
Author's Accepted Manuscript

Proneness to social anxiety modulates neural
complexity in the absence of exposure: A
resting state fMRI study using Hurst exponent

Claudio Gentili, Nicola Vanello, Ioana Cristea,
Daniel David, Emiliano Ricciardi, Pietro Pietrini

PII: S0925-4927(15)00065-7
DOI: http://dx.doi.org/10.1016/j.pscychresns.2015.03.005
Reference: PSYN10347

To appear in: Psychiatry Research: Neuroimaging

Received date: 8 May 2014
Revised date: 7 February 2015
Accepted date: 13 March 2015

Cite this article as: Claudio Gentili, Nicola Vanello, Ioana Cristea, Daniel David,
Emiliano Ricciardi, Pietro Pietrini, Proneness to social anxiety modulates
neural complexity in the absence of exposure: A resting state fMRI study using
Hurst exponent, Psychiatry Research: Neuroimaging, http://dx.doi.org/10.1016/j.
pscychresns.2015.03.005

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/psychresns

http://dx.doi.org/10.1016/j.pscychresns.2015.03.005
http://dx.doi.org/10.1016/j.pscychresns.2015.03.005
http://dx.doi.org/10.1016/j.pscychresns.2015.03.005
http://dx.doi.org/10.1016/j.pscychresns.2015.03.005
http://dx.doi.org/10.1016/j.pscychresns.2015.03.005
http://dx.doi.org/10.1016/j.pscychresns.2015.03.005
http://dx.doi.org/10.1016/j.pscychresns.2015.03.005


Proneness to social anxiety modulates neural complexity in the absence of exposure: A resting 

state fMRI study using Hurst Exponent 

 

Claudio Gentili,
a,b,*

, Nicola Vanello,
c
, Ioana Cristea

a,d
, Daniel David

d,e
, Emiliano Ricciardi

b
, Pietro 

Pietrini
a,b

 

 

a. Clinical Psychology Branch, Department of Neuroscience – Via Roma. 67, Pisa University 

Hospital, Pisa, Italy 

b. Department of Surgical, Medical, Molecular and Critical Area Pathology, Via Paradisa 10,  – 

University of Pisa, Pisa, Italy 

c. Department of Information Engineering, Via Diotisalvi 10,  – University of Pisa, Pisa, Italy 

d. Department of Clinical Psychology and Psychotherapy, Republicii str. 37, – University Babes-

Bolyai, Cluj-Napoca, Romania 

e. Department of Oncological Sciences - Mount Sinai School of Medicine, 1428 Madison Ave 

New York, NY, USA 

Corresponding Author: 

*Claudio Gentili, MD, Ph.D., Clinical Psychology Branch, Department of Neuroscience, Pisa 

University Hospital, Via Roma 67, I-56126 Pisa, Italy. E-mail: claudio.gentili@med.unipi.it; tel. 

+39 050 993959 

 

Running Head: Social anxiety modulates resting state brain activity 

  



Abstract 

To test the hypothesis that brain activity is modulated by trait social anxiety, we measured the Hurst Exponent (HE), an 

index of complexity in time series, in healthy individuals at rest in the absence of any social trigger. Functional magnetic 

resonance imaging (fMRI) time series were recorded in 36 subjects at rest. All volunteers were healthy without any 

psychiatric, medical or neurological disorder. Subjects completed the Liebowitz Social Anxiety Scale (LSAS) and the Brief 

Fear of Negative Evaluation (BFNE) to assess social anxiety and thoughts in social contexts. We also obtained the fractional 

Amplitude of Low Frequency Fluctuations (fALFF) of the BOLD signal as an independent control measure for HE data. 

BFNE scores correlated positively with HE in the posterior cingulate/precuneus, while LSAS scores correlated positively 

with HE in the precuneus, in the inferior parietal sulci and in the parahippocamus. Results from fALFF were highly 

consistent with those obtained using LSAS and BFNE to predict HE. Overall our data indicate that spontaneous brain 

activity is influenced by the degree of social anxiety, on a continuum and in the absence of social stimuli. These findings 

suggest that social anxiety is a trait characteristic that shapes brain activity and predisposes to different reactions in social 

contexts. 
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1. Introduction 

According to the Diagnostic Statistic Manual of Mental Disorders – 4
th

 edition text revised (DSM-IV-TR), social 

anxiety disorder (SAD) is a persistent and excessive fear of social or performance situations in which the person is exposed 

to unfamiliar people or to scrutiny by others (American Psychiatric Association, 2000).  

