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Abstract

MSC (2010): 57R25 (primary); 57M20, 57N10, 57R15 (secondary). A
3-dimensional generic flow is a pair (M, v) with M a smooth com-
pact oriented 3-manifold and v a smooth nowhere-zero vector field on
M having generic behaviour along ∂M ; on the set of such pairs we
consider the equivalence relation generated by topological equivalence
(homeomorphism mapping oriented orbits to oriented orbits), and by
homotopy with fixed configuration on the boundary, and we denote by
F the quotient set. In this paper we provide a combinatorial presenta-
tion of F . To do so we introduce a certain class S of finite 2-dimensional
polyhedra with extra combinatorial structures, and some moves on S,
exhibiting a surjection φ : S → F such that φ(P0) = φ(P1) if and only
if P0 and P1 are related by the moves. To obtain this result we first
consider the subset F0 of F consisting of flows having all orbits home-
omorphic to closed segments or points, constructing a combinatorial
counterpart S0 for F0 and then adapting it to F .

Combinatorial presentations of 3-dimensional topological categories, such as
the description of closed oriented 3-manifolds via surgery along framed links
in S3, and many more, have proved crucial for the theory of quantum invari-
ants, initiated in [10] and [12] and now one of the main themes of geometric
topology. In this paper we provide one such presentation for the set F of
pairs (M, v) withM a smooth 3-manifold and v a smooth flow having generic
behaviour on ∂M , viewed up to homotopy with fixed configuration on ∂M .
This extends the presentation of closed combed 3-manifolds contained in [5],
and it is based on a generalization of the notion of branched spine, introduced
there as a combination of the definition of special spine due to Matveev [8]
with the concept of branched surface introduced by Williams [14], already
partially investigated by Ishii [7] and Christy [6]. A presentation here is as
usual meant as a constructive surjection onto F from a set of finite com-
binatorial objects, together with a finite set of combinatorial moves on the
objects generating the equivalence relation induced by the surjection.
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To get our presentation we will initially restrict to generic flows hav-
ing all orbits homeomorphic to points or to segments, viewed first up to
topological equivalence (homeomorphism mapping oriented orbits to ori-
ented orbits, see [11, page 115 and Section 4.7]), and then up to homotopy
through flows having all orbits homeomorphic to points or to segments, and
we will carefully describe their combinatorial counterparts.

A restricted type of generic flows on manifolds with boundary was ac-
tually already considered in [5], but two such flows could never be glued
together along boundary components. On the contrary, as we will point out
in detail in Remark 3.4, using the flows we consider here one can develop
a theory of cobordism and hence, hopefully, a TQFT in the spirit of [13].
Another reason why we expect that our encoding of generic flows might have
non-trivial applications is that the notion of branched spine was one of the
combinatorial tools underlying the theory of quantum hyperbolic invariants
of Baseilhac and Benedetti [1, 2, 3].

Acknowledgements The author profited from several inspiring dis-
cussions with Riccardo Benedetti. He also thanks the anonymous referee for
precious suggestions.

1 Generic flows, streams, and stream-spines

In this section we define the topological objects that we will deal with in
the paper and we introduce the combinatorial objects that we will use to
encode them. We then describe our first representation result, for manifolds
with generic traversing flows (that we call streams) viewed up to topological
equivalence (homeomorphism mapping oriented orbits to oriented orbits).

1.1 Generic flows

Let M be a smooth, compact, and oriented 3-manifold with non-empty
boundary, and let v be a vector field on M . We will always assume in
this paper that v is smooth and nowhere-vanishing. We also stipulate the
following genericity of the tangency of v to ∂M , first discussed by Morin [9]:

(G1) – The field v is tangent to ∂M only along a union Γ of circles;

– Each component of Γ separates a region on which v points inside
M from a region on which v points outside M ;

– The field v is tangent to Γ at isolated points only;
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Figure 1: Orbits of v near a concave (left) and near a convex (right) point of Γ. All
pictures represent a cross section transverse to Γ. The top pictures show v, the bottom
ones show its orbits.

– At the two sides on Γ of each tangency point of v to Γ, one has
that v is directed to opposite sides of Γ on ∂M .

We now graphically illustrate all the local configurations compatible with
this genericity condition, and at the same time we introduce some terminol-
ogy that we will repeatedly employ in the rest of the paper. The models are
viewed up to topological equivalence [11]. (Analytic descriptions of these lo-
cal models and a hint towards a formal proof that there are no other models
is provided below.)

• We call in-region (respectively, out-region) the union of the compo-
nents of (∂M)\Γ on which v points towards the interior (respectively,
the exterior) of M ;

• If A is a point of Γ we will say that A is concave if at A the field v
points from the out-region to the in-region, and convex if it points from
the in-region to the out-region; this terminology is borrowed from [5]
and is motivated by the shape of the orbits of v near A, see Figure 1;

• A point A of Γ at which v is tangent to Γ will be termed transition
point, and more exactly a convex-to-concave or a concave-to-convex
transition point, depending on the direction of v at A, see Figure 2.

