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In this lecture note, we introduce the basic concepts of game theory (GT), a branch of mathemat-

ics traditionally studied and applied in the areas of economics, political science, and biology, which

has emerged in the last fifteen years as an effective framework for communications, networking,

and signal processing (SP). The real catalyzer has been the blooming of all issues related to

distributed networks, in which the nodes can be modeled as players in a game competing for system

resources. Some relevant notions of GT are introduced by elaborating on a simple application in

the context of wireless communications, notably the power control in an interference channel (IC)

with two transmitters and two receivers.

RELEVANCE

Recently, the mathematical tools of GT [1] have attracted a significant interest by the wireless

communications and SP engineering communities [2, Part II], due to the need for designing au-

tonomous, distributed, and flexible systems, in which the available resources are allocated through

low-complexity and scalable procedures. Games are appealing, owing to some characteristics that

are not common in classical optimization: as an example, GT can handle interactive situations

in which each player can only have a partial control over the optimization variables, while using

its own performance metric. It is true that commonalities can be found with other disciplines,

such as multi-objective optimization [3], convex optimization [4], and learning theory [5], but GT
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possesses many distinguishing features that make it essential for the standard current toolbox of

communication as well as SP engineers.

PREREQUISITES

The readers require basic knowledge in linear algebra and wireless communication theory.

WHAT IS A GAME?

To take advantage of GT and its associated theoretical tools, the first step is to model the problem

at hand as a game. In doing so, three ingredients must be identified:

• the players, that represent the main actors in the problem, having conflicting interests and

affecting the performance of everyone else in the game;

• a set of strategies available to each player, that determines what each player can do;

• a utility function for each player, that measures its degree of satisfaction as a function of the

combination of all player’s choices.

This description may encompass a large number of situations: to mention a few examples, players

in a game can be base stations (BSs) allocating the resources in a cellular network to increase the

system throughput, or watermarking devices choosing algorithms to face potential attackers.

The objective of the modeling effort is to describe the game using its strategic-form represen-

tation: a triplet 〈K, {Sk}k∈K, {uk}k∈K〉, where: K = {1, . . . , K} is the set of players, where K

is the number of players; Sk is the set of strategies for each player k; and uk(s) is the utility

function (also known as reward or payoff ) associated to player k for a combination of choices

s = [s1, . . . , sK ] = [sk, s\k], where s\k = [s1, . . . , sk−1, sk+1, . . . , sK ] denotes the strategies taken

by all other players except player k (the opponents).

In general, the game outcome uk(s) for player k depends on all players’ choices through s, that

stems out from the interaction of the players with possibly conflicting interests. This brings forth a

couple of distinguishing features of GT:

• each player k can have a different performance metric; this feature is captured by a per-player

specific function uk(s), that accounts for the player’s nature;

• each player k has partial control (sk ∈ Sk only) over the optimization variables.

The first property is strictly tied with multi-objective optimization [3], although a clear difference

exists in the scope of the optimization variables, as in multi-objective optimization we have full

control over the variables. The second property is tightly related to the framework of distributed
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optimization [4], with which it shares many intersections, although there are specific differences:

one of the most important is that, while in distributed optimization the agents follow some common

given rules, in GT the players act as independent decision-makers.

THE NEAR-FAR EFFECT (NFE) GAME

To picture out the meaning of the strategic-form representation, let us consider an example taken

from a very common wireless communications scenario: the IC, represented in Fig. 1a, in which

the two transmitters interfere with each other in the attempt to reach their own receiver. This simple

scheme encompasses many scenarios: it can be used to model i) a multicellular system, with red

and blue nodes belonging to two different cells; ii) a heterogeneous network, where the red and

blue nodes belong to a macro cell and a small cell, resp.; iii) a cognitive radio system, where the red

and blue nodes are primary users (PUs) and secondary users (SUs), resp.; and iv) a device-to-device

system, where the receivers are also network nodes.

Using GT, we can i) model the problem at hand in a suitable manner, and ii) provide the

theoretical tools to solve it. In this case, solving means devising the optimal transmission strategy to

be selected by the two wireless terminals of Fig. 1a. In particular, we assume that the two nodes are

allowed either to transmit at a certain power level p, or to stay idle. This situation can be modeled

as a game, with K = 2 players, and strategy sets Sk = {0, p} for k ∈ K = {1, 2}. For simplicity,

we also assume that the two terminals choose their strategies simultaneously (i.e., without being

informed of the other’s choice) once and for all (i.e., they cannot make any change after observing

the outcome of the game) – in GT parlance, we consider a static game. Finally, since players and

strategy sets are both countable, the game is finite.

