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Abstract 

Huntington’s disease (HD) is an inherited neurodegenerative disorder characterized by dyskinesia, 

cognitive impairment and emotional disturbances, presenting progressive neurodegeneration in the 

striatum and intracellular mutant Huntingtin (mHTT) aggregates in various areas of the brain. 

Recombinant Adeno Associated Viral (rAAV) vectors have been successfully used to transfer 

foreign genes to the brain of adult animals. In the present study we report a novel in vivo rat HD 

model obtained by stereotaxic injection of  rAAV serotype2/9 containing Exon1-Q138 mHTT  

(Q138) and Exon1-Q17  wild type HTT (Q17; control), respectively in the right and in the left 

striatum, and expressed as C-terminal GFP fusions to facilitate detection of infected cells and 

aggregate production. Immunohistochemical analysis of brain slices from animals sacrificed 

twenty-one days after viral infection showed that Q138 injection resulted in robust formation of 

GFP-positive aggregates in the striatum, increased GFAP and microglial activation and 

neurodegeneration, with little evidence of any of these events in contralateral tissue infected with 

wild type (Q17) expressing construct. Differences in the relative metabolite concentrations (N-

Acetyl Aspartate/Creatine  and Myo-Inositol/Creatine) were observed by H1 MR Spectroscopy. By 

quantitative RT-PCR we also demonstrated that mHTT induced changes in the expression of genes 

previously shown to be altered in other rodent HD models. Importantly, administration of reference 

compounds previously shown to ameliorate the aggregation and neurodegeneration phenotypes in 

preclinical HD models was demonstrated to revert the mutant HTT-dependent effects in our model. 

In conclusion, the AAV2/9-Q138/Q17 exon 1 HTT stereotaxic injection represents a useful first-line 

in vivo preclinical model for studying the biology of mutant HTT exon 1 in the striatum and to 

provide early evidence of efficacy of therapeutic approaches. 

 

Keywords: Huntington’s disease, viral vectors, neurodegeneration, neuroinflammation 

immunohistochemistry, animal model, in vivo spectroscopy, gene expression. 

Abbreviations used: 

HD, Huntington’s Disease, mHTT, mutant Huntingtin, rAAV, Recombinant Adeno Associated 

Virus, LV lentivirus, tNAA, total N-Acetyl Aspartate, Myo-Ins, Myoinositol, GFP, green fluorescent 

protein, NeuN, Neuronal nuclei, DARPP-32, dopamine- and cyclic AMP-regulated phosphoprotein, 

ChAT, Choline Acetyl Transferase, GFAP, Glial fibrillary acidic protein, Iba-1, ionized calcium 

binding adaptor molecule 1, PBST, phosphate buffered saline-Triton-X100, BSA, bovine serum 

albumin, DAB, diaminobenzidine, ROI, Region Of Interest. 
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Introduction 

Huntington’s Disease (HD) is an inherited neurodegenerative disorder characterized by dyskinesia, 

cognitive impairment, emotional disturbances and metabolic disorders, predominantly associated 

with progressive neurodegeneration of medium-spiny neurons in the striatum and with the presence 

of intracellular Huntingtin (HTT) aggregates in various areas of the brain. 

The mutation responsible for HD has been identified as a CAG expansion within the Exon 1 of 

HTT gene (IT15, located on chromosome 4p16.3), which is translated into a polyQ stretch at the 

protein level (The Huntington's Disease Research Collaborative Group, 1993; reviewed by Ross and 

Tabrizi, 2011, Ha et al., 2012; Bates et al., 2015). Individuals with 35 CAG repeats or fewer do not 

develop HD, while repeats of 40 and above are invariably associated with disease appearance 

(Myers et al., 1988). 

Currently there is no effective treatment for preventing or delaying the disease, which typically sets 

in at around 35-45 years of age and progresses towards death within 10-20 years after the 

appearance of the first clinical symptoms. It is crucial from a drug discovery prospective to create 

animal models that, in addition to presenting symptoms typical of striatal neurodegeneration, also 

recapitulate the genetic and molecular mechanisms underlying the degenerative processes of the 

human pathology. To that end, the combination of knowledge of the genetic basis of the disease and 

the emergence of transgenic and gene transfer technologies has allowed the creation of animal 

models of HD (from the invertebrate C. Elegans to primates) that recapitulate the genetic defect 

found in humans and are able to reproduce phenotypes reminiscent of HD such as nuclear 

huntingtin inclusions, neurodegeneration, motor deficits and cognitive impairment (Menalled 2005, 

Ramaswamy et al., 2007, Fecke et al., 2009). In most cases, these models are based on mutant 

huntingtin bearing ca. 100 or more glutamines (e.g. R6/2, BACHD, YAC128 and Knock-In mice, 

with ca. 130, 97, 128 and 111 polyglutamine repeats respectively; Ferrante 2009; Menalled and 