The next result records obvious facts and two less obvious ones:

Proposition 1.1. Let A be a point of ∂M . Then, depending on where A
lies, the orbit of v through A extends as follows:
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Figure 2: Types of transition points; on the left v points from the concave to the convex
portion of Γ, on the right from the convex to the concave portion of Γ; note that mirror
images in 3-space of these configurations should also be taken into account (namely, the
figures are unoriented).
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Figure 3: Orbits through the transition points for the field obtained by projecting v to
a vector field tangent to ∂M .

A in the in-region Only forward
A in the out-region Only backward
A a concave point Both forward and backward
A a convex point Neither forward nor backward
A a concave-to-convex transition point Only backward
A a convex-to-concave transition point Only forward

Proof. The result is evident except for orbits through the transition points.
To deal with them we first analyze what the orbits would be if v were
projected to ∂M , which we do in Figure 3. The picture shows that at
the concave-to-convex transition points the orbit of the projection of v lies
in the out-region, which implies that the orbit of v extends backward but
not forward, while at the convex-to-concave transition points the opposite
happens.

From now on an orbit of v reaching a concave-to-convex transition point
or leaving from a convex-to-concave transition point will be termed transi-
tion orbit.
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1.2 Explicit local models

For the sake of completeness we provide here explicit local models for a
vector field v on a manifold M satisfying the genericity condition (G1), and
we prove that these models are essentially unique.

We begin by assuming that near a boundary point A the manifold M is
identified with (−1, 1) × (−1, 1) × (−1, 0] ⊂ R3, so ∂M is locally (−1, 1) ×
(−1, 1) × {0}, with A corresponding to the origin. For A in the out-region

or in the in-region we take the constant fields v =

 0
0
1

 and v =

 0
0
−1


respectively. For A a concave, convex, or transition point we assume Γ is
locally (−1, 1)× {0} × {0}, and we take:

• For A a concave tangency point, vcc

 x
y
z

 =

 0
1− y2

−y

;

• For A a convex tangency point, vcv

 x
y
z

 =

 0
y2 − 1
−y

;

• For A a convex-to-concave transition point,

vcv→cc

 x
y
z

 =

 (1− x2)(1− y2)
x(1− y2)

−y

;

• For A a concave-to-convex transition point,

vcc→cv

 x
y
z

 =

 (1− x2)(1− y2)
x(y2 − 1)

−y

.

The analytic expressions just provided correspond exactly to the pictures
of the local models shown above. However, since only the behaviour in a
neighbourhood of 0 is relevant, we can also employ the following simpler
vector fields:

ṽcc

 x
y
z

 =

 0
1
−y

, ṽcv

 x
y
z

 =

 0
−1
−y

,
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ṽcv→cc

 x
y
z

 =

 1
x
−y

, ṽcc→cv

 x
y
z

 =

 1
−x
−y

.

One advantage of these alternative expressions is that one readily sees that
they are generic up to perturbation within smooth vector fields: starting
from a vector field v = (X,Y, Z) with Z(0) = 0 one can choose coordinates
and perturb v so that:

• ∂Z
∂x (0) = 0 and ∂Z

∂y (0) < 0;

• Either Y (0) ̸= 0 (whence ṽcc for Y (0) > 0 and ṽcv for Y (0) < 0), or
∂Y
∂x (0) ̸= 0 (whence ṽcv→cc for ∂Y

∂x (0) > 0 and ṽvc→cc for ∂Y
∂x (0) < 0).

Local models of alternative nature are described by assuming that M is
a portion of R3 depending on the model, with A ∈ ∂M corresponding to the

origin, while v is the constant vertical field

 0
0
1

. In this framework:

• A is in the out-region for M = {z 6 0};

• A is in the in-region for M = {z > 0};

• A is a concave tangency point for M = {x 6 y2};

• A is a convex tangency point for M = {x > y2};

• A is a convex-to-concave transition point for M = {y > xz − z3};

• A is a concave-to-convex transition point for M = {y 6 xz − z3}.

We conclude this subsection by illustrating the proof of the uniqueness of
the models up to topological equivalence. We do this explicitly for a concave
or convex tangency point A (a similar argument applies to a transition point,
but the details are more elaborate). In every case we assume that locally M
is (−1, 1)× (−1, 1)× (−1, 0] ⊂ R3, with Γ = (−1, 1)× {0} × {0} and A the
origin. We also take two smooth vector fields v0 and v1 and we denote by

φ
(j)
t (q) the point reached at time t by the flow generated by vj with initial

point q.