As depicted in Fig. 1a, player 1 (the far terminal) is located much farther away from both

receivers than player 2 (the near terminal). To describe this situation in a mathematical fashion,

we introduce the power gains hjk ∈ R
+ experienced by terminal k’s signal when propagating to

receiver j. For simplicity, let us assume hjk = hk for j = 1, 2 with h1/h2 ≪ 1 (we will better

quantify this ratio later on), thereby giving rise to the so-called near-far problem.

We need now to define a utility function, and to do so we consider that each terminal achieves a

degree of satisfaction that depends both on the success of its transmission and on the energy spent

to transmit at power sk. Mathematically, this translates here into a (dimensionless) utility uk(s) =

tk(s) − ck(s), where tk(s) accounts for the outcome of the transmission, and ck(s) measures the

cost associated to using sk. We assume that the cost scales linearly with the transmit power, and
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that it is independent of the other terminal’s strategy: ck(s) = csk/p. Measuring tk(s) is more

complicated, as it has to capture the interaction between the players as a function of the selected

strategies s1 and s2. In practice, successful reception of a signal in a multiple-access scenario (such

as the one considered here), be it in the time, frequency, space, or code domain, depends on the

signal-to-interference-plus-noise ratio (SINR) γk, which measures the ratio of the useful received

signal power to the amount of undesired power collected at the receiver. Under the assumption of

additive white Gaussian noise (AWGN) with power σ2, we get

γk(s) =
Γhksk

σ2 + h\ks\k
= µk(s\k)sk ≥ 0, (1)

where \k = 2 if k = 1, \k = 1 if k = 2, and Γ ≥ 1 is the processing gain, that depends on

the multiple access technology and on the receiver processing. For the time being, let us assume

the transmission to be successful if and only if γk ≥ γreq, where the minimum SINR γreq depends

on some system parameters. So, when γk < γreq, the transmitted message cannot be decoded at

receiver k, and tk(s) = 0. On the contrary, when γk ≥ γreq, receiver k can correctly receive the

information associated to user k’s signal, and tk(s) = t, where t is a dimensionless parameter that

accounts for the throughput achieved at destination. To properly capture the cost-benefit analysis

that regulates any practical wireless system, it makes sense to assume t ≫ c.

A profitable way to investigate finite static games in their strategic form, such as our NFE game,

is through the so-called payoff matrix (Fig. 1b) in which player 1’s strategies are identified by the

rows, player 2’s strategies by the columns, and the entries of the matrix (the pair of numbers in

the box) represent the utilities (u1 (s) , u2 (s)) achieved by the players. Under the assumptions that

p = σ2

h1Γ
γreq and h1

h2
< 1

1+γreq/Γ
(see [6] for further details), it is easy to fill out each box of the

matrix based on the hypotheses listed above.

Once the game is in its strategic form, we have to solve it, i.e., to predict its outcome. In the

NFE game, we assume that both players: i) are rational; ii) control their own strategies only; and

iii) know each other’s payoff. The first assumption means that each player is a utility-maximizer

decision maker. The second hypothesis casts this problem as a noncooperative game, in which the

players compete to unilaterally maximize uk(s). Finally, the third hypothesis involves the concept

of complete information that each player has about the game. By inspecting the payoff matrix in

Fig. 1b, it is apparent that player 2’s best strategy is represented by s⋆2 = p whatever s1 is, since

t − c > 0 under the assumption t ≫ c. For this reason, the strategy s2 = 0 is said to be strictly

dominated by s2 = p, as u2([s1, 0]) < u2([s1, p]) ∀s1 ∈ S1. This is known to player 1 as well, that
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rationally chooses to play s⋆1 = 0. As a conclusion, the predictable outcome of the NFE game is

s
⋆ = [s⋆1, s

⋆
2] = [0, p], as highlighted by the shaded box in Fig. 1b. In GT parlance, this game has

been solved by applying the iterated elimination of dominated strategies, or iterated dominance for

short [1, Ch. 1].

