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Abstract
We propose a new Large Eddy Simulation (LES) model for the Boussinesq equations. We consider
the motion in a three-dimensional domain with solid walls, and in a particular geometrical situation
we look for solutions which are periodic in the vertical direction and satisfy homogeneous Dirichlet
conditions on the lateral boundary. We are thus modeling a vertical pipe and one main difficulty
is that of considering regularizations of the equation which are well behaved also in presence of a
boundary. The LES model we consider is then obtained by introducing a vertical filter, which is the
natural one for the setting that we are considering. The related interior closure problem is treated
in a standard way with a simplified-Bardina deconvolution model. The most technical analytical
point is related to the fact that anisotropic filters provide less regularity than the isotropic ones and,
in principle, the density term appearing in the Boussinesq equations may behave very differently
from the velocity. We are able to define an appropriate notion of regular weak solution, for which
we prove existence, uniqueness, and we also show that the energy associated to the model is exactly
preserved.
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1 Introduction
We are interested in developing and studying a Large Eddy Simulation Model (LES) useful to
simulate some mixing phenomena for turbulent flows, when direct numerical simulations are not
feasible, because computationally too expensive. Since the effects of boundaries are of fundamental
importance for formation and development of turbulence and mixing, we are mainly focused to
find a suitable LES model which can be successfully applied also in presence of solid boundaries.
In particular, we will consider the Boussinesq equations in a vertical cylindrical domain, with a
filtering which is weaker than the usual one.

The LES is achieved by applying a suitable filter, which neglects the small-scale motions, makes
the solutions smoother, and allows numerical simulations. In particular, we consider a special class
of differential filters. A general overview on LES models is given in [6]. Moreover, LES models
are characterized by a deterministic behavior, while pointwise (unfiltered) turbulent flows manifest
randomness. A successful example of regularized models is given by α-models (see the introductions
in [10, 11, 15, 18, 22]), where filtering is obtained through the inverse of the Helmholtz operator
A = I − α2∆, where ∆ is the Laplace operator, and α > 0 represents the filtering spatial scale.
However, the presence of the boundary imposes boundary conditions on the filter, so that the
usual isotropic filters are unsuited to be applied due to the lack of commutation between filtering
and differentiation (see [6, Ch. 9]), which yields problems in deriving the filtered equations. To
overcome this difficulty, anisotropic filters have been already proposed for numerical simulations
in Deardorff [14] and, even for differential filters, in Germano [17], where it is pointed out that
anisotropic filters are less memory consuming than their isotropic versions.

A first example of anisotropic regularization in the context of α-models (see also the earlier
work with discrete methods [23]) can be found in [3], where the horizontal filter determined by the
inverse of Ah = I − α2∆h (where ∆h := ∂2x1

+ ∂2x2
is the Laplacian in the horizontal variables)

replaces the usual Helmholtz one with the full Laplacian. The idea of using this filtering comes also
from the previous analytical results in [13] and in [3], where the anisotropic filter is applied to the
incompressible Navier–Stokes equations in a 3D bounded channel domain, with periodic horizontal
boundary conditions and homogeneous Dirichlet conditions on the upper and lower boundaries.
Existence and uniqueness of so-called regular weak solutions are then proved. In [4] the horizontal
filter has been applied in several ways to the Oberbeck–Boussinesq equations (or simply Boussinesq
equations) and existence and uniqueness (in one case) of solutions have been obtained for the
corresponding LES model, thus continuing the study of LES models applied to stratified flows
(see [19] and the references therein for numerical results in this direction). As explained in [4],
the Boussinesq equations are well suited for the simulation of some mixing phenomena involved
in certain geophysical and oceanic flows. They couple the Navier–Stokes equations for the fluid
velocity (whose difficulties are shared) with a transport equation (requiring an additional analysis)
for a scalar, usually interpreted as a density or temperature perturbation.

An analogous result has been obtained by Ali [1] in a vertical cylindrical domain for the Navier–
Stokes equations regularized through the inverse of the differential operator A3 = I − α2∂23 , where
∂3 is the derivative with respect to the vertical component. Here, we further develop ideas coming
from [1, 2] and we consider the LES model obtained by filtering the Boussinesq equations in a
vertical cylindrical domain, i.e., a bounded domain periodic in the vertical direction endowed with
homogeneous Dirichlet conditions on the lateral boundary, and through the vertical filter given by
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A−13 . In particular we find a suitable setting to handle also the density equation; together with
existence and uniqueness of regular weak solutions, we also prove that the energy of the model is
exactly preserved. In our analysis, we consider a zeroth-order deconvolution model à la Stolz and
Adams (or simplified-Bardina), see [9, 18]. We refer to [1, 4, 7, 8] for results concerning Approximate
Deconvolution Models (ADM) with general order of deconvolution for the Navier–Stokes equations
and the Boussinesq equations. We do not enter the game of considering fractional variants of the
filter (anyway a fractional power of the Laplacian larger than one-half will suffice for most results),
in order to find the critical spaces and so on, since we are mainly interested to propose an easy
applicable method, which can be used and implemented in an efficient way also by practitioners.

1.1 Plan of the paper

Section 2 includes the main notations and the functional spaces we will use. In Section 3 we
introduce the LES model. The main result and its proof are detailed in four subsections: Preliminary
results; Existence and energy inequality; Energy identity; Uniqueness and continuous dependence
on the data.