• If v0 and v1 turn Γ into a concave tangency line, then vj(x, y, z) has
vanishing third component and positive second component for y =
z = 0, while it has third component concordant with −y for z = 0 and
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y ̸= 0. We now fix some arbitrary positive δ < 1 (for instance δ = 1
2

would do); for small enough ε > 0 we can define

U (j)
ε = {φ(j)

t (q) : q ∈ (−δ, δ)× (−δ, 0)× {0}, −ε < t 6 0}
∪ {φ(j)

t (q) : q ∈ (−δ, δ)× {0} × (−δ, 0], −ε < t < ε}
∪ {φ(j)

t (q) : q ∈ (−δ, δ)× (0, δ)× {0}, 0 6 t < ε}

and we note the following:

(A) U
(j)
ε is a neighbourhood of A;

(B) Every point of U
(j)
ε has a unique expression φ

(j)
t (q) as in the

definition.

We then get an orbit-preserving homeomorphism U
(0)
ε → U

(1)
ε by map-

ping each φ
(0)
t (q) to φ

(1)
t (q).

• Suppose instead that v0 and v1 turn Γ into a convex tangency line.
Then vj(x, y, z) has vanishing third component and negative second
component for y = z = 0, while it has third component concordant
with −y for z = 0 and y ̸= 0. We now choose a small enough ε > 0 and
for q ∈ (−ε, ε)× (0, ε)×{0} we denote by τj(q) the smallest t > 0 such

that φ
(j)
t (q) belongs to (−1, 1)× (−1, 0)× {0}, noting that τj extends

as a continuous function on (−ε, ε)× [0, ε)×{0} if we set τj(q) = 0 on
(−ε, ε)× {0} × {0}. We can now define

U (j)
ε = {q = φ

(j)
0 (q) : q ∈ (−ε, ε)× {0} × {0}}

∪ {φ(j)
t (q) : q ∈ (−ε, ε)× (0, ε)× {0}, 0 6 t 6 τj(q)}

and note that the above conditions (A) and (B) hold in this case too.

We can then define an orbit-preserving homeomorphism U
(0)
ε → U

(1)
ε

by mapping each φ
(0)
t (q) to φ

(1)
t·τ1(q)/τ0(q)(q).

1.3 Streams

Our main aim in this paper is to provide a combinatorial presentation of the
set of generic flows on 3-manifolds up to homotopy with fixed configuration
on the boundary, but to achieve this aim we first need to somewhat restrict
the class of flows we consider and the equivalence relation on them. Infor-
mally, we call stream on a 3-manifold M a vector field v satisfying (G1) such
that, in addition, all the orbits of v start and end on ∂M , and the orbits of
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Figure 4: If an orbit of v is tangent to ∂M at two points of Γ, the two involved arcs of
Γ are transverse to each other under the parallel transport along v.

v tangent to ∂M are generic with respect to each other. More precisely, v
is a stream on M if it satisfies the conditions (G1)-(G4), with:

(G2) Every orbit of v is either a single point (a convex point of Γ) or a
closed arc with both ends on ∂M ;

(G3) The transition orbits are tangent to ∂M at their transition point only.

For the next and last condition we note that if an arc of an orbit of
v has ends A and B then the parallel transport along v defines a linear
bijection from the tangent space to M at A to that at B. We then require
the following:

(G4) Each orbit of v is tangent to ∂M at two points at most; if an orbit of v
is tangent to ∂M at two points A and B, that necessarily are concave
points of Γ by conditions (G2) and (G3), then the tangent directions
to Γ at A and at B are transverse to each other under the bijection
defined by the parallel transport along v.

This last condition is illustrated in Figure 4. We will henceforth denote
by F∗

0 the set of pairs (M, v) with M an oriented, compact, connected 3-
manifold and v a stream on M , up to topological equivalence.

1.4 Stream-spines

We now introduce the objects that will eventually be shown to be the combi-
natorial counterparts of streams on smooth oriented 3-manifolds. As above,
stating all the requirements takes some time and involves some new termi-
nology. We will then stepwise introduce 3 conditions (S1), (S2), (S3) for
a compact and connected 2-dimensional polyhedron P , the combination of
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Figure 5: Local aspect of a stream-spine.

which will constitute the definition of a stream-spine. We begin with the
following:

(S1) A neighbourhood of each point of P is homeomorphic to one of the 5
models of Figure 5.

This condition implies that P consists of:

1. Some open surfaces, called regions, each having a closure in P which
is a compact surface with possibly immersed boundary;

2. Some triple lines, to which three regions are locally incident;

3. Some single lines, to which only one region is locally incident;

4. A finite number of points, called vertices, to which six regions are
locally incident;

5. A finite number of points, called spikes, to which both a triple and a
single line are incident.

We note that a polyhedron satisfying condition (S1) is simple according
to Matveev [8], but not almost-special if single lines exist. Our next con-
dition was first introduced in [4]; to state it we define a screw-orientation
along an arc of triple line of P as an orientation of the arc together with a
cyclic ordering of the three germs of regions of P incident to the arc, viewed
up simultaneous reversal of both, as in Figure 6-left.