THE IC GAME

Let us now slightly modify the scenario represented in Fig. 1a. Assume for example to move

player 1 closer to its receiver, such that the distance between player 1 and both receivers becomes

the same as the distance between player 2 and both receivers. For simplicity, let us also suppose

hjk = h for j, k = 1, 2. By using p = σ2

hΓ
γreq, following the same considerations taken for the NFE

game, it is easy to obtain the payoff matrix reported in Fig. 2. As an exercise, we can verify that

no strictly dominated strategies exist, and thus we cannot apply the iterated dominance procedure

used to solve the NFE game.

To get out of this impasse, we introduce the concept of best response (BR) bk(s\k), which is

mathematically defined as:

bk(s\k) = arg max
sk∈Sk

uk

(

[sk, s\k]
)

, (2)

i.e., the best that we can get out of the game once we know the opponents’ moves s\k. Since player

1 chooses rows, we can compute its BR by examining the columns that can be possibly selected

by player 2. When s2 = 0, b1(s2 = 0) = p. Conversely, when s2 = p, b1(s2 = p) = 0. The

same can be obtained for player 2, and we end up with the players’ BRs, underlining the relevant

payoffs in Fig. 2. We find two boxes (shaded background) containing the BRs of both players,

representing two stable states, where “stable” here means that such states are attained by some

multiple agents with conflicting interests that compete through self-optimization, and eventually

reach a point where none of them has any incentive to unilaterally deviate from.

A point that possesses such properties is termed a Nash equilibrium (NE) of the game, defined

as a strategy profile s
⋆ = [s⋆k, s

⋆
\k] such that, for all k ∈ K,

uk

(

[s⋆k, s
⋆
\k]

)

≥ uk

(

[sk, s
⋆
\k]

)

∀sk ∈ Sk, (3)

or, equivalently, s⋆k ∈ bk(s
⋆
\k). As an exercise, check that s⋆ = [0, p] is the unique NE of the NFE

game.
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The notion of NE encompasses many interpretations of GT, not discussed here for brevity, that

the interested readers can find in many textbooks (e.g., [7, Ch. 1]). Modeling the players as self-

optimizing decision-makers finds a suitable application especially in the context of SP, in which

the devices can be programmed to do so. Since each player has only a partial control of the game,

the concept of NE is tightly coupled with the application of distributed algorithms and machine

learning techniques [7, Part II].

For brevity, we will not discuss here theorems on equilibrium existence [1, Ch. 1], that establish

the existence of the NE in particular classes of games, and on equilibrium uniqueness [2, Ch. 3].

When uniqueness cannot be ensured, like in the case of the IC game, we face the problem of

equilibrium selection. One solution to this issue is the concept of correlated equilibrium (CE) [1,

Ch. 2], a generalization of the NE, where an arbitrator helps the players to correlate their strategies,

so as to favor a decision process in the interplay – e.g., letting them adopt s⋆ = [p, 0].

INTRODUCING CONTINUOUS POWERS

The solutions of NFE and IC games, in which at most one terminal can successfully transmit,

directly stem out of choosing a binary strategy set Sk = {0, p} for both players. Let us see what

happens if any power level in the continuous interval [0, p] can be selected. This amounts to setting

Sk = {sk ∈ R : 0 ≤ sk ≤ p}. Within this setting, the power control problem can be studied

as a continuous game [7, Ch. 2]. In our attempt of getting closer to a realistic scenario, let us also

modify the utilities to better model how real data networks work in practice. A good approximation

for the effective throughput in a packet-oriented transmission is tk(s) = t (1− exp{−γk(s)})
L

[8],

whose behavior is depicted (red line, left axis) in Fig. 3. In our expression, L denotes the number

of information bits per packet (here, L = 20), and t is the communication rate (in b/s). To properly

capture the tradeoff between obtaining a satisfactory throughput and saving transmit power –

similarly to what considered for the NFE and IC games –, we will adopt a “green” approach,

based on improving each player’s energy efficiency [8]. This can be done by defining player k’s

utility as the ratio between throughput and power expenditure, thus accounting for the number of

bits correctly delivered per joule of energy consumed:

uk(s) = tk(s)/sk [b/J], (4)

whose normalized behavior is reported (blue line, right axis) in Fig. 3, with µk(s\k) defined as in

(1).
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Using straightforward manipulation, player k’s BR (2) turns out to be bk(s\k) = min{p, γ⋆
k/µk(s\k)},

where γ⋆
k is the “optimal” SINR such that ∂tk(s)/∂γk(s)|γk(s)=γ⋆

k
= 1

γ⋆
k

tk(s)|γk(s)=γ⋆
k

[8]. For

instance, when L = 20, we get γ⋆
k ≅ 4.5 = 6.5 dB for k = 1, 2 (see Fig. 3). Based on such

BR, the continuous IC game presents a unique NE, represented by the fixed point s⋆k = bk(s
⋆
\k) for

k = 1, 2 [8].