2 Notations

The Boussinesq Equations in non-dimensional form read as follows:

∂tu+∇ · (u⊗ u)− ν∆u+∇π = −ϑ e3 (t, x) ∈ (0, T )×D ,

∇ · u = 0 (t, x) ∈ (0, T )×D ,

∂tϑ+∇ · (ϑu)−K∆ϑ = 0 (t, x) ∈ (0, T )×D ,

where the unknowns are the velocity vector field u, and the scalar fields π and ϑ, where π is the
pressure, while ϑ is generally interpreted as a density or as a temperature fluctuation. The positive
constants ν andK are known respectively as kinematic viscosity and diffusivity, while e3 := (0, 0, 1).

Due to the particular geometry in which we will consider the problem, and since the proofs will
exploit such a special form, we use the following notation

x = (x1, x2, x3) and xh = (x1, x2) ,

where “h” stays for “horizontal”. For a vector function w = (w1, w2, w3), we set wh = (w1, w2)
in such a way that w = (wh, w3). We also use the same splitting on differential operators and if
∂j = ∂xj

, then
∇h = (∂1, ∂2) and ∇ = (∇h, ∂3) .

We denote by Ω ⊂ R2 a smooth bounded open domain and the space domain is

D = Ω× ]−π,π[ = {x ∈ R3 : (x1, x2) ∈ Ω, −π < x3 < π } ,

with 2π-periodicity with respect to x3 and homogeneous Dirichlet boundary conditions on Γ =
∂Ω× ]−π,π[.
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We introduce the following function spaces, which are natural with the above splitting of vari-
ables:

L2(D) = {φ : D → R measurable, 2π -periodic in x3,
∫
D

|φ|2 dx < +∞} ,

L2
0(D) = {φ ∈ L2(D),

∫ π

−π

φdx3 = 0 } ,

H = {φ ∈ L2
0(D) : ∇ · φ = 0 in D, φ · n = 0 on Γ }

(n is the outward unit normal vector on Γ), all with L2 norm denoted by ‖·‖, and scalar product
(·, ·) in L2. Here and in the following, we use boldface letters to denote spaces of vector and or
tensor valued functions (with respect to the space variables). A delicate interplay is that between
horizontal (xh) and vertical (namely x3) variables, so we define the following functional spaces:

H1
vert = {φ ∈ L2

0(D) : ∂3φ ∈ L2(D) } ,
V vert = {φ ∈H : ∂3φ ∈ L2(D) } ,
V = {φ ∈H : ∇φ ∈ L2(D) and φ = 0 on Γ } ,
H2

vert = {φ ∈ H1
vert : ∂3∇φ ∈ L2(D) } ,

and denote by V ∗ the dual space to V . We denote by Lp (with norm ‖·‖Lp) and Hm (with norm
‖·‖Hm) classical Lebesgue and Sobolev spaces. Weakly continuous functions [0, T ] 7→ X are denoted
by the symbol Cw(0, T ;X).

3 On the LES model

We introduce the vertical (x3 direction) filter by means of the operator A3 = I − α2∂23 as follows:

v = A−13 v ,

where both v and v are periodic in x3 and with vanishing mean value with respect to x3. By
filtering the equations (and exploiting the commutation of filter and derivatives with respect to x3,
due to periodicity), we obtain

∂tu+∇ · (u⊗ u)− ν∆u+∇π = −ϑ e3 (t, x) ∈ (0, T )×D ,

∇ · u = 0 (t, x) ∈ (0, T )×D ,

∂tϑ+∇ · (ϑu)−K∆ϑ = 0 (t, x) ∈ (0, T )×D .

We set w = u, q = π, ρ = ϑ, so that u = A3w; we solve the interior closure problem by the
approximations

a) u⊗ u ≈ u⊗ u = w ⊗w ,

b) ϑu ≈ ϑu = ρw ,
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which can be seen as a zeroth order deconvolution model [7, 9, 18]. We finally deduce the following
system of partial differential equations, which depends only on “filtered” variables (w, q, ρ):

∂tw +∇ · (w ⊗w)− ν∆w +∇q = −ρ e3 (t, x) ∈ (0, T )×D ,(1)
∇ ·w = 0 (t, x) ∈ (0, T )×D ,(2)
∂tρ+∇ · (ρw)−K∆ρ = 0 (t, x) ∈ (0, T )×D .(3)

Remark 3.1 We use the same filter for all the equations to simplify notation. However the proof
still works by introducing two different filters, i.e. two scale lengths α1 and α2, for u and ϑ
respectively (see [4]). For other related models with different filters similar to the Leray or simplified-
Bardina, see also Ali and Ammari [2].

Definition (Regular weak solution) We say that (w, ρ) withw : (0, T )×D → R3 and ρ : (0, T )×D →
R is a regular weak solution (omitting the pressure term q) to system (1)-(2)-(3), with w = 0 and
ρ = 0 on ]0, T [×Γ, and (w(0,x), ρ(0,x)) = (w0, ρ0) ∈ V vert×H1

vert, when the following properties
are verified.

• Regularity:

w ∈ L∞(0, T ;V vert) ∩ L2(0, T ;V ∩H2
vert) ∩ Cw(0, T ;V vert) ,

∂tw ∈ L2(0, T ;V ∗) ,

ρ ∈ L∞(0, T ;H1
vert) ∩ L2(0, T ; H1 ∩H2

vert) ∩ Cw(0, T ;H1
vert) ,

∂tρ ∈ L2(0, T ; H−1) .