(S2) Along each triple line of P a screw-orientation is defined in such a way
that at each vertex the screw-orientations are as in Figure 6-right.

We now give the last condition of the definition of stream-spine:
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Figure 6: Screw orientation along a triple line, and compatibility at vertices.

Figure 7: A polyhedron locally as in Figure 5 sitting in a branched fashion in a 3-manifold
(any mirror image in 3-space of these figures is also allowed).

(S3) Each region of P is orientable, and it is endowed with a specific ori-
entation, in such a way that no triple line is induced three times the
same orientation by the regions incident to it.

We will say that two stream-spines are isomorphic if they are related
by a PL homeomorphism respecting the screw-orientations along triple lines
and the orientations of the regions, and we will denote by S0 the set of all
stream-spines up to isomorphism.

1.5 Stream carried by a stream-spine

In this subsection we will show that each stream-spine uniquely defines an
oriented smooth manifold and a stream on it. To begin we take a compact
polyhedron P satisfying condition (S1) of the definition of stream-spine,
namely locally appearing as in Figure 5. We will say that an embedding of
P in a 3-manifold M is branched if the following happens upon identifying
P with its image in M (see Figure 7):

• Each region of P has a well-defined tangent plane at every point;
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• If a point A of P lies on a triple line but is neither a vertex nor a
spike, the tangent planes at A to the 3 regions of P locally incident to
A coincide, and not all the 3 regions of P locally project to one and
the same half-plane of this tangent plane;

• At a vertex A of P the tangent planes at A to the 6 regions of P locally
incident to A coincide;

• At a spike A of P the tangent planes at A to the 2 regions of P locally
incident to A coincide.

Proposition 1.2. To any stream-spine P there correspond a smooth com-
pact oriented 3-manifold M and a stream v on M such that P embeds in
a branched fashion in M , the field v is everywhere positively transversal to
P , and M is homeomorphic to a regular neighbourhood of P in M ; the pair
(M, v) is well-defined up to oriented topological equivalence, therefore setting
φ(P ) = (M,v) one gets a well-defined map φ∗

0 : S0 → F∗
0 .

Proof. Our first task is to show that P thickens in a PL sense to a well-
defined oriented manifold M (later we will need to describe a smooth struc-
ture for M and the field v). This argument extends that of [4]. Let us
denote by U a regular neighbourhood in P of the union of the triple lines.
We observe that U can be seen as a union of fragments as in Figure 8-top,
that we thicken as shown in the bottom part of the same figure, giving each
block the orientation such that the screw-orientations along the portions of
triple lines of P within each block are positive. Note that on the boundary
of each block there are some T-shaped regions and that some rectangles
are highlighted. Following the way U is reassembled from the fragments
into which it was decomposed, we can now assemble the blocks by gluing
together the T’s on their boundary. (Note that the gluing between two T’s
need not identify the vertical legs to each other, so each T should actually
be thought of as a Y: the three legs play symmetric rôles.) Since the gluings
automatically reverse the orientation, the result is an oriented manifold, on
the boundary of which we have some highlighted strips, each having the
shape of a rectangle or of an annulus. Now we turn to the closure in P of
the complement of U , that we denote by S. Of course S is a surface with
boundary, and on ∂S we can highlight the arcs and circles shared with U .
(The rest of ∂S consists of arcs lying on single lines of P .) We then take the
product S × I —this is a crucial choice that will be discussed below— and
note that the highlighted arcs and circles on ∂S give highlighted rectangles
and annuli on ∂(S× I). We are only left to glue these rectangles and annuli
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Figure 8: Blocks obtained by thickening fragments of a neighbourhood of the union of
the triple lines.

to those on the boundary of the assembled blocks, respecting the way S is
glued to U and making sure the orientation is reversed. The result is the
required manifold M .

We must now explain how to smoothen M and how to choose the stream
v. Away from the triple and single lines of P the manifold M is the product
S × I with S a surface, so it is sufficient to smoothen S and to define v to
be parallel to the I factor and positively transversal to S. (This justifies our
choice of thickening S as a trivial rather than some other I-bundle.) Along
the triple and single lines of P we extend this construction as suggested
in a cross-section in Figure 9. Note that a triple line of P gives rise to a
concave tangency line of v to ∂M , and that a single line of P gives rise
to a convex tangency line. To conclude we must illustrate the extension
of the construction of v near vertices and near spikes, which we do in two
examples in Figure 10. In the figure we represent v by showing some of its
orbits. Note that:

• In both cases the local configurations of v near ∂M are as in condition
(G1) of the definition of stream;

• The orbits of v are closed arcs or points, as in condition (G2);

• To a vertex of P there corresponds an orbit of v that is tangent to ∂M
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Figure 9: The stream along triple and single lines.