How can the NE be “visualized”? Let us consider a particular realization of the network sketched

in Fig. 1a, with the following parameters:1 h11 = 0.75, h21 = 0.25, h12 = 0.5, h22 = 1; Γ = 4;

p/σ2 = 5; and L = 20. The solution of this game is given by the NE s
⋆/σ2 = [2.99, 1.97], yielding

normalized utilities σ2

t
u1(s

⋆) = 0.269 and σ2

t
u2(s

⋆) = 0.407. We display in Fig. 4 the (normalized)

utilities at the NE (green diamond) on the bidimensional normalized utility plane, given by all

achievable utility pairs (u1(s), u2(s)) (shaded region), for any strategy profile s ∈ S1 × S2 (the

utility plan can be found via a numerical search using [9]). Note that s⋆1 > s⋆2, and u1(s
⋆) < u2(s

⋆):

this is due to the better channel conditions experienced by player 2 (both in the direct and the

interference links), that make it achieve the optimal SINR γ⋆
2 with a lower power consumption than

player 1. However, unlike the finite version of the NFE game, where s⋆1 = 0 (and thus t1(s
⋆) = 0),

now player 1 can successfully connect to its receiver, getting a throughput t1(s
⋆) ≅ 0.8t (the same

as t2(s
⋆)), at the cost of a slightly higher power consumption (s⋆1/s

⋆
2 ≅ 1.52), and thus with a lower

energy efficiency.

IS THE NE EFFICIENT?

A natural question that arises regards the actual efficiency, or, the performance, if you wish, of

the NE. To address this question, we first need to agree upon our performance metric. In GT, a

convenient way to assess how desirable a solution is involves the concept of efficiency, evaluated

in terms of Pareto optimality. A profile s is Pareto-optimal (PO) if there exists no other s such that

i) uk(s) ≥ uk(s) for all k ∈ K, and ii) uk(s) > uk(s) for some k ∈ K. In our continuous IC

game, the performance achieved by the PO profile set is represented by the contour of the shaded

area of Fig. 4, which is called the Pareto frontier. Clearly, if we increase u1(s) (i.e., if we move

rightward along x), then u2(s) decreases, and the same happens if we increase u2(s) (by moving

upward along y). Still, Pareto optimality does not qualify as our performance metric.

We have to further introduce the notion of social welfare (SW), that is often used as a convenient

measure for the efficiency of a strategy vector [7, Ch. 2]. Formally, the social-optimal (SO) profile

1The MATLAB code for all examples presented in this note is available for download in [9].
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š is the PO profile that maximizes the SW, defined as the weighted sum-utility
∑

k∈Kwkuk(s),

where the weights {wk}k∈K,
∑

k∈Kwk = 1, allow us to account for different classes of service:

as an example, unequal weights can be useful to model PUs (higher wk’s) and SUs (lower wk’s)

in a cognitive network. In our two-player game, we can identify š as the tangent point between

the Pareto frontier and a line with slope −w1/w2. As an example, if we consider w1 = w2 = 0.5

(i.e., if the two players have the same priority), š/σ2 = [2.20, 1.55], yielding σ2

t
u1(š) = 0.278 and

σ2

t
u2(š) = 0.446 (Fig. 4).

We have zoomed a section of Fig. 4 (see the inset box) to show that the NE s
⋆ is socially

inefficient, since its performance is distinct from (more specifically, poorer than) that achieved by

š. In general, š cannot be achieved by distributed algorithms, rather, it is the result of a global

optimization, and in our case it turns out to be unbalanced towards player 2 (the one with better

channel conditions): this is reminiscent of the waterfilling policy [4], that allocates most resources

to the users that can achieve higher throughputs. More importantly, the magnification in Fig. 4

shows that there are a multitude of profiles that provide utilities lying in the Pareto improvement

region, in which uk(s) ≥ uk(s
⋆) for all k ∈ K (shaded region in the inset). Consequently, the next

question is: how can we improve the efficiency of the NE? In this lecture note, we will focus on

three popular methods, namely: i) modifying the utility functions; ii) letting the players interact

more than once; and iii) letting the players cooperate.