• Weak formulation:∫ +∞

0

{(w, ∂tϕ)− ν(∇w, ∇ϕ) + (w ⊗w, ∇ϕ)}(s) ds

=

∫ +∞

0

(ρ e3, ϕ)(s) ds− (w(0), ϕ(0)) ,∫ +∞

0

{
(ρ, ∂tψ) + (ρw, ∇ψ)−K(∇ρ, ∇ψ)

}
(s) ds = −(ρ(0), ψ(0))

for each ϕ ∈
(
C∞0 ([0, T [ × D)

)3 such that ∇ · ϕ = 0, and for each ψ ∈ C∞0 ([0, T [ × D) or,
equivalently (see Galdi [16]) if∫ t1

t0

{(w, ∂tϕ)− ν(∇w, ∇ϕ) + (w ⊗w, ∇ϕ)}(s) ds

=

∫ t1

t0

(ρ e3, ϕ)(s) ds+ (w(t1), ϕ(t1))− (w(t0), ϕ(t0)) ,∫ t1

t0

{
(ρ, ∂tψ) + (ρw, ∇ψ)−K(∇ρ, ∇ψ)

}
(s) ds = (ρ(t1), ψ(t1))− (ρ(t0), ψ(t0))

for each 0 ≤ t0 ≤ t1 < T .
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Remark 3.2 Since w ∈ L2(0, T ;V ) and ∂tw ∈ L2(0, T ;V ∗), by classical interpolation arguments
we can deduce w ∈ C ([0, T ];H). Similarly, we obtain ρ ∈ C ([0, T ]; L2

0(D)).
Moreover, since ∂3w ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and ∇ ·w = 0, we have also

∇h ·wh = −∂3w3 ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1) .

The main result of the paper, which justifies the introduction of the LES model (1)-(2)-(3) (at
least in a pipe) is Theorem 3.3, showing together with well-posedness also a good energy budget.

We will skip some details in the proof of the main results, since they follow the same lines of
previous ones in [1, 3, 7]. Hence, we show the main steps needed to put the new system in a similar
framework and —in addition— we focus more precisely on the role of the “energy” of the system.

Theorem 3.3 Let be given (w0, ρ0) ∈ V vert ×H1
vert and α, ν, K > 0. Then, there exists a unique

regular weak solution to (1)-(2)-(3), with w = 0 and ρ = 0 on ]0, T [ × Γ, and (w(0,x), ρ(0,x)) =
(w0, ρ0). Moreover, this solution depends weakly continuously on the data and satisfies the energy
(of the model) identity

1

2

(
‖w(t)‖2 + α2‖∂3w(t)‖2 + ‖ρ(t)‖2 + α2‖∂3ρ(t)‖2

)
+ ν

∫ t

0

(
‖∇w(s)‖2 + α2‖∂3∇w(s)‖2

)
ds

+K

∫ t

0

(
‖∇ρ(s)‖2 + α2‖∂3∇ρ(s)‖2

)
ds

=
1

2

(
‖w(0)‖2 + α2‖∂3w(0)‖2 + ‖ρ(0)‖2 + α2‖∂3ρ(0)‖2

)
−
∫ t

0

(
ρ(s) e3, w(s)

)
ds .

Clearly the same results hold also in the space periodic setting, where implementation of the dif-
ferential filter is straightforward and all proofs are easier.

3.1 Preliminary results
A crucial result is the following inequality for the convective term, which involves the anisotropic
derivative ∂3∇ instead of the Laplace operator, and will be used very often in the following. It is
taken from Ali [1].

Lemma 3.4 Let us assume that u,v,w are smooth enough vector fields such that u,w satisfy
homogeneous Dirichlet boundary conditions on Γ. Then, there exists a positive constant C such
that, for any real s > 1/2, there holds∣∣((u · ∇)v, w

)∣∣ ≤ C‖u‖1/2‖∇u‖1/2‖w‖1/2‖∇w‖1/2‖∇v‖1− 1
2s ‖∂s3∇v‖

1
2s .

Sketch of the proof. First, we use the Hölder inequality with different exponents for the vertical
variable and the horizontal variables (here, the subscripts “v” and “h” denote respectively the vertical
and horizontal components):∣∣((u · ∇)v, w

)∣∣ ≤ C‖u‖L2
vL

4
h
‖∇v‖L∞

v L2
h
‖w‖L2

vL
4
h
.

The first and third term can be estimated by using the following inequality, proved by Paicu and
Raugel [20]:

‖u‖L2
vL

4
h
≤ C‖u‖1/2‖∇hu‖1/2 .

6



Moreover, using Fourier expansions, it is possible to prove that ‖g‖L∞ ≤ C‖g‖1−
1
2s ‖g‖

1
2s

Hs . From
this inequality, we deduce

‖u‖L∞
v L2

h
≤ C‖u‖1−

1
2s ‖∂s3u‖

1
2s

(see Ali [1] for the details). By applying this result when u = ∇v, we easily get the claim. �

Let us note that, if u is divergence free, we have(
(u · ∇)w, v

)
= −

(
(u · ∇)v, w

)
,

and the roles of v and w in the previous lemma can be swapped, if now v is vanishing on Γ.