Figure 10: Stream carried by a stream-spine near a vertex and near a spike.
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at two points, in a concave fashion and respecting the transversality
condition (G4);

• To a spike of P there corresponds a transition orbit of v satisfying
condition (G3).

This shows that v is indeed a stream on M . Since the construction of (M,v)
is uniquely determined by P , the proof is complete.

1.6 The in-backward and the out-forward
stream-spines of a stream

In this subsection we prove that the construction of Proposition 1.2 can be
reversed, namely that the map φ∗

0 : S0 → F∗
0 is bijective. More exactly, we

will see that the topological construction has two inverses that are equivalent
to each other —but not obviously so. If v is a stream on a 3-manifold M
we define:

• The in-backward polyhedron associated to (M, v) as the closure of the
union of the in-region of ∂M with the set of all points A such that
there is an orbit of v going from A to a concave or transition point of
∂M ;

• The out-forward polyhedron associated to (M, v) as the closure of the
union of the out-region of ∂M with the set of all points A such that
there is an orbit of v going from a concave or transition point of ∂M
to A.

Proposition 1.3.

• Let v be a stream on M . Then the in-backward and out-forward poly-
hedra associated to (M, v) satisfy condition (S1) of the definition of
stream-spine; moreover each of their regions shares some point with
the in-region or with the out-region of ∂M , and it can be oriented so
that at these points the field v is positive transversal to it; with this
orientation on each region, the in-backward and out-forward polyhedra
associated to (M, v) are stream-spines, they are isomorphic to each
other and via Proposition 1.2 they both define the pair (M, v).

• If P is a stream-spine and (M, v) is the associated manifold-stream pair
as in Proposition 1.2, then the in-backward and out-forward polyhedra
associated to (M, v) are isomorphic to P .
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Figure 11: From a stream-spine to a manifold-stream pair to its in-backward and out-
forward polyhedra. Cross-section away from the vertices and spikes of the stream-spine
and away from the special orbits of the stream.

Proof. Most of the assertions are easy, so we confine ourselves to the main
points. It is first of all obvious that away from the special orbits of v as
in conditions (G3) and (G4) the concave tangency lines of v to ∂M gener-
ate triple lines in the in-backward and out-forward polyhedra associated to
(M, v), while convex tangency lines generate single lines. Moreover, if from a
stream-spine P we go to (M,v) and then to the associated in-backward and
out-forward polyhedra, away from the vertices and spikes of P we see that
these polyhedra are naturally isomorphic to P , as shown in a cross-section
in Figure 11.

The fact that an orbit of v as in condition (G4) generates a vertex in the
in-backward and out-forward polyhedra associated to (M, v) was already
shown in [5], but we reproduce the argument here for the sake of complete-
ness, showing in Figure 12-left, top and bottom, the in-backward and the
out-forward spines near the orbit of Figure 4. Both these spines are locally
isomorphic to the stream-spine shown on the right, to which Proposition 1.2
associates precisely an orbit as in Figure 4.

We are left to deal with transition points and with spikes. Let us con-
centrate on a concave-to-convex transition point as in Figure 2-left, but
mirrored and rotated in 3-space for convenience. In this case the transi-
tion orbit extends backward (and not forward), and the locally associated
in-backward polyhedron is easy to describe, which we do in Figure 13-top.
The out-forward polyhedron is instead slightly more complicated to under-
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Figure 12: An orbit of a stream doubly tangent to the boundary in a concave fashion
generates a vertex in the in-backward and in the out-forward stream-spines.

Figure 13: From a transition point to a spike in the in-backward and in the out-forward
associated polyhedra.
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stand, since the orbits of v starting from the concave line near the transition
point finish on points close to the transition one, as illustrated in Figure 13-
bottom. The picture shows that the spikes thus generated are indeed locally
the same. Moreover, the concave-to-convex configuration of v near ∂M is
precisely that generated by a spike as in Figure 10-right, which is again of
the same type. This concludes the proof.

Combining Propositions 1.2 and 1.3 we get the following main result of
this section:

Theorem 1.4. The map φ∗
0 : S0 → F∗

0 from the set of stream-spines up to
isomorphism to the set of streams on 3-manifolds up to topological equiva-
lence.

2 Stream-homotopy and
sliding moves on stream-spines

In this section we consider a natural equivalence relation on streams, and
we translate it into combinatorial moves on stream-spines.

2.1 Elementary homotopy catastrophes

Let M be an oriented 3-manifold with non-empty boundary. On the set F∗
0

of streams on M we define stream-homotopy as the equivalence relation of
homotopy through vector fields with fixed configuration on ∂M and all orbits
homeomorphic to closed intervals or to points. We then define F0 as the
quotient of F∗

0 under the equivalence relation of stream-homotopy. (Recall
that the elements of F∗

0 itself are viewed up to topological equivalence.) The
next result shows how to factor this relation into easier ones:

Proposition 2.1. Stream-homotopy is generated by the elementary moves
shown in Figures 14 to 16.