From a neurobiological point of view, abnormal responses are associated with an altered neural activity in distinct 

regions, including not only emotion-related ones (Stein et al., 2002; Amir et al., 2005; Gentili et al., 2008), but also areas 

involved in social perception and interaction, such as the fusiform gyrus, inferior parietal lobule and dorsolateral prefrontal 

cortex (Gentili et al., 2008; Hattingh et al., 2012). A recent narrative review including 48 reports with fairly different 

experimental designs highlighted a dysfunctional network in SAD that consisted of the amygdala, pre-frontal regions striatal 

regions and parietal areas (Freitas-Ferrari et al., 2010). The region most consistently reported as affected in SAD was the 

amygdala, which has been demonstrated to be hyper-recruited while patients are coping with socially relevant stimuli (Stein 

et al., 2002; Gentili et al., 2008; Hattingh et al., 2012). Moreover, the degree of social anxiety seemed to correlate with the 

magnitude of amygdala response to faces both in clinical and non-clinical populations (Killgore and Yurgelun-Todd, 2005; 

Phan et al., 2006). 

Furthermore, recent studies found that even the patterns of functional (Danti et al., 2010) and effective (Liao et al., 

2010b) connectivity among the above-mentioned neural structures are altered in  SAD. Interestingly, functional connectivity 

patterns are altered not only when patients are confronted with specific "socially threatening" stimuli, but also when they are 

at rest, that is, in the absence of any stimulation (Liao et al., 2010a). This abnormal activity at rest suggests that brain 

functional alterations may be related to trait characteristics that are present independently of any triggers from socially 

provoking situations. 

Trait characteristics are very important aspects in psychological models of anxiety, including social anxiety (Spurr 

and Stopa, 2002), and define dimensions varying across a wide range, spanning from healthy individuals to patients. Social 

anxiety is indeed already recognizable in the common experience of shyness and becomes dysfunctional in patients with 

social phobia. In line with the conceptualization of trait general anxiety (Spielberg, 1989), we  argue that social anxiety may 

precede and be independent of socially relevant contexts and be responsible for dysfunctional information processing. This 

dysfunction, in turn, may trigger anxiety in social contexts. The Clark and Wells model (1995) suggested the existence of a 

stable maintaining factor which contributes to trigger anxiety in social situations (Clark and Wells, 1995), while Spurr and 

Stopa identified in the self-focused attention a possible trait element responsible for the onset of social anxiety (Spurr and 

Stopa, 2002). However, predisposing factors have become a focus of interest only recently (Morrison and Heimberg, 2013). 



If social anxiety is a trait characteristic, it is plausible that neural activity may be modulated by its degree, not only 

when individuals are exposed to socially engaging tasks, but also at rest. For instance, a significant relationship between 

strength of effective connectivity at rest (e.g., from left amygdala to left inferior temporal gyrus) and social anxiety levels 

was reported in SAD patients (Liao et al., 2010b). 

While connectivity measures provide indications of integrated brain activity among regions, to our knowledge, no 

neurobiological study has attempted to evaluate the relationship between segregated regional brain activity and social 

anxiety. An additional approach for the  study of brain activity at rest consists in assessing its complexity dimension, which 

involves the interplay between segregated and integrated activities in brain regions (Takahashi, 2013). 

Complex systems are characterized by a) the presence of a large number of interdependent elements that interact 

nonlinearly and that are organized at different hierarchical spatial and temporal scales; b) an emergent behavior 

(i.e., an observed phenomenon cannot be predicted studying single constituents); c) self-organization properties, 

meaning that the system can change and adapt its structure (Baranger, 2001; Bassett and Gazzaniga, 2011; 

Ladyman et al., 2013). The brain fits these properties well. In fact, it is constituted by about 86 billion neural 

cells and by a similar number of non-neural cells (Azevedo et al., 2009). All these constituents interact to form 

short-range and long-range mutual connections, resulting in an interplay between segregation and integration at 

different hierarchical spatial and temporal scales. Interestingly, connectivity properties of neural networks have 

shown properties related to the spectrum profile of brain activity both in simulated  (Steinke and Galán, 2011) 

and in real datasets (Ding et al., 2011; Tomasi and Volkow, 2011; Baria et al., 2013), and results discussed in 

terms of networks complexity. In particular, regions that show higher power at a low frequencies also show 

higher connectivity (Baria et al., 2013) and peculiar topological organization (Ding et al., 2011). These 

observations support the relevance of the use of the functional magnetic resonance imaging (fMRI) data power 

spectrum to study brain complexity features. In particular, the spectrum profile of the fMRI signal during rest 

has been found to show a 1/f-like behavior (where f is frequency) (Zarahn et al., 1997; Bullmore et al., 2001; 

Shimizu et al., 2004). Among different models of 1/f-like behaviors, those based on fractional Gaussian Noise 

(fGN) (Mandelbrot and Van Ness, 1968) are particularly relevant since they can describe both short and long 

range time dependencies. In particular, these models can describe processes whose power spectrum can be 

written as ( )
�

S f 1/ f∝  with � 1<  which is a model of fractality, or self-similarity at different temporal scales, 

and time-series predictability (Mandelbrot, 1971). For fGn parameter �  can be written as � 2 HE 1= −² , where 

HE is an index ranging from 0 to 1 called the Hurst Exponent (HE), which allows a parsimonious description of 

different time series behaviors. In fact, time series can be divided into three categories according to HE values. A 

HE smaller than 0.5 is related to an anticorrelated time series, and the underlying generating process is called 

anti-persistent. In this case, the dynamics of the process are reversing in time, and an increase in the time-series 

will be, on average, followed by a decrease and vice-versa. A HE bigger than 0.5 is related to a positively 

correlated or persistent behavior, meaning that the generating process, on average, causes changes along time 

that go in the same direction. In this case the process is said to have a long memory, and the time-series is more 

predictable. When HE is equal or close to 0.5, the time course is a random white noise series. In this latter case, 

the process is considered ‘without memory’, meaning with low predictability. The power spectrum of a long 

memory persistent process is 1/f-like and the low frequency, slowly varying components, are more relevant. A 

process with HE < 0.5 is characterized by higher frequencies (i.e. rapidly changing components) (Fig. 1). 