3.2 Existence and energy inequality
In order to construct regular weak solutions, we consider the Galerkin approximate solutions

wm(t,x) =
m∑
j=1

gjm(t)Ej(x) and ρm(t,x) =
m∑
j=1

γjm(t)Ej(x) ,

where Ej and Ej are smooth eigenfunctions of the Stokes and Laplace operator on D, with homo-
geneous Dirichlet boundary conditions on Γ and periodicity with respect to x3 (see Rummler [21]).
We will take advantage from using this special basis, since many calculations are then justified. If
Pm denotes the projection on span {E1, . . . ,Em } and similarly for Pm, the couple (wm, ρm) has
to solve the following Cauchy problem for ordinary differential equations

d

dt
(wm, Ei) + ν(∇wm, ∇Ei)− (wm ⊗wm, ∇Ei) = −(ρm e3, Ei) ,

d

dt
(ρm, Ei) +K(∇ρm, ∇Ei)− (ρmwm, ∇Ei) = 0 ,

wm(0) = Pm

(
w(0)

)
, ρm(0) = Pm

(
ρ(0)

)
,

for i = 1, . . . ,m.
Local existence follows from a basic theorem on ordinary differential equations and we look for

a priori estimates on the life-span independent of m. For each scalar or vector valued function v,
we define the following norm weighted with α (cf. the definition of the functional spaces in Sec. 2):

‖v‖2vert := ‖v‖2 + α2‖∂3v‖2 .

We test the first equation against A3wm and use the following identity (see [3] for its proof)

−(wm ⊗wm, ∇A3wm) = (∇ · (wm ⊗wm), A3wm) = 0 ,

to get the following differential inequality:

1

2

d

dt

(
‖wm‖2 + α2‖∂3wm‖2

)
+ ν
(
‖∇wm‖2 + α2‖∂3∇wm‖2

)
= −(ρm e3, A3wm) = −(ρm e3, wm)− α2(∂3ρm e3, ∂3wm)

≤ 1

2
‖ρm‖2 +

1

2
‖wm‖2 +

α2

2
‖∂3ρm‖2 +

α2

2
‖∂3wm‖2 .
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We look for similar estimates for ρm and so, analogously, we test the second equation against A3ρm
and use

−(ρmwm, A3∇ρm) = −(ρmwm, ∇ρm) = 0 ,

(due to ∇ ·wm = 0; note that we need to test against A3ρm in order to cancel the filter and obtain
the previous identity) to get

1

2

d

dt

(
‖ρm‖2 + α2‖∂3ρm‖2

)
+K

(
‖∇ρm‖2 + α2‖∂3∇ρm‖2

)
= 0 .

Summing up the latest two differential inequalities, we obtain

1

2

d

dt

(
‖wm‖2vert + ‖ρm‖2vert

)
+ ν‖∇wm‖2vert +K‖∇ρm‖2vert

≤ 1

2

(
‖wm‖2vert + ‖ρm‖2vert

)
.

(4)

An application of the Gronwall lemma gives

‖wm(t)‖2vert + ‖ρm(t)‖2vert ≤ et
(
‖wm(0)‖2vert + ‖ρm(0)‖2vert

)
,

so that wm ∈ L∞(0, T ;V vert) and ρm ∈ L∞(0, T ;H1
vert). Integrating (4) on [0, T ], we have wm ∈

L2(0, T ;V ∩H2
vert) and ρm ∈ L2(0, T ; H1 ∩H2

vert). Thus, proceeding as in Remark 3.2, we obtain
∇h ·wh

m ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1).
Now, we need estimates in order to pass to the limit as m → +∞. The quantities involved in

the nonlinear terms can be estimated using the Hölder and the Gagliardo–Nirenberg inequalities.
By applying Lemma 3.4, we have ∂twm ∈ L2(0, T ;V ∗) (see [1], Step 2 in the proof of Theorem 1.1;
note that our case corresponds to the deconvolution parameter N = 0).

As for what concerns ∂tρm, we have

(ρmwm, ∇ψ) =
(
ρmw

3
m, ∂3ψ

)
+ (ρmw

h
m, ∇hψ)

=
(
ρmw

3
m, ∂3ψ

)
+
(
(wh

m · ∇h)ψ, ρm
)
,

and hence, by using the Hölder and the Gagliardo–Nirenberg inequalities for the first term, and
Lemma 3.4 for the second one, we obtain∣∣∣(ρm(t)wm(t), ∇ψ(t)

)∣∣∣ ≤ ∣∣(ρm(t)w3
m(t), ∂3ψ(t)

)∣∣+
∣∣((wh

m(t) · ∇h)ψ(t), ρm(t)
)∣∣

≤ ‖ρm(t)‖L2‖wm(t)‖L3‖∂3ψ(t)‖L6

+ C‖ρm(t)‖1/2L2 ‖∇ρm(t)‖1/2L2 ‖wh
m(t)‖1/2L2 ‖∇wh

m(t)‖1/2L2 ‖∇ψ(t)‖1/2L2 ‖∇∂3ψ(t)‖1/2L2

≤ C‖ρm(t)‖ ‖wm(t)‖1/2‖∇wm(t)‖1/2‖∂3∇ψ(t)‖

+ C‖ρm(t)‖1/2‖∇ρm(t)‖1/2‖wm(t)‖1/2‖∇wm(t)‖1/2‖∇ψ(t)‖ ,

≤ C‖wm(t)‖1/2‖ρm(t)‖1/2‖wm(t)‖1/2V ‖ρm(t)‖1/2H1 ‖∇ψ(t)‖ ,

so that, using again the Hölder inequality, we obtain∫ T

0

∣∣∣(ρm(t)wm(t), ∇ψ(t)
)∣∣∣dt

≤ C‖wm(t)‖1/2L∞(0,T ;H)‖ρm(t)‖1/2L∞L2‖wm(t)‖1/2L2(0,T ;V )‖ρm(t)‖1/2L2H1‖∇ψ(t)‖L2L2 .
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In order to estimate |(∇ρm, ∇ψ)|, we utilize ρm ∈ L2(0, T ; H1) to get∫ T