PRICING THE STRATEGIES

The simplest method to improve the efficiency of the NE while maintaining the game structure

is by modifying the utility function. This can be done for instance by introducing some form of

externality. This approach is in spirit close to mechanism design [1, Ch. 7]. For the power control

games studied so far, one might think of charging the players for the powers they consume, by

introducing a pricing factor α (in b/J · W−1): ũk(s) = uk(s) − αsk = tk(s)/sk − αsk [10].

The rationale behind this approach is the following: if each transmitter is discouraged from being

aggressive (due to power taxation), the multiple access interference (MAI) experienced by the

other is reduced, and both SINRs at the equilibrium stay as close as possible to γ⋆
k (provided that

the AWGN power σ2 is not dominant – a condition which always holds in multiple-access systems).

To evaluate the benefits of this method, we compute the NE s̃
⋆ of the modified game, using the

BR approach (see [9]). The cyan cross marker in Fig. 4 represents the performance
(

σ2

t
u1(s̃

⋆), σ2

t
u2(s̃

⋆)
)

of the original utility function (4) (which is the one we are actually interested in), using α =
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0.12t/σ4, that yields s̃
⋆/σ2 = [2.17, 1.57]. As can be seen, the performance of s̃⋆ is very close

to the Pareto frontier, further favoring player 2’s performance compared to the SW. We have thus

improved the efficiency of the game solution, while maintaining the noncooperative nature of the

interplay (with all its desirable properties). The main drawback is that this improvement can only

be achieved after a proper tuning of α (that highly depends on system parameters). As an exercise,

one could evaluate the performance of s̃⋆ as a function of α (see [9]).

REPEATING THE GAME

The inefficiency of the NE is mainly due to the selfish behavior (in the sense of self-optimization)

of the players. An effective method to induce cooperation – while maintaining the noncooperative

nature of the interaction – is forcing the players to interact more than once. A typical example of

this approach is a repeated game, in which a static game is repeated N times. For instance, assume

that the two transmitters of Fig. 1a interact a number N of times, each time selecting their optimal

transmit powers sk(n), where n is the time index [11]. When introducing the notion of time, each

strategy set Sk becomes a complete plan of actions, that depends on the unfolding of the game

through time.

Similarly, the utility functions must account for i) the partial utilities uk(s(n)) = tk(s(n))/sk(n)

received at each stage n of the game, with s(n) denoting the profile selected by the players at time

n; and ii) how much past utilities should be weighted (i.e., decay) compared to present ones. A

simple example is the exponential decay, where the utility at time n is weighted by the factor δn,

0 ≤ δ ≤ 1, and the total utility after N repetitions of the game is uN
k (s) =

∑N
n=0 δ

nuk(s(n)). By

letting N → ∞, we further define a normalized utility uδ
k(s) = (1−δ)

∑+∞
n=0 δ

nuk(s(n)) [11]. The

parameter δ is the so-called discount factor, and its meaning is borrowed from micro-economics: a

payoff received at the present time n is larger by a factor 1/δ than the payoff of the next stage, and

smaller by a factor δ than that of the previous one. This means that, if players are patient (in the SP

and communications context, delay-tolerant), δ is typically close to 1. Conversely, if players are

impatient (i.e., delay-sensitive), δ is typically close to 0.

Extending the concept of NE to repeated games [1, Ch. 5], we can show that the optimal strategy

s
δ = {sδ(n)}+∞

n=0 is for both players to select sδk(n) = šk if
(

sδk(n − 1) = šk and sδ\k(n − 1) =

š\k
)

, and sδk(n) = s⋆k otherwise, with sδk(0) = šk, and š and s
⋆ being the SO and NE points,

respectively, provided that δ ≥ δ (i.e., if they are delay-tolerant enough), where δ is a function

of the network parameters [11]. In other words, in the repeated IC game, cooperation is enforced
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by letting the players interact an indefinite number of times: this is successful due to threatening

future punishments for the player(s) who defect.