Therefore, HE can be seen as a measure of brain activity complexity. 



INSERT FIGURE 1 ABOUT HERE 

HE was recently applied to BOLD (blood oxygen level dependent)  signal measured under both 

physiological and pathological conditions. Changes in HE were shown to be related to normal and pathological 

aging, cholinergic modulation, autism spectrum disorders and different personality traits (Wink et al., 2006; Lai 

et al., 2010; Hahn et al., 2012; Lei et al., 2013; Sokunbi et al., 2014). For instance, Lei and colleagues showed an 

inverse relationship between HE in the default mode network (DMN) and extraversion (Lei et al., 2013). 

Given the growing knowledge on the importance of 1/f phenomena in the understanding of spontaneous 

neuronal activity, we were interested in assessing whether the complexity of regional brain activity at rest was 

modulated by social anxiety levels. We expected such a modulation to be present also in the absence of socially 

relevant stimuli and to affect spontaneous brain activity across a wide range of degrees of social anxiety. To test 

this hypothesis, we evaluated whether social anxiety modulated HE in healthy volunteers, whose social anxiety 

levels varied from hardly present to high. Moreover, as an independent measure to validate HE results, we also 

calculated the fractional Amplitude of Low Frequency Fluctuations (fALFF). fALFF is a measure of low 

frequency oscillation (LFO) and in particular of the relative weight of LFO with respect to the total spectrum. 

fALFF has been found to be more robust to physiological confounds with respect to the Amplitude of Low 

Frequency Fluctuations (ALFF) parameter (Zou et al., 2008). Moreover, convergent evidence supports the 

relationship of both ALFF and fALFF to connectivity properties (Turner 2013). In particular, a reduction of 

fALFF and ALFF measures in schizophrenia was associated with a reduction in the connectivity within occipital 

lobe, superior parietal lobe and precuneus areas. A recent work showed a positive correlation between fALFF 

and HE (Jao et al., 2013). Therefore, we expected that fALFF, although not itself a measure of complexity, 

would provide an index of convergent validity for our HE results. 

 

 

 

 

 

 



 

2. Methods 

 

2.1. Subjects 

Thirty-six healthy subjects (16 F; mean age±S.D.=27±4 years) were enrolled in the study. All subjects were drug free 

and received a clinical examination to exclude history or presence of any medical, neurological, or psychiatric disorders - 

including substance abuse disorders - that could affect brain function. No history of psychiatric disorders in first-degree 

relatives was reported. All participants gave their written informed consent to the study, which was approved by the Ethical 

Committee at the University of Pisa. 

 

2.2. Psychological measurements 

All subjects completed the following scales for the assessment of social anxiety: 

2.2.1. Liebowitz Social Anxiety Scale (LSAS) (Liebowitz, 1993). The LSAS is an instrument designed to measure 

social anxiety by assessing the fear and avoidance individuals might experience in social interaction and performance 

situations. The self-report version, which has minimal differences as compared with the original clinician-based version 

(Fresco et al., 2001), was used in this study;  

2.2.2. Brief Fear of Negative Evaluation (BFNE) (Leary, 1983). The BFNE measures a core cognitive component of 

social anxiety, the fear of being negatively evaluated and the negative reappraisals of social situations. For the present study, 

we used a modified version of the BFNE, considered to be the most valid variant of the scale (Rodebaugh et al., 2011). 

 

2.3 MRI acquisition 

A single Echo Planar Imaging sequence consisting of 450 time-points (15 min duration) was obtained in each fMRI 

session on a 1.5T GE scanner. The sequence had the following parameters: 26 contiguous 4-mm-thick axial slices 

(repetition time/echo time = 2000/40 ms, flip angle = 90�, field of view= 24 cm, resolution = 64×64 pixels). A high-

resolution anatomical brain scan was acquired with a T1-weighted spoiled gradient recall sequence (124 slices, 1.2-mm-

thick sagittal images, field of view = 24 cm). 

Subjects, all scanned after a full night of sleep, were instructed to lie in the scanner with eyes closed and to relax 

without falling asleep. 

 



2.4. Data analysis 

2.4.1 Data preprocessing 

We used the AFNI package (Cox, 1996) for spatial and time registration. Spatial registration was performed with the 

program 3dvolreg. Motion parameters were recorded and used in the HE calculation. For time registration we used the 

program 3dTshift. 

Residual movement related effects were first removed using a linear regression approach. In fact, signal changes 

related to head movements cannot be fully compensated by spatial realignment. These artifactual signals are generated by 

movement-dependent modulation of magnetization history of voxels (Friston et al., 1996). Six time series describing three 

rigid body translations and three rigid body rotations of the head across time were obtained from a volume registration 

algorithm. These series were used in a multiple regression model at each voxel. A time dependent regressor was also 

included to linear detrended voxel time series. Time series were consequently obtained as the residuals of the model. 

 

2.4.2. HE calculation 

 As pointed out by Maxim (Maxim et al., 2005), fMRI noise, after these pre-processing steps, can be described 

as fGn. In particular, fGn can be modeled as a stochastic process, whose behavior can be characterized by its 

auto-covariance function. The auto-covariance function is related to correlation of the process observed at two 

time points. In the case of fGn, the covariance function depends upon the distance among time points and upon 

the HE. With HE=0.5, the fGn is reduced to independent Gaussian noise, meaning the samples in the sequences 

originated from independent variables. HE values that are different from 0.5 introduce time dependencies among 

the samples in the series, thus leading to persistent or anti-persistent behavior, as discussed in the introduction. In 

this study, we exploited the relationship between fGn and fractional Brownian motion (fBm). In particular, fGn 

can be seen as the increment of a fBm sequence. This implies that a fractional Brownian motion sequence 

( )HEB n  can be obtained as 

 ( ) ( )
n

HE HE

k 0

B n G k
=

=�        (1) 

where ( )HEG k  are the samples of a fGn sequence. With HE=0.5, since the fGn reduces to independent 

Gaussian noise, ( )HEB n  reduces to Brownian motion. The equation (1) was used in this work to obtain a 

fractional Brownian motion (fBm) sequence from the movement corrected and linear detrended voxel time-

series. Then, the discrete second-order derivative approach (Istas and Lang, 1997; Kiviniemi et al., 2009) was 

used to estimate HE from fBm sequence. To perform this latter operation we used the wfbmesti function of the 

Wavelet Toolbox of the Matlab package. 

 

 



 

2.4.3. fALFF calculation 

The fALFF parameter was estimated from fMRI timeseries as in Zou et al. (Zou, et al. 2008) as the ratio of the power 

spectrum estimated between 0.01 and 0.08 Hz to the power spectrum at all available frequencies (0-0.25 Hz for our dataset). 

To calculate fALFF, we adopted two different approaches. In a first approach (fALFF0) it was estimated directly on 

preprocessed fMRI time series. In a second approach, (fALFFWM) two time series obtained from two spherical regions of 

interest (ROIs) (4-mm radius) centered in the left lateral ventricle and in the corpus callosum were added to the multiple 

regression model described in 2.4.1 to control for white matter (WM) and cerebrospinal fluid (CSF) signals, respectively. In 

both cases, fALFF was estimated with the program 3dRFSC of the AFNI package.  

 

2.4.4. Group analysis  

To perform the group analysis, the maps of the HE and fALFF of each subject were re-sampled into standardized 

Talairach space (Talairach and Tournoux, 1988). We then performed a linear regression analysis (with the 3dRegAna 

program of AFNI package) on the whole brain where the score of each scale was used as the predictor to estimate the HE 

and fALFF (criterion), respectively. We considered significant a p value < 0.01 and a cluster size > 180 µl - corresponding 

to a p value < 0.05 FWE correction for false positive - as estimated by Monte Carlo simulation through the 3dClustSim 

command of the AFNI package. For this simulation, we estimated the mean full width half maximum (FWHM) of the 

spatial structure of the noise with the command 3dFWHMx applied on a time series of residuals obtained with option –errts 

of the command 3dDeconvole both of AFNI package. The final mean FWHM values for the three dimensions were 3.29; 

3.38 and 3.01. The simulation was performed on a mask (989.882 voxels) including only voxels common to all subjects. 

We were also interested in evaluating whether significant clusters obtained from LSAS and BFNE would overlap. To 

this aim, we performed a conjunction analysis using the significant clusters from the two maps (p<0.01 uncorrected). In the 

resulting map we considered significant only the clusters over the cluster size (> 180 µl) defined before. 

 

2.4.5. HE and fALFF comparison with ROI analysis 

A post-hoc ROI analysis was performed to explore more in detail possible correlations of fALFF parameter with the 

psychological scales. Significant cluster for the linear regression analysis using LSAS and BFNE to predict HE were used as 

ROI. Mean fALFF for each ROI was extracted from each subject. These values were entered in correlation analyses with 

LSAS and BFNE, respectively. 



 

3. Results 

3.1. Psychological scales  

In our sample the mean LSAS score was 23.58 ± 6.85 (S.D.), ranging between 3 and 84 (maximum score 144), while 

the mean BFNE score was 26.11 ± 18.65, ranging between 30 and 35 (maximum score 60). Because Grubb’s test for 

outliers identified a female subject with an LSAS score of 84 as an outlier (p<0.05), this subject was removed from the 

analysis. The new mean scores for the LSAS and the BFNE were 23.22 ± 6.61 (range 3-76) and 24.45 ± 16.03, respectively. 

The scores of the two scales were significantly correlated (Pearson’s r: 0.64, p<0.0001). 

 

3.2. fMRI data analysis 

3.2.1. Hurst Exponent calculation 

Mean global HE was 0.69±0.05. Correlational analyses between global HE and the BFNE and LSAS were not 

significant (r=0.05 and r=0.08, respectively). We found significant positive correlations between BFNE scores and HE in 

the precuneus/posterior cingulate regions. This means that the higher the fear of negative evaluation is, the more the time 

course of the BOLD signal is predictable and the less the complexity is. Moreover, LSAS scores were, in the same way, 

positively correlated with HE in the precuneus and in bilateral inferior parietal sulcus (IPS) and right parahippocampus 

(Table 1; Fig. 2) (p<0.01, corrected). No other significant clusters were found. 

Scatterplots illustrating correlations between LSAS and BFNE scores and the HE of each cluster are shown in Fig. 3.  

 

- INSERT FIGURES 2, 3 and TABLE 1 ABOUT HERE  - 

Conjunction analysis showed areas of overlapping in the precunues/posterior cingulate and in the parahippocampal 

gyrus (Fig. 4) 

- INSERT FIGURE 4 ABOUT HERE  - 

3.2.2. fALFF whole brain analysis 

LSAS scores were found to correlate with fALFFwm in the precuneus/posterior cingulate region and in the 

parahippocampus (Fig. 5, Table 2). While no significant clusters were found for the correlation between the BFNE and 

fALFFwm. No significant correlations were found using fALFF0. 

 

 



 

INSERT FIGURE 5 AND TABLE 2 ABOUT HERE 

 

3.2.3. fALFF ROI analysis 

fALFF metrics correlate with BFNE scores in the precuneus ROI while they significantly correlate with LSAS score 

in the ROIs placed in the precuneus, PCC/precuneus, bilateral IPS and right parahippocampus (Table 1). 

 

4. Discussion 

This study aimed to evaluate whether the psychological dimension of social anxiety may influence spontaneous brain 

activity at rest. We assessed the relationship between social anxiety, as measured by the LSAS and the BFNE, and HE, an 

index that describes the fractal complexity of time-series, which is related to its predictability. To obtain an independent 

validation of HE results, we also estimated, fALFF a measure of LFO of the BOLD signals, which has been found to 

correlate with HE measures (Jao et al., 2013). 

Although none of our subjects had any history of psychiatric morbidity, 11 of 35 had a LSAS score greater than 30, 

which has been used as a threshold for SAD screening in the general population (Rytwinski et al., 2009). The 93.9% of the 

patients with a diagnosis of social phobia, according to the DSM-IV-TR criteria, score 30 or more on the LSAS (Rytwinski 

et al., 2009). While a LSAS score greater than 30 is not by itself sufficient for a diagnosis of SAD, the large range of LSAS 

scores among the volunteer sample reflects a wide array of social anxiety levels. It is also important to underline that in our 

sample there were subjects with very low levels of social anxiety (namely scores of 3 over 144 at LSAS). Therefore, the 

linear relationship we found in our data indicates that also from a neurobiological point of view, social anxiety spans across 

a continuum. 

Fractal dimensions are used to describe several biological phenomena. The HE has already been used to describe 

fractal properties of biophysical signals, including also the electrocardiogram (Costa and McCrae, 1992) and EEG 

(Ignaccolo et al., 2010). As described in the introduction, HE provides a parsimonious description of different possible 

behaviors of the auto-covariance of the fMRI signal. 

Several methods have been used to estimate the HE in biological signals. A recent article (Rubin et al., 2013) 

analyzes the robustness of different algorithms with respect to possible fMRI artifacts and time series lengths. In particular, 

the relevance of preprocessing steps as motion correction, detrending and filtering were evaluated both on simulated and 

real fMRI data, while other preprocessing steps like segmentation were not evaluated, although they may�have an impact on 



HE determination and likely deserve specifically designed studies. The second order derivative approach adopted in the 

present work was found to be consistent with other approaches and, moreover, to be robust with respect to spikes in the data 

This method has the advantage of being applicable to a time series of any length, in contrast to other validated methods, 

which have to be applied on time series with a length of 2
x
 time points (where x is a natural number) (Maxim et al., 2005). 

The HE of fMRI time series is generally higher in gray matter than in white matter (Maxim et al., 2005), augments in 

the hippocampus with aging, and decreases with cholinergic transmission enhancement (Wink et al., 2006). Nonetheless, 

these findings do not warrant the conclusion that a higher HE is related to worse brain functioning. For instance, a reduction 

of HE has been observed in autistic and schizophrenic patients (Lai et al., 2010; Sokunbi et al., 2014). Therefore, it seems 

more plausible that the HE reflects some inherent pattern of spontaneous discharge and that it can be modulated by 

psychological or psychopathological variables.  