0

|(∇ρm, ∇ψ)|dt ≤ ‖∇ρm‖L2L2‖∇ψ‖L2L2 ,

so that ∂tρm ∈ L2(0, T ; H−1), which holds for K ≥ 0.
The estimates for the time derivatives, together with standard compactness results as the Aubin–

Lions lemma, imply that there exist w and ρ regular as in the definition of regular weak solutions
such that, up to sub-sequences,

wm → w , ρm → ρ

in L2(0, T ;L2(D)), resp. L2(0, T ; L2(D)), as m → +∞. This enables to pass to the limit in the
nonlinear terms and to get that (w, ρ) is a regular weak solution to the model. Moreover, by using
standard lower semicontinuity results, we obtain that such a solution satisfies the energy inequality

1

2

(
‖w(t)‖2vert + ‖ρ(t)‖2vert

)
+ ν

∫ t

0

‖∇w(s)‖2vertds+K

∫ t

0

‖∇ρ(s)‖2vert ds

≤ 1

2

(
‖w(0)‖2vert + ‖ρ(0)‖2vert

)
−
∫ t

0

(
ρ(s) e3, w(s)

)
ds .

Finally, we deduce w ∈ Cw(0, T ;V vert) and ρ ∈ Cw(0, T ;H1
vert).

3.3 Energy identity

Since the energy identity is not proved in [1], and only the energy inequality is stated, we give here
some of the missing details to handle also this situation. Let wε, ρε denote a standard regularization
(obtained by convolution in time) of w, ρ (and so on), with 0 < t0 < t1 < T fixed, and 0 < ε < t0,
ε < T − t1, ε < t1 − t0. For each t ∈ [t0, t1], we define

wε(t) = (jε ∗w)(t) =

∫ t1

t0

jε(t− s)w(s) ds ,

where the smooth function jε is even, positive, supported in ]−ε, ε[, and such that
∫ ε

−ε jε(s) ds = 1.
Under these assumptions, we have, for any w ∈ Lq(t0, t1;X) with 1 ≤ q < +∞ and with X a
Hilbert space, the following properties (see Galdi [16]).

Lemma 3.5 Under the hypotheses as above we have the following results:

1. wε ∈ C∞([t0, t1];X);

2. lim
ε→0
‖wε −w‖Lq(t0,t1;X) = 0;

3. lim
k→+∞

‖[wk]ε −wε‖Lq(t0,t1;X) = 0 for each sequence {wk} ⊂ Lq(t0, t1;X) such that wk → w

in Lq(t0, t1;X), as k → +∞.
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Let be given two sequences

wk → w in L∞(0, T ;V vert) ∩ L2(0, T ;V ∩H2
vert) ,(5)

ρk → ρ in L∞(0, T ;H1
vert) ∩ L2(0, T ; H1 ∩H2

vert) ;(6)

we use as test functions in the weak formulation A3wk,ε in the first equation and A3ρk,ε in the
second one. We obtain the following equalities:∫ t1

t0

{(w, ∂tA3wk,ε)− ν(∇w,∇A3wk,ε) + (w ⊗w, ∇wk,ε)}(s) ds

=

∫ t1

t0

(ρ e3, A3wk,ε)(s) ds+ (w(t1), A3wk,ε(t1))− (w(t0), A3wk,ε(t0)) ,∫ t1

t0

{(ρ, ∂tA3ρk,ε) + (ρw, ∇ρk,ε)−K(∇ρ, ∇A3ρk,ε)}(s) ds

= (ρ(t1), A3ρk,ε(t1))− (ρ(t0), A3ρk,ε(t0)) .

Summing up the two identities and using A3 = I − α2∂23 yields∫ t1

t0

{
(w, ∂twk,ε) + α2(∂3w, ∂t∂3wk,ε)− ν(∇w,∇wk,ε)− να2(∂3∇w, ∂3∇wk,ε)

+
(
(w · ∇)wk,ε,w

)
+ (ρ, ∂tρk,ε) + α2(∂3ρ, ∂t∂3ρk,ε) + (ρw, ∇ρk,ε)

−K(∇ρ, ∇ρk,ε)−Kα2(∂3∇ρ, ∂3∇ρk,ε)
}

(s) ds

= (w(t1), wk,ε(t1)) + α2(∂3w(t1), ∂3wk,ε(t1)) + (ρ(t1), ρk,ε(t1)) + α2(∂3ρ(t1), ∂3ρk,ε(t1))

− (w(t0), wk,ε(t0))− α2(∂3w(t0), ∂3wk,ε(t0))

− (ρ(t0), ρk,ε(t0))− α2(∂3ρ(t0), ∂3ρk,ε(t0)) +

∫ t1

t0

(ρ e3, A3wk,ε)(s) ds .