Proof. Let (vt)t∈[0,1] be a stream-homotopy, as just defined (so that con-
ditions (G1) and (G2) hold or all vt’s). Up to small perturbation we can
assume that:

• The genericity conditions (G3) and (G4) are violated at isolated times
0 < t1 < . . . < tN < 1 only;

• At each tj there is a single orbit γj violating condition (G3) or (G4),
and one of the following catastrophes happens:
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Figure 14: Catastrophes corresponding to an orbit being twice concavely tangent to
the boundary but not in a transverse fashion. The pictures show portions of the concave
tangency line as seen looking in the direction of the vector field, and they suggest to what
part of it the boundary of the manifold bends

(a) γj is twice concavely tangent to ∂M but not transversely;

(b) γj is thrice concavely tangent to ∂M , and transversely;

(c) One end of γj is a transition point, and one internal point of γj
is concavely tangent to ∂M ;

(d) Both ends of γj are transition points, and no internal point of γj
is tangent to ∂M .

Since the topological equivalence class of vt does not change for t ∈ (tj−1, tj),
we only need to analyze the effect of the catastrophes. Let us first assume
that there is no catastrophe of type (d); then we can assume that for some
small enough ε > 0 the field vt on [tj − ε, tj + ε] changes only near γj as
described in Figure 14 for type (a), Figure 15 for type (b), and Figure 16
for type (c). Taking into account condition (G2) we then see that on each
interval [0, t1−ε], [tj+ε, tj+1−ε], [tN+ε, 1] the orbits of vt evolve homeomor-
phically. This implies the statement when there is no type (d) catastrophe.
To conclude we must then show that this type of catastrophe can be generi-
cally avoided during a homotopy. To do so we carefully analyze in Figure 17
the initial portions of the orbits close to an incoming transition orbit. In a
catastrophe of type (d) we would have a concave-to-convex transition point
A such that the orbit through A traces backward to, say, orbit 1 just be-
fore the catastrophe, to orbit 0 at the catastrophe, and to orbit 8 just after
the catastrophe, with numbers as in Figure 17. We can now modify the
homotopy so that the orbit through A traces back to either

• orbit 1, then 2, then 3, then 4, then 8, or

• orbit 1, then 5, then 6, then 7, then 8.

Note that at A with the first choice we obviously create a catastrophe of
type (c), but for an outgoing transition orbit, while with the second choice
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Figure 15: Catastrophes corresponding to an orbit being thrice concavely tangent to
the boundary in a transverse fashion.
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Figure 16: Catastrophes corresponding to a transition orbit being also once concavely
tangent to the boundary, with an obvious transversality condition. These pictures refer to
an incoming transition orbit, but the analogue catastrophes involving outgoing transition
orbits must also be taken into account.
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Figure 17: Initial portions of orbits near an incoming transition orbit.

we do not create any catastrophe at A. On the other hand at the starting
point of orbit 0 in Figure 17 we could create a catastrophe of type (c) with
one of the two choices and no catastrophe with the other choice, but we
cannot predict which is which. This shows that we can always get rid of a
doubly transition orbit either at no cost or by inserting one catastrophe of
type (c).

2.2 Sliding moves on stream-spines

In this subsection we introduce certain combinatorial moves on stream-
spines. We do so showing pictures and always meaning that the mirror
images in 3-space of the moves that we represent are also allowed and named
in the same way. Here comes the list; we call:

• Sliding 0 ↔ 2 move any move as in Figure 18;

• Sliding 2 ↔ 3 move any move as in Figure 19;

• Spike-sliding move any move as in Figure 20;

• Sliding move any move of the types just described.

The following result is evident:
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Figure 18: The 0 ↔ 2 sliding moves.

Proposition 2.2. If two stream-spines P1 and P2 in S0 are related by a
sliding move then the corresponding streams φ∗

0(P1) and φ∗
0(P2) are stream-

homotopic to each other.

2.3 Translating catastrophes into moves

In this subsection we establish the following:

Theorem 2.3. Let φ0 : S0 → F0 be the surjection from the set of stream-
spines to the set of streams on 3-manifolds up to homotopy. Then φ0(P1)
and φ0(P2) coincide in F0 if and only if P1 and P2 are related by sliding
moves.

Proof. We must show that the elementary catastrophes along a generic
stream-homotopy, as described in Proposition 2.1, correspond at the level
of stream-spines to the sliding moves. Checking that the catastrophes of
Figure 14 and 15 correspond to the 0 ↔ 2 and 2 ↔ 3 sliding moves is easy
and already described in [5], so we do not reproduce the argument.