Since the HE can describe long and short range memory dynamics, it has been proposed as a measure of online 

information-processing efficiency: higher HEs are related to long memory dynamics and to higher temporal redundancy and 

less freedom to vary (He, 2011). Thus, we suggest that differences of long-range memory in spontaneous regional brain 

activity may represent a possible neurobiological correlate of trait social anxiety. Furthermore, as described in Section 1, the 

HE is related to 1/f-like behaviors. Interestingly, recent findings support the possibility that the power spectrum profile of 

the fMRI time series power spectrum reflects connectivity properties of neural networks. In particular, low frequency 

changes of the BOLD signal may reflect both segregated and integrated information (Ding et al., 2011; Tomasi and Volkow, 

2011; Baria et al., 2013). For instance, Baria et al. (2013) observed that a greater distribution of power at lower frequencies 

was found in regions characterized by a higher functional connectivity, as in primary sensory areas and cortical areas of the 

DMN. 

We found a positive correlation between the HE and social anxiety scores in DMN regions including the posterior 

cingulate, the precuneus and bilateral IPS. We also found a positive correlation between LSAS scores and the HE in the 

parahippocampus. 

In a trait condition of low social anxiety, the subject is able to explore external and internal information and the 

environment with a reduced attentional-perception bias. Moreover, internally oriented rumination is at low levels. From a 

neurobiological standpoint, the DM network, and particularly the precuneus and the posterior cingulate, might be more 

‘available’ to receive inputs from other brain regions and thus their activity may be less predictable. When trait social 

anxiety is high, the subject may be more self-focused, and outside stimuli can result in relatively less interference. Thus, the 

balance of attention between external and self-oriented processing is altered in favor of the latter (Clark and McManus, 



2002). The reduction of externally oriented attention is also related to a reduced attention and awareness of external cues 

that might disconfirm the individual’s judgments of her/her social skills in social situations. Moreover, internally directed 

rumination increases. On the neurobiological side, the spontaneous DMN activity could become less ‘free’, more 

predictable and ‘rigid’, as if the flow of information from other districts is reduced and less able to interfere with the system 

and make it less ‘stable’ and less ‘predictable’ (Fig. 1). Our interpretation of the HE as a measure of flexibility or rigidity is 

consistent with the conclusions drawn by Lei and colleagues (Lei et al., 2013). In particular, they suggested that in subjects 

low in Extraversion (and with a higher HE) the past dynamics and long-term memories have a stronger influence on future 

responses (Lei et al., 2013). Although the Extraversion-Introversion personality trait is not exactly the same construct of 

social anxiety, the two are generally highly correlated: namely, high social anxiety corresponds to low Extraversion 

(Rosellini and Brown, 2011). Lei and collegues, however, considered the whole DMN, while we were able to pinpoint 

specific subregions where HE is related to the degree of social anxiety. Although the DMN is a network of regions with 

coherent behaviour, the presence of regional segreation of functions is well documented. A better knowledge of the role of 

each single region would support a better knowledge of the network’s functioning and dysfunctioning in pathological 

conditions. 

Using a variety of distinct paradigms and approaches to data analysis, several independent studies have consistently 

suggested a role of DMN areas in emotional processing and regulation in normal and pathological conditions (Benelli et al., 

2012; Freton et al., 2014). For instance, a role of the precuneus and the posterior cingulate cortex has been shown in 

emotional processing, especially when emotions are self-referred as compared with when they are referred to others 

(Schneider et al., 2008) and more in general with the experience of self (Brewer et al., 2013). Brain activity in these regions 

seems to be related to self-referential thoughts and attributions (Saxe et al., 2006). Consistently, abnormal activity and 

connectivity in these regions has been reported in several anxiety disorders, including social phobia (Zhao et al., 2007; Liao 

et al., 2010a; Pannekoek et al., 2013; Rogers et al., 2013). The posterior cingulate and precuneus displayed a weakened 

deactivation in social phobics as compared with findings in healthy controls when switching from resting state to a face 

perception task (Gentili et al., 2009). This lack of deactivation was interpreted as a biological counterpart of the trait 

characteristic of self-focused attention which is a type of rumination defined as “an awareness of self-referent, internally 

generated information” (Ingram, 1990) including wariness of physical states, thoughts and emotions. The posterior cingulate 

and the precuneus were also found to be involved in other forms of rumination (Berman et al., 2011). The BFNE scale we 

used specifically measures the fear related to the anticipation of negative cognitive appraisals, processes closely related to 

self-focused attention and ruminative  thinking (Thomas and Hersen, 2009).  



Bilateral parietal lobules showed increased HE with the increase of LSAS scores. Liao and colleagues (Liao et al., 

2010a) showed that functional networks, particularly the DMN and the dorsal attention network including the inferior and 

superior parietal lobules were altered in SAD patients. The dorsal attentional network has been shown to play a role in goal-

directed top-down processing (Corbetta and Shulman, 2002) and might be involved in emotional regulation and arousal. 