Remark 3.6 When K = 0, we can only show that ρ ∈ L∞(0, T ;H1
vert), and hence we have only

ρk → ρ in L2(0, T ;H1
vert). Now, the term (ρw, ∇ρk,ε) is problematic, since we would need the

convergence property ρk → ρ in L2(0, T ; H1 ∩H2
vert) in order to prove that∫ t1

t0

(ρw, ∇ρk,ε) ds→
∫ t1

t0

(ρw, ∇ρε) ds ,

as k → +∞. This is a further reason to assume K > 0.

First, we prove that

lim
k→+∞

∫ t1

t0

(
(w · ∇)wk,ε, w

)
(s) ds =

∫ t1

t0

(
(w · ∇)wε, w

)
(s) ds .(7)

If we set ηk = wk,ε −wε, by using Lemma 3.4 we obtain∣∣((w · ∇)ηk, w
)∣∣ ≤ C‖w‖ ‖∇w‖ ‖∇ηk‖

1/2‖∂3∇ηk‖
1/2

,
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and hence∫ T

0

∣∣((w · ∇)ηk, w
)
(t)
∣∣dt ≤ C‖w‖L∞(0,T ;H)‖w‖L2(0,T ;V )‖ηk‖

1/2
L2(0,T ;V )‖ηk‖

1/2

L2(0,T ;H2
vert)

.

If we recall the definition of ηk, and use (5) and Lemma 3.5 to deduce

‖ηk‖
1/2
L2(0,T ;V ) → 0 , ‖ηk‖

1/2

L2(0,T ;H2
vert)
→ 0

as k → +∞, we conclude that (7) holds.
Now, we show that

lim
k→+∞

∫ t1

t0

(ρw, ∇ρk,ε)(s) ds =

∫ t1

t0

(ρw, ∇ρε)(s) ds .(8)

If we set ϑk = ρk,ε − ρε, by using Lemma 3.4 we have∣∣(ρw, ∇(ρk,ε − ρε)
)∣∣ =

∣∣((w · ∇)ϑk, ρ
)∣∣

≤ C‖w‖1/2‖∇w‖1/2‖ρ‖1/2‖∇ρ‖1/2‖∇ϑk‖1/2‖∂3∇ϑk‖1/2

for each s ∈ [t0, t1], whence∫ t1

t0

∣∣(ρw, ∇(ρk,ε − ρε)
)
(s)
∣∣ds

≤ C‖w‖1/2L∞(0,T ;H)‖w‖
1/2
L2(0,T ;V )‖ρ‖

1/2
L∞(0,T ;L2)‖ρ‖

1/2
L2(0,T ;H1)‖ϑk‖

1/2
L2(0,T ;H1)‖ϑk‖

1/2

L2(0,T ;H2
vert)

.

Since, by the definition of ϑk and the convergence properties in (6) and in Lemma 3.5, we have
ϑk → 0 in L∞(0, T ;H1

vert) ∩ L2(0, T ; H1 ∩H2
vert) as k → +∞, the previous estimate implies (8).

By using (7) and (8), and noticing that the other terms do not give any problem (since they are
linear terms and we have convergence in appropriate spaces), by taking k → +∞, we get∫ t1

t0

{
(w, ∂twε) + α2(∂3w, ∂t∂3wε)− ν(∇w,∇wε)− να2(∂3∇w, ∂3∇wε)

+
(
(w · ∇)wε,w

)
+ (ρ, ∂tρε) + α2(∂3ρ, ∂t∂3ρε) + (ρw, ∇ρε)

−K(∇ρ, ∇ρε)−Kα2(∂3∇ρ, ∂3∇ρε)
}

(s) ds

= (w(t1), wε(t1)) + α2(∂3w(t1), ∂3wε(t1)) + (ρ(t1), ρε(t1)) + α2(∂3ρ(t1), ∂3ρε(t1))

− (w(t0), wε(t0))− α2(∂3w(t0), ∂3wε(t0))

− (ρ(t0), ρε(t0))− α2(∂3ρ(t0), ∂3ρε(t0)) +

∫ t1

t0

(ρ e3, A3wε)(s) ds .

(9)

Proceeding as in [4], we can show that∫ t1

t0

{
(w, ∂twε) + α2(∂3w, ∂t∂3wε) + (ρ, ∂tρε) + α2(∂3ρ, ∂t∂3ρε)

}
(s) ds = 0 ,(10)

lim
ε→0

∫ t1

t0

{(
(w · ∇)wε,w

)
+ (ρw, ∇ρε)

}
(s) ds = 0 ,(11)
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and that the other terms converge to their natural counterparts with no ε. For the sake of com-
pleteness, we recall the main techniques. First, let us observe that jε is supported in ]−ε, ε[ and
even, so that its derivative j′ε is odd. Recalling the definition of wε, we deduce∫ t1

t0

(
w(s), ∂twε(s)

)
ds =

∫ t1

t0

∫ t1

t0

j′ε(s− r)
(
w(s), w(r)

)
dsdr

=

∫∫
E1

+

∫∫
E2

j′ε(s− r)
(
w(s), w(r)

)
dsdr = 0 ,

where

E1 = { (r, s) ∈ [t0, t1]× [t0, t1] : r ≤ s ≤ r + ε } ,
E2 = { (r, s) ∈ [t0, t1]× [t0, t1] : r − ε ≤ s ≤ r , r ≤ t1 } .

Indeed, note that E1 is symmetric to E2 with respect to s = r, and j′ε(s− r) is odd with respect to
s− r, hence

∫∫
E2

= −
∫∫

E1
. Similarly, we deal with the remaining terms in (10).