We then concentrate on the catastrophes of Figure 16, showing that on
the associated out-forward spines their effect is that of a spike-sliding. This
is done in Figure 21 for the catastrophe in the top portion of Figure 16, which
is then easily recognized to give the first spike-sliding move of Figure 20; a
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Figure 19: The 2 ↔ 3 sliding moves.
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Figure 20: The spike-sliding moves.

Figure 21: From a catastrophe involving concave tangency of an incoming transition
orbit to a spike-sliding in the associated out-forward stream-spine.
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Figure 22: From a catastrophe involving concave tangency of an incoming transition
orbit to a spike-sliding in the associated in-backward stream-spine.

very similar picture shows that the bottom portion of Figure 16 gives the
second spike-sliding move of Figure 20.

The proof is now complete and the isomorphism of the in-backward
and out-forward stream-spines implies that the effect of the catastrophes of
Figure 16 is that of a spike-sliding also on the in-backward stream-spine. It is
however instructive to analyze the effect directly on the in-backward stream-
spine —in fact, it is not even obvious at first sight that the catastrophes of
Figure 16 have any impact on the in-backward stream-spine, given that there
is no transition orbit to follow backward anyway. But the catastrophes of
Figure 16 do have an impact on the in-backward stream-spine, because at
the catastrophe time there is an orbit that from a concave tangency point
traces back to a transition point. To analyze what the impact exactly is,
we restrict to the top portion of Figure 16 and we employ Figure 17 in a
crucial fashion. We do this in Figure 22, where we show the exact time of
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the catastrophe (top), the situation before (middle-left) and after (middle-
right) the catastrophe, and the corresponding in-backward stream-spines
(bottom). In the middle figures we show how the concave tangency lines
trace back to the in-region, showing for some points Q the boundary point
Q′ obtained by following backward the orbit through Q; note that after
the catastrophe one point P traces back first to a point P ′ of the concave
tangency line and then to a point P ′′ of the in-region. Using the information
of the middle figures one indeed sees that the corresponding stream-spines
are as in the bottom figures, where one recognizes the first spike-sliding of
Figure 20.

3 Combinatorial presentation of generic flows

As already anticipated, let us now define F as the set of pairs (M, v) where
M is a compact, connected, oriented 3-manifold (possibly without boundary)
and v is a generic flow on M , viewed up to the equivalence relation generated
by:

• (M0, v0) is equivalent to (M1, v1) if there exists a homeomorphism of
M0 onto M1 mapping the oriented orbits of v0 to those of v1;

• (M, v0) is equivalent to (M, v1) if there exists a continuous homotopy
(vt)t∈[0,1] with fixed (in/out/convex/concave/transition) configuration
on ∂M .

(So F is a quotient of F0.) To provide a combinatorial presentation of F we
call:

• Trivial sphere on the boundary of some (N,w) one that is split into
one in-disc and one out-disc by one concave tangency circle;

• Trivial ball a ball (B3, u) with u a stream on B3 and ∂B3 split into
one in-disc and one out-disc by one convex tangency circle.

Note that a trivial ball can be glued to a trivial sphere matching the vector
fields. We now define S as the subset of S0 consisting of stream-spines P
such that the boundary of φ0(P ) contains at least one trivial sphere. We
will establish the following:

Theorem 3.1. For P ∈ S let φ(P ) be obtained from φ0(P ) by attaching a
trivial ball to a trivial sphere in the boundary of φ0(P ). This gives a well-
defined surjective map φ : S → F , and φ(P0) = φ(P1) if an only if P0 and
P1 are obtained from each other by the sliding moves of Figures 18 to 20.
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3.1 Equivalence of trivial balls

In this subsection we will show that the map φ of Theorem 3.1 is well-
defined. To this end choose P ∈ S and set (N,w) = φ0(P ). To define
φ(P ) we must choose one trivial sphere S ⊂ ∂N , a trivial ball (B3, u) and
a diffeomorphism f : ∂B3 → S matching u to w. The manifold M resulting
from the gluing is of course independent of S, and the resulting flow v on M
is of course independent of f up to homotopy. However, when the boundary
of φ0(P ) contains more than one trivial sphere, it is not obvious that the pair
(M, v) as an element of F is independent of S. This will be a consequence
of the following:

Proposition 3.2. Let v be a generic flow on M , and let B1 and B2 be
disjoint trivial balls contained in the interior of M . Then there is a flow
v′ on M homotopic to v relatively to (∂M) ∪ B1 ∪ B2 such that there is a
homemorphism from M \B1 to M \B2 mapping the oriented orbits of v′

restricted to M \B1 to the oriented orbits of v′ restricted to M \B2.