The effectiveness of this approach is apparent in Fig. 4, where the performance of sδ, represented

by the black asterisk, coincides with the SW, under the assumption δ ≥ δ. As a drawback, players

must have knowledge of š: this only occurs if each player k knows all channel gains {hjk}j,k∈K,

which might not be viable for all scenarios (e.g., in a cognitive network). Repeated games are a

subclass of dynamic games, that are often used in SP problems to account for time evolution (see

[7, Ch. 3] for more details).

INTRODUCING COOPERATION AMONG THE PLAYERS

In the techniques considered so far, we have focused on improving the efficiency of the solution,

without considering any fairness issue. In the example above, the SW is obtained by favoring player

2 to the detriment of player 1’s performance, as is apparent in the inset of Fig. 4, where the SW

is far away from the projection of the NE over the Pareto frontier – obtained intersecting it with

the “fair” line with slope 1 and passing through (u1(s
⋆), u2(s

⋆)). We can balance efficiency and

fairness by explicitly introducing cooperation among the players, assuming some explicit exchange

of information. The fundamental difference of a cooperative approach is that, while in the games

assumed so far cooperation can only be induced as the result of matching it with self-optimization

(i.e., unilateral deviations are not beneficial anyway), now the players are willing to cooperate, as

they know that they can mutually benefit from reaching an agreement. In GT parlance, this is called

a bargaining problem [2, Ch. 7], whose analytical tools are tightly related to SP techniques, such

as consensus algorithms [12].

Consider again the continuous IC game, and assume that the players can collaborate to select

a satisfactory profile ṡ ∈ S1 × S2. In case they fail to reach an agreement, each player k gets

uk(s
⋆), where s⋆ is the NE of the noncooperative game studied before. On the contrary, the players

now strive to attain the Nash bargaining solution (NBS), i.e., the (unique) PO profile that satisfies

ṡ = arg maxs∈S
∏2

k=1 (uk(s)− uk(s
⋆)), where the subsetS ⊆ S1×S2 is such that uk(s) ≥ uk(s

⋆)

for all k ∈ K and s ∈ S. Interestingly, the NBS has close analogies with proportional fair allocation

mechanisms, as discussed in [2, Ch. 7]. As is apparent, the NBS tries to increase as much as

possible the utilities of the players with respect to the NE in a fair manner.

The graphical interpretation of the NBS is shown in Fig. 4: the NBS ṡ corresponds to the profile

such that (u1(ṡ), u2(ṡ)) is the point of tangency between the Pareto frontier and the hyperbola with
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vertex in x = u1(s
⋆) and y = u2(s

⋆). Hence, the point of tangency lies by definition in the Pareto

improvement region, as illustrated in Fig. 4 using a blue dot. In our usual network configuration,

ṡ/σ2 = [2.26, 1.52], yieldingσ2

t
u1(ṡ) = 0.288 and σ2

t
u2(ṡ) = 0.434. The performance of ṡ lies

in between the SW and the maximum-fairness projection of the NE performance, thus trading off

efficiency and fairness. The reason why the NBS is unbalanced towards player 2 lies again in its

better channel condition, which makes it stronger in negotiation [2, Ch. 7].

For more than two players, we can also consider a more general cooperative framework, namely

coalitional GT [13], that provides the theoretical tools to investigate situations in which subsets of

players can bind agreements to work together, aiming at improving their joint utility. This approach

is particularly useful in many areas of SP, such as spectrum sensing for cognitive systems (see [2,

Ch. 13] for further details).

CONCLUDING REMARKS

In this lecture note, we introduced the very basic notions of GT, using a power control problem

for a wireless interference channel as the leitmotiv: by further detailing and adding features to this

“toy example,” we presented, among the others, the concepts of players, strategies, utilities, NE,

Pareto and social optimality. The interested readers that want to deepen their knowledge of GT are

invited to target specific textbooks, such as general ones (e.g., [1]), and those specifically tailored

to an SP audience (e.g., [2], [7]).

REPRODUCIBLE RESEARCH

This lecture note has supplementary, downloadable material available in [9], provided by the

authors. The material includes MATLAB code that can reproduce all the simulation results.

REFERENCES

[1] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA, USA: MIT Press, 1991.
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Fig. 1: Representation of the NFE game.
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Fig. 2: Payoff matrix of the IC game.
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Fig. 3: Throughput (red) and utility (blue) as functions of the SINR (continuous NFE game).
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