Next, we prove that
(
w(t1), wε(t1)

)
= 1

2‖w(t1)‖2 + O(ε); similar terms (without further inte-
grals) can be handled in the same way. First, using the fact that jε is even and then performing
the parameter change r = s− t1, we have that

wε(t1) =

∫ t1

t0

jε(t1 − s)w(s) ds

=

∫ 0

t0−t1
jε(r)w(r + t1) dr =

∫ 0

−ε
jε(r)w(r + t1) dr ,

since jε is supported in ]−ε, ε[ and t0 − t1 < −ε. Thus

(
w(t1), wε(t1)

)
=

∫ 0

−ε
jε(r)

(
w(t1), w(r + t1)

)
dr

=

∫ 0

−ε
jε(r)

(
w(t1), w(t1)

)
dr +

∫ 0

−ε
jε(r)

(
w(t1), w(r + t1)−w(t1)

)
dr

=
1

2
‖w(t1)‖2 +O(ε) ,

where we have used
∫ 0

−ε jε(r) dr = 1
2 for the first term and w ∈ Cw(0, T ;Vh) for the second one.

The terms in (11), and the remaining integral terms, follow from the regularity of w and ρ. For
instance,

lim
ε→0

∫ t1

t0

{(
(w · ∇)wε,w

)
+ (ρw, ∇ρε)

}
(s) ds

=

∫ t1

t0

{(
(w · ∇)w,w

)
+ (ρw, ∇ρ)

}
(s) ds = 0 ,

where the fact that the latter integral vanishes is obtained in a standard way by approximating
w, ρ through smooth functions and using the fact that ∇ ·w = 0.
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Thus, taking the limit ε→ 0, we get the energy identity for the model:

1

2

{
‖w(t1)‖2 + α2‖∂3w(t1)‖2 + ‖ρ(t1)‖2 + α2‖∂3ρ(t1)‖2

}
+

∫ t1

t0

{
ν‖∇w(s)‖2 + να2‖∂3∇w(s)‖2 +K‖∇ρ(s)‖2 +Kα2‖∂3∇ρ(s)‖2

}
ds

=
1

2

{
‖w(t0)‖2 + α2‖∂3w(t0)‖2 + ‖ρ(t0)‖2 + α2‖∂3ρ(t0)‖2

}
−
∫ t1

t0

(
ρ(s) e3, A3w(s)

)
ds ;

taking t0 → 0 and t1 = t, thanks to the weak continuity of w, ρ, we can conclude that

1

2

{
‖w(t)‖2 + α2‖∂3w(t)‖2 + ‖ρ(t)‖2 + α2‖∂3ρ(t)‖2

}
+

∫ t

0

{
ν‖∇w(s)‖2 + να2‖∂3∇w(s)‖2 +K‖∇ρ(s)‖2 +Kα2‖∂3∇ρ(s)‖2

}
ds

=
1

2

{
‖w(0)‖2 + α2‖∂3w(0)‖2 + ‖ρ(0)‖2 + α2‖∂3ρ(0)‖2

}
−
∫ t

0

(
ρ(s) e3, A3w(s)

)
ds ,

or with a more compact notation,

1

2

{
‖w(t)‖2vert + ‖ρ(t)‖2vert

}
+

∫ t

0

{
ν‖∇w(s)‖2vert +K‖∇ρ(s)‖2vert

}
ds

=
1

2

{
‖w(0)‖2vert + ‖ρ(0)‖2vert

}
−
∫ t

0

(
ρ(s) e3, A3w(s)

)
ds .

3.4 Uniqueness and continuous dependence

In this section we prove the uniqueness of the regular weak solution and since the proof follows the
same lines of results in [1, 4] we just provide the main steps. The interested reader can find further
details in the cited references.

We begin by taking two regular weak solutions (w1, ρ1) and (w2, ρ2) to (1)-(2)-(3) with the
same initial data (w1(0), ρ1(0)) = (w2(0), ρ2(0)). We set w = w1 −w2 and ρ = ρ1 − ρ2, so that
(w(0), ρ(0)) = (0, 0). We test the equations for ∂tw1 and ∂tw2 against [A3w]k,ε and the equations
for ∂tρ1 and ∂tρ2 against [A3ρ]k,ε (note that A3w and A3ρ are not allowed to be used directly as
test functions). Observe that the ε regularization commutes with the filter A3 and more generally
with space derivatives. Using the same arguments as in the previous subsection, we can pass to the
limit as k → +∞. If we subtract the equation for w2 from that for w1, we can deduce∫ t

0

{
(w, ∂twε) + α2(∂3w, ∂t∂3wε)− ν(∇w, ∇wε)− να2(∂3∇w, ∂3∇wε)

+
(
(w1 · ∇)wε, w1

)
−
(
(w2 · ∇)wε, w2

)}
(s) ds

=

∫ t

0

(ρ e3, A3wε)(s) ds+
(
w(t), wε(t)

)
+ α2

(
∂3w(t), ∂3wε(t)

)
−
(
w(0), wε(0)

)
− α2

(
∂3w(0), ∂3wε(0)

)
;
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since w(0) = 0 and

(
(w1 · ∇)wε, w1

)
−
(
(w2 · ∇)wε, w2

)
=
(
(w · ∇)wε, w

)
+
(
(w2 · ∇)wε, w

)
+
(
(w · ∇)wε, w2

)
,

we obtain

∫ t

0

{
(w, ∂twε) + α2(∂3w, ∂t∂3wε)− ν(∇w, ∇wε)− να2(∂3∇w, ∂3∇wε)

+
(
(w · ∇)wε, w

)
+
(
(w2 · ∇)wε, w

)
+
(
(w · ∇)wε, w2

)}
(s) ds

=

∫ t

0

(ρ e3, A3wε)(s) ds+
(
w(t), wε(t)

)
+ α2

(
∂3w(t), ∂3wε(t)

)
.