In healthy volunteers, parahippocampal gyrus activity and its functional coupling with the DMN was linked to long-

term memory processes. Its role in the abnormal response to social stimuli in social phobia was related to fear conditioning 

processes, recently considered a potential target for psychotherapy interventions (Straube et al., 2004; Wild and Clark, 

2011). 

 Conjunction analysis provided further useful evidence in the interpretation of our results. From a psychological 

point of view, the LSAS is considered a more clinical scale, which measures several aspects and situations in which the 

individual may experience social anxiety. On the other hand, the BFNE is considered a more ‘cognitive’ scale, measuring 

thoughts and beliefs about social situations. Thus, the two scales measure similar, but not identical constructs. Conjunction 

analysis showed a significant overlap in the parahippocampal gyrus and in the posterior cingulate and the precuneus. This 

result reinforces the interpretation that these structures play an important role in the cognitive evaluation of social situations 

and suggests a neurobiological segregation among social anxiety components assessed by different psychological tools.  

 It is relevant to note that another measure of intrinsic brain activity (fALFF) produced consistent results with those 

obtained with HE. fALFF is a relative measure of LFO that seems to be less affected by physiological noise (Zou et al., 

2008). LFO metrics can highlight resting state networks, including DMN, and represent a measure of intensity of neuronal 

activity both in healthy subjects and in pathological conditions, including depression, schizophrenia and cognitive 

alterations (Hoptman et al., 2010; Han et al., 2011; Wang et al., 2012). We estimated fALFF both regressing and not 

regressing out white matter and ventricle signals. A recent work highlighted differences in individual parameter estimation 

between the two approaches, although no significant differences were found at a group level comparison between patients 

and controls (Turner et al., 2013). This was ascribed to a similar regression effect across the subjects. In our study, the 

results with the two approaches differed. The whole brain analysis performed regressing out WM and CSF signals gave 

similar, though not identical, results to those obtained with HE, at least regarding LSAS. However, ROI analysis showed 

overlapping results among analyses. This consistency may help to provide a physiological meaning for HE, since the 

increase of HE and thus a more predictable neuronal discharge seems also to be related to increased neural discharge as 

measured by LFO. 



As our results were not elicited by any socially relevant stimuli, they are indicative of trait social anxiety and in line 

with the hypothesis that trait characteristics affect spontaneous brain activity at rest. Such brain activity might account for 

the different brain (and behavioral) responses during social stimuli. The idea that the way in which we react to situations is 

strictly related to our "mind disposition" is an old one (Raichle and Snyder, 2007): it stretches from Plato to Immanuel Kant 

to William James. In this vein, the way in which we react to socially relevant situations is, at least in part, determined a 

priori and derives from our personality and psychological characteristics. According to cognitive models of SAD (Clark and 

Wells, 1995), the development of the disorder is not just related to emotional hyperactivity, but also to biased information, 

leading to abnormal and excessive responses (Morrison and Heimberg, 2013). 

Our work provides direct evidence that the levels of social anxiety may also be related to intrinsic regional 

spontaneous brain activity and that this relationship is trait based, present even in the absence of social cues. These results 

are fully consistent with data obtained with different experimental designs (Gentili et al., 2008; Gentili et al., 2009; Liao et 

al., 2010a; Liao et al., 2010b) showed that social anxiety levels are related to the strength of connectivity between the 

amygdala and other brain regions involved in emotional modulation and perception during rest. In this sense, it is important 

to note that previous studies focused on functional relationship and connectivity among regions, while our study is the first 

one to consider also intrinsic segregated activity. 

 

4.1 Limitations 

As the meaning of the HE is not yet fully understood, it is difficult to provide a neurobiological interpretation for our 

findings. However, the evidence offered by convergent results of fALFF analysis, together along with the studies discussed 

above (Gentili et al., 2008; Liao et al., 2010a), supports the proposed interpretation of our data.  

The aim of this study was to explore the social anxiety dimension as continuum in healthy volunteers. Similar studies 

in SAD patients are needed to determine whether this continuum extends to the pathological condition. 

Another limitation of this study is the lack of control for heart rate and respiration as we decided to perform only 

head movement correction and linear detrending. fALFF is considered to be robust against physiological noise, was also 

computed regressing out movements, WM and CSF signals, and lead to consistent results with those obtained with the HE. 

Nevertheless, we cannot rule out that both measures might have been influenced by residual physiological confounds related 

to unobserved physiological signal changes. Several works highlighted how preprocessing steps significantly influence the 

results of HE estimation (Rubin et al., 2013) and of resting state analyisis in general (Murphy et al., 2013). On the other 



hand, regressing out heart and respiration may occult neural activity of interest since these physiological measures may 

correlate with emotional or mood states.  

Finally, we are aware that the HE cannot provide a complete understanding of the neurobiology of social anxiety and 

that we did not consider other measures of complexity (e.g., sample entropy) since they belong to different classes of 

models and measure different properties of complexity as compared with the HE (Takahashi, 2013). In this regards, future 

research should perform systematic comparisons among different metrics to define differences and commonalities. 