Proof. Choose a smooth path α : [0, 1] → M with α(j) ∈ ∂Bj and α̇(j) =
v(α(j)) not tangent to ∂Bj for j = 0, 1, and α(t) ̸∈ B1∪B2 for 0 < t < 1. Up
to small perturbation we can assume α̇(t) ̸= −v(α(t)) for t ∈ [0, 1], and then
homotope v on a neighbourhood of α to a flow v′′ such that v′′(α(t)) = α̇(t)
for t ∈ [0, 1]. Now we can homotope v′′ to v′ in a neighbourhood of B1∪B2∪α
as suggested in Figure 23, which gives the desired conclusion.

3.2 Normal sections

Let us now show that the map φ of Theorem 3.1 is surjective. To this
end we adapt a definition from [5, 7], calling normal section for a manifold
M with generic flow v a smooth disc ∆ in the interior of M such that v is
transverse to ∆, every orbit of v meets ∆∪∂M in both positive and negative
time, and the orbits of v tangent to ∂M or intersecting ∂∆ are generic with
respect to each other, with the obvious meaning. The existence of normal
sections is rather easily established [5], and Figure 24 suggests how, given a
normal section ∆ of (M,v), to remove a trivial ball B from (M, v) so that
the restriction w of v to N = M \ B is a stream on N . By construction if
P is a stream-spine such that φ∗

0(P ) = (N,w) we have that φ(P ) represents
(M, v), whence the surjectivity of φ. Let us also note, since we will need this
to prove injectivity, that P can be directly recovered from (M,v) and ∆,
taking the union of ∆ with the in-region of ∂M and with the set of points
A such that there exists an orbit of v going from A to ∂∆ or to the concave
tangency line of v to ∂M , with the obvious branching along triple lines.
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a

Figure 23: Homotoping a field so that removing either of two trivial balls gives the same
result.

D

Figure 24: From a normal section to a stream on the complement of a trivial ball.
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3.3 Homotopy

We are left to establish injectivity of the map φ of Theorem 3.1. Recalling
that the elements (M, v) of F are regarded up to orbit-preserving homeo-
morphism of M and homotopy of v on M with fixed configuration on ∂M ,
we see that injectivity is a consequence of the following:

Proposition 3.3. Let (vt)t∈[0,1] be a homotopy of generic flows on M , with
fixed configuration on ∂M . For j = 0, 1 let ∆j be a normal section for
(M, vj) and let Pj be the stream-spine defined by ∆j and vj as at the end of
the previous subsection. Then P0 and P1 are related by the sliding moves of
Figures 18 to 20.

Proof. We first prove the result for constant (vt). Namely, we prove that
if Σ0 and Σ1 are normal sections for the same (M, v) then the associated
stream-spines are related by the sliding moves of Figures 18 to 20. This is
proved, as in [5], by constructing normal sections Θ0 and Θ1 for (M, v) such
that Σ0∩Θ0 = Θ0∩Θ1 = Θ1∩Σ1 = ∅, which is easily done. The conclusion
now comes from the fact that given two disjoint normal sections X and Y of
(M, v) one can join them by a small strip constructing a normal section Z
that contains X ∪Y , and then one can view the transformation of X into Y
as first the smooth expansion of X to Z and then the contraction of Z to Y .
At the level of the associated stream-spines this transition indeed consists
of the elementary sliding moves of Figures 18 to 20.

Let us now treat the general case of the statement. For all t ∈ [0, 1] we
choose a normal section ∆t for vt (with ∆0 and ∆1 the sections we have by
assumption). For all t there exists ε(t) > 0 such that ∆t is a normal section
of vs for all s ∈ (t − ε(t), t + ε(t)) ∩ [0, 1], with associated stream-spine
independent of s up to isomorphism. By compactness of [0, 1] we can find
times 0 = t0 < t1 < . . . < tN = 1 and discs ∆0 = D0, D1, . . . DN−1 = ∆1

such that Dj is a normal section of vs for all s ∈ [tj , tj+1], with associated
stream-spine independent of s up to isomorphism. What already shown
implies that the stream-spines of vj defined by Dj−1 and by Dj are related
by the elementary sliding moves of Figures 18 to 20, and the conclusion
readily follows.

Remark 3.4. Suppose for j = 1, 2 that Mj is an oriented 3-manifold en-
dowed with a generic flow vj , and that Σj is a boundary component of Mj .
Suppose moreover that one is given a homeomorphism Σ1 → Σ2 mapping
the in-region of Σ1 to the out-region of Σ2 and conversely, the concave line on
Σ1 to the convex line on Σ2 and conversely, the concave-to-convex transition
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points of Σ1 to the convex-to-concave transition points of Σ2 and conversely.
Then one can glue M1 to M2 along this map, getting on the resulting man-
ifold M a generic flow v well-defined up to homotopy. This implies that
there exists a natural cobordism theory in the set F of 3-manifolds endowed
with a generic flow, and one could hope to use the combinatorial encoding
φ : S → F described in this paper as a technical tool to develop a TQFT [13]
for such manifolds.
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