Brunner., 2014). Polyglutamine expansions larger than observed in adult-onset HD and closer to 

those observed in the earlier onset, more aggressive juvenile HD are often required to create robust 

aggregation and pathology in rodent models. However, despite the availability of several models 

and intensive efforts on the part of drug developers to date no clinical data exists to support the 

translational value of preclinical models for HD patients. Mammalian models of HD are dominated 

by the use of rodents (especially mice) which historically represent the mammalian species of 

choice for the generation of genetic models. Several rodent lines have been generated expressing 

mutant huntingtin as transgenic (either as full length protein or as N-terminal fragments) or knock-

in models, which in some cases have been extensively characterized at the molecular, 

histopathological as well as behavioural/cognitive level. The severity of the phenotypes produced as 
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well as their resemblance to human HD is typically stronger in models expressing N-terminal 

fragments, and in particular in those expressing the protein fragment encoded by exon 1 

(Mangiarini et al, 1996; Gray et al, 2008; , Slow et al., 2003; etc.; reviewed in Lee et al. 2013). In 

spite of the usefulness of these models to investigate disease mechanisms, drug efficacy trials in 

most of these rodent models (including exon 1 models) require labour-, time- and cost-intensive 

studies, lasting several months to more than a year and typically requiring relatively large cohorts of 

animals. The availability of relatively more rapid, less resource intensive in vivo models, 

reproducing key aspects of the human pathology and bridging the gap between in vitro neuronal 

models and the more pathophysiologically relevant but low-throughput genetic models would 

greatly facilitate the evaluation of therapeutic approaches at an early stage of the drug discovery 

process. In vivo viral gene transfer models represent an opportunity to address this need. 

Recombinant Adeno Associated Viral (rAAV) vectors have been successfully used to transfer genes 

in a variety of tissues, including brain, in adult animals (Burger et al., 2004, Tenebaum et al., 2004, 

and McFarland et al., 2009; Huda et al. 2014). Moreover rAAV vectors have also been widely used 

in clinical trials for neurodegenerative diseases and have been shown to be more effective at 

transducing certain brain regions compared to lentiviral vectors (de Backer et al., 2010). The first 

rAAV-based HD model employed to express along CAG repeat fused to green fluorescent protein 

(GFP) in the rat striatum, described a rapid formation of fibrillar, cytoplasmic and ubiquinated 

nuclear polyglutamine aggregates as well as neurotoxicity (Senut et al 2000). 

In the present study we used rAAV2/9, expressing Exon 1 HTT carrying 17 or 138 CAG repeats 

(wild type and mHTT, respectively) to implement and optimize a rat model of HD. As the envisaged 

model was of an acute nature, a long (Q138) polyglutamine repeat was selected in order to 

maximize chances of eliciting a robust pathology-relevant response and for polyQ length coherence 

with one of the transgenic mouse HD models most widely employed for drug screening, namely the 

R6/2 mouse (Mangiarini et al., 1996). AAV2/9-Exon1-GFP/Q138 (AAV9-Q138) was injected in the 

right striatum and AAV2/9-Exon1-GFP/Q17 (AAV9-Q17) in the left striatum as control and 

neurodegeneration and neuroinflammation markers were evaluated by immunohistochemical 

analysis. In order to test whether our model could recapitulate the hallmarks of the transcriptional 

imbalance found in HD patients and other models, we also performed qRT-PCR on AAV injected 

striata on selected genes known to be dysregulated in HD. Magnetic Resonance Imaging and 
1
H

 
MR 

Spectroscopy was carried out to evaluate the morphological and metabolic changes induced by 

mHTT expression. Finally, we validated this in vivo model as a tool for drug screening by 

demonstrating reduction of the phenotypic responses to mHTT by pharmacological treatment with a 

tool compound known to be active in reducing aggregation and neurodegeneration in preclinical 
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HD models, namely the transglutaminase inhibitor Cystamine (Dedeoglu et al., 2002; Van 

Raamdsonk et al 2005). 

 

Methods 

Plasmids construction and rAAV particles preparation 

The exon1 of human HTT gene (GenBank: L27350.1) was amplified by proofreading PCR using 

specific primers carrying an EcoRI site at the 5’-end and a BamHI site at the 3’-end, using as 

template a full-length HTT cDNA including a mixed CAG/CCA repeats, coding for a poly Q tract 

(Wittenbach et al., 2001; Smith et al., 2014). 

The amplicons, named exon1-HTT-Q17 and exon1-HTT-Q138, respectively, were cloned in frame 

with AcGFP into the pAcGFP-N1 vector (Clontech, NJ USA) fused at C-terminal end of exon 1. 

The obtained AcGFP-exon1-HTT-Q17/Q138 fragments were then inserted into pcDNA3.1zeo+ 

vector (Invitrogen, UK). The final expression vectors were obtained subