj)

Theorem 2 (Correspondence). Let B be a HBI(P) system with initial state

q. Then q
a−→ q′ if and only if [[B]]q −−−−−−−→

pwι(B)(a)q
[[B]]q′ .

Proof. By induction on the structure of the system B. Base case (B = (Q,P,→))
follows by Theorem 1. Inductive step follows by applying inductive hypothesis
on [[B1]]q1 , . . . , [[Bn]]qn . Then, the proof is completed by using Lemma 6. �

14

5 Conclusion

This paper studies the hierarchical composition of BI(P) systems and its rela-
tion with the Petri calculus. For convenience of presentation we have chosen the
particular variant of BI(P) consisting of the basic interaction model and purely
sequential execution. Nevertheless, the results presented in this paper can be
extended or adapted to handle several variants proposed in the literature. The
remaining of this section is devoted to the discussion of some alternative pre-
sentations for HBI(P) and their relation with the encodings proposed in this
paper.

Concurrent executions The work in [10] proposes a notion of hierarchical compo-
sition of BI(P) systems that allows for the concurrent execution of interactions,
i.e., a set of conflict-free interactions (i.e., interactions that are pairwise disjoint)
can be fired concurrently if enabled. We could encode such behaviour simply by
defining [[γ]]I as follows.

[[γ]]I = Λk#I ; LγMI
This definition simplifies Definition 7 by removing the subterm ∆k; (Ik⊗(Vk1 ;⊥)).
As already mentioned in § 4.2, the subterm (Vk1 ;⊥) ensures the execution of a
unique interaction at a time. The results presented in the previous sections could
also be formulated for this variant with minor adjustments.

For the sake of uniformity, the proposal in [10] also considers concurrent
basic components instead of just sequential components as originally proposed
in BIP. Concurrent basic components could be modelled as C/E or P/T nets
with boundaries, which can be encoded as Petri calculus terms as shown in [9].

Triggers In order to represent different modes of synchronisation, the BIP model
has been extended with a sorting discipline for ports in [3]. Typing associates
synchronization types (trigger or synchron) to ports or connectors. The main
difference is that an interaction {p1, . . . , pn} actually represents a set of inter-
actions, i.e., all nonempty subset of {p1, . . . , pn} that contains some trigger;
otherwise (if all of the ports are synchrons), the only possible interaction is the
maximal one. Then, an interaction set γ contains either standard interactions
(i.e., without triggers), denoted as before by a, and connectors (i.e., interactions
containing at least a trigger), denoted by c. Let c be a connector, we write γc for
the set of all standard denoted interactions (i.e., all subsets of c that contains a
trigger). By assuming a set of interactions, we extend Definition 7 with the rules
for encoding connectors

L{c}MI = Λkj ; LγcMI ; Vk1

with j = #I and k = #γC (rule for L{c} ∪ γ′MI is analogous).
By using Lemma 5 and the semantics of Λkj and Vkj , it is easy to conclude that

the only non trivial transitions of L{c}MI are L{c}MI
α−→
1

L{c}MI with α = pwI(a)q

and a ∈ γc. This characterization is analogous to the one for standard transitions
in Lemma 4. This suffices to show that the correspondence results smoothly
extend to the semantics of triggers.

15

Hiding Hiding is an usual operator when composing systems hierarchically, be-
cause it enables components to compute internally. We can incorporate hiding
to the definition of a HBI(P) system by adding the following item to Def. 5:

− a composed system B = νaB1 with interface ι(B) = ι(B1) r {a} where B1

is a hierarchical BI(P) system and a ∈ ι(B1).

The semantics of B = νaB1 is given by extending the definition of the space
state of a HBI(P) system with the equation

− QB = {νaq|q ∈ QB1} if B = νaB1

and the following two inference rules

q
a−→ q′

νaq
∅−→ νaq′

a 6= b q
b−→ q′

νaq
b−→ νaq′

The encoding of HBI(P) system with hiding can be simply handled as follows

[[νaB]]νaq = [[B]]q ; Hpwι(B)({a})q

where Hα for α ∈ {0, 1}h is the the process inductively defined by:

H0 = I H1 =⊥⊥⊥ Hxα = (Hx ⊗Hα)

We remark that the term Hα replicates on the right interface only the ports of
the left interface that are in the positions of α and that are set to 0, while the
others are kept hidden. Consequently, Hpwι(B)({a})q hides the port associated to
a. The extension of the correspondence results to HBI(P) systems with hiding
is straightforward.

References

1. F. Arbab, R. Bruni, D. Clarke, I. Lanese, and U. Montanari. Tiles for Reo. In
A. Corradini and U. Montanari, editors, WADT, volume 5486 of LNCS, pages
37–55. Springer, 2009.

2. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In Fourth IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2006), pages 3–12. IEEE Computer Society, 2006.

3. S. Bliudze and J. Sifakis. The algebra of connectors - structuring interaction in
BIP. IEEE Trans. Computers, 57(10):1315–1330, 2008.

4. S. Bliudze and J. Sifakis. Causal semantics for the algebra of connectors. Formal
Methods in System Design, 36(2):167–194, 2010.

5. R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors.
Theor. Comput. Sci., 366(1-2):98–120, 2006.

6. R. Bruni, H. Melgratti, and U. Montanari. A connector algebra for P/T nets
interactions. In J.-P. Katoen and B. Koenig, editors, CONCUR, volume 6901 of
LNCS, pages 312–326. Springer, 2011.

16

7. R. Bruni, H. C. Melgratti, and U. Montanari. Connector algebras, Petri nets, and
BIP. In E. M. Clarke, I. Virbitskaite, and A. Voronkov, editors, Ershov Memo-
rial Conference, volume 7162 of Lecture Notes in Computer Science, pages 19–38.
Springer, 2011.

8. R. Bruni, H. C. Melgratti, and U. Montanari. A survey on basic connectors and
buffers. In B. Beckert, F. Damiani, F. S. de Boer, and M. M. Bonsangue, editors,
FMCO, volume 7542 of Lecture Notes in Computer Science, pages 49–68. Springer,
2011.

9. R. Bruni, H. C. Melgratti, U. Montanari, and P. Sobocinski. Connector algebras
for C/E and P/T nets’ interactions. Logical Methods in Computer Science, 9(3),
2013.

10. S. Graf and S. Quinton. Contracts for BIP: Hierarchical interaction models for
compositional verification. In J. Derrick and J. Vain, editors, FORTE, volume
4574 of Lecture Notes in Computer Science, pages 1–18. Springer, 2007.

11. P. Sobocinski. Representations of petri net interactions. In P. Gastin and
F. Laroussinie, editors, CONCUR, volume 6269 of LNCS, pages 554–568. Springer,
2010.

	From Hierarchical BIP to Petri Calculus