  

4.2 Conclusions 

This study is the first to demonstrate that spontaneous brain activity at rest is modulated by the degree of social 

anxiety across a wide range of intensities in healthy individuals, providing a neurobiological support for the dimensional 

continuity of social anxiety. This is in line with clinical psychology studies on social anxiety (Spurr and Stopa, 2002), but 

also with the recent views on psychiatric diagnosis arguing for a recovery of the dimensional assessment of 

psychopathology (Watson et al., 2013). Importantly, as the relationship between social anxiety and brain activity was found 

at rest, these findings suggest that social anxiety may reflect trait characteristics that shape brain activity and predispose to 

different reactions to social contexts. Moreover, our results confirm the potential of the HE in identifying brain regions 

related to psychological dimensions. As recently shown for other mental disorders (Wei et al., 2013), the use of this index 

could become a possible measure to aid psychiatric diagnosis. 
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Figure and table legends 

Table 1. Significant clusters for the linear regression in which LSAS and BFNE were the 

independent variable and the HE the dependent one, respectively (p < 0.01; cluster size > 180 µl). The 

r values (Pearson r) refer to the peak correlation of the cluster. Alpha refers to the type I error 

probability for each cluster as estimated by the program alphasym of the AFNI distribution. 

LSAS: Liebowitz Social Anxiety Scale; BFNE: Brief Fear of Negative Evaluation; PCUN: precuneus; PCC/PCUN: 

Posterior cingulate/precuneus; IPS: inferior parietal lobule; PHyp: parahippocampal gyrus. fALFF refers to correlation 

(Pearson r) between fALFF values and LSAS/BFNE scores, respectively; *: p < 0.05; **: p < 0.01.  

Table 2. Significant clusters for the linear regression in which LSAS and BFNE were the 

independent variables and the fALFF the dependent variable, respectively (p < 0.01; cluster size > 180 

µl). The r values (Pearson r) refer to the peak correlation of the cluster. Alpha refers to the type I error 

probability for each cluster as estimated by the program alphasym of the AFNI distribution. 

LSAS: Liebowitz Social Anxiety Scale; BFNE: Brief Fear of Negative Evaluation; PCUN: precuneus; PCC/PCUN: 

posterior cingulate/precuneus; IPS: inferior parietal lobule; PHyp: parahippocampal gyrus; **: p < 0.01.  

Fig. 1. Exemplificative illustrations of time-series with different HE. Lower panel: time series with an HE of 0.97 

(peak value in the precuneus of a subject with high LSAS scores); Upper panel: time-series with an HE of 0.58 (lower value 

in the precuneus of a subject with low LSAS scores). 

Fig. 2. Significant cluster for the linear regression in which BFNE (upper panel) and LSAS (lower panel) were the 

independent variable and the HE the dependent one (p < 0.01; cluster size > 180 µl). Warm colors indicate positive 

correlations. PCUN: precuneus; PCC/PCUN: posterior cingulate/precuneus; IPS: inferior parietal lobule; PHyp: 

parahippocampal gyrus. 

Fig. 3. Scatter plots for the significant clusters showed in Table 1 and in Fig. 2. PCUN: precuneus; PCC/PCUN: 

posterior cingulate/precuneus, IPS: inferior pariteal sulcus, PHyp: parahypocamapal gyrus. X-axis: mean HE in the cluster. 

Y-axis: LSAS or BFNE score. The plots are for illustrative purposes only; the r values for each correlation are presented in 

Table 1. 



Fig. 4. Conjunction analysis showing significant overlap between the linear regression for BFNE and LSAS. Yellow: 

areas in which LSAS predicts HE; Blue: areas in which BFNE predicts HE; Green: areas of overlap (p < 0.01; cluster size > 

180 µl). 

Fig. 5. Significant cluster for the linear regression in which LSAS were the independent variable and the fALFF 

values the dependent one (p < 0.01; cluster size > 180 µl). Warm colors indicate positive correlations. PCC/PCUN: 

posterior cingulate/precuneus; PHyp: parahippocampal gyrus. 
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1. We want to test the hypothesis that brain spontaneous activity at rest is modulated by trait 

social anxiety in healthy individuals 

2. We evaluate whether the Hurst Exponent (HE), an index of complexity of time series, is 

modulated by Social Anxiety as measured by  Liebowitz Social Anxiety Scale (LSAS) and of 

Brief Fear of Negative Evaluation (BFNE). 

�� We use fractional Amplitude of Low Frequency Fluctuations (fALFF) as an independent 

measure of resting state activity to have an independent validation of our data�

4. LSAS and BFNE linearly predict the HE value in the precuneus and in posterior cingulate 

regions which are relevant in emotional processing, and are affected in anxiety disorders. 

fALFF analysis produces consistent results. 

�� Since this relationship is obtained at rest we suggest that social anxiety is a trait psychological 

condition that shapes the brain even in absence of any social exposure.��
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