(12)

Similarly, by subtracting the equations for ρ1 and ρ2, we have

∫ t

0

{(ρ, ∂tA3ρε) + (ρ1w1, ∇ρε)− (ρ2w2, ∇ρε)−K(∇ρ, ∇A3ρε)}(s) ds

= (ρ(t), A3ρε(t))− (ρ(0), A3ρε(0)) .

Recalling that ρ(0) = 0, by using

(ρ1w1, ∇ρε)− (ρ2w2, ∇ρε) = (ρw, ∇ρε) + (ρw2, ∇ρε) + (ρ2w, ∇ρε) ,

and by writing the explicit expression for A3, we obtain

∫ t

0

{
(ρ, ∂tρε) + α2(∂3ρ, ∂t∂3ρε) + (ρw, ∇ρε) + (ρw2, ∇ρε) + (ρ2w, ∇ρε)

−K(∇ρ, ∇ρε)−Kα2(∂3∇ρ, ∂3∇ρε)
}

(s) ds

= (ρ(t), ρε(t)) + α2(∂3ρ(t), ∂3ρε(t)) .

(13)

If we sum (12) and (13), and take the limit as ε→ 0 (by proceeding as in the previous subsection,
we can consider the integral over [t0, t1] and then take t0 → 0, t1 = t), we get

− ν
∫ t

0

{
‖∇w(s)‖2 + α2‖∂3∇w(s)‖2

}
ds−K

∫ t

0

{
‖∇ρ(s)‖2 + α2‖∂3∇ρ(s)‖2

}
ds

+

∫ t

0

{(
(w · ∇)w, w2

)
+ (ρ2w, ∇ρ)

}
(s) ds

=

∫ t

0

(
ρ(s) e3, A3w(s)

)
ds+

1

2

{
‖w(t)‖2 + α2‖∂3w(t)‖2 + ‖ρ(t)‖2 + α2‖∂3ρ(t)‖2

}
,
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which implies

1

2

{
‖w(t)‖2 + α2‖∂3w(t)‖2 + ‖ρ(t)‖2 + α2‖∂3ρ(t)‖2

}
+ ν

∫ t

0

{
‖∇w(s)‖2 + α2‖∂3∇w(s)‖2

}
ds+K

∫ t

0

{
‖∇ρ(s)‖2 + α2‖∂3∇ρ(s)‖2

}
ds

≤ 1

2

∫ t

0

{
‖w(s)‖2 + α2‖∂3w(s)‖2 + ‖ρ(s)‖2 + α2‖∂3ρ(s)‖2

}
ds

+

∫ t

0

∣∣((w · ∇)w, w2

)
+ (ρ2w, ∇ρ)

∣∣(s) ds .

(14)

The term
(
(w ·∇) w, w2

)
can be estimated using once again Lemma 3.4 and resorting to the Young

inequality: ∣∣((w · ∇)w, w2

)∣∣ ≤ C‖w‖1/2‖∇w‖ ‖∂3∇w‖1/2‖w2‖1/2‖∇w2‖1/2

≤ ν

4
‖∇w‖2 +

να2

2
‖∂3∇w‖2 +

C

ν3α2
‖w2‖2‖∇w2‖2‖w‖2 ,

whence ∫ t

0

∣∣((w(s) · ∇)w(s), w2(s)
)∣∣ds ≤ ∫ t

0

{
ν

4
‖∇w(s)‖2 +

να2

2
‖∂3∇w(s)‖2

}
ds

+
C

ν3α2

∫ t

0

{
‖w2(s)‖2‖∇w2(s)‖2

}
‖w(s)‖2 ds .

(15)

Similarly,

|(ρ2w, ∇ρ)| =
∣∣((w · ∇) ρ, ρ2

)∣∣
≤ C‖w‖1/2‖∇w‖1/2‖ρ2‖1/2‖∇ρ2‖1/2‖∇ρ‖1/2‖∂3∇ρ‖1/2

≤ ν

4
‖∇w‖2 +

K

2
‖∇ρ‖2 +

Kα2

2
‖∂3∇ρ‖2 +

C

νK2α2
‖ρ2‖2‖∇ρ2‖2‖w‖2 .

(16)

By inserting (15)-(16) in (14), and setting

Y (t) = ‖w(t)‖2vert + ‖ρ(t)‖2vert ,

B(s) = 1 +
C

να2

{
1

ν2
‖w2(s)‖2‖∇w2(s)‖2 +

1

K2
‖ρ2(s)‖2‖∇ρ2(s)‖2

}
,

we obtain

Y (t) + ν

∫ t

0

‖∇w(s)‖2vert ds+K

∫ t

0

‖∇ρ(s)‖2vert ds ≤
∫ t

0

B(s)Y (s) ds .

Since B(s) ∈ L1(0, T ), an application of the Gronwall lemma implies Y (t) ≡ 0, i.e. uniqueness of
the solution and, by adapting the argument, continuous dependence on the data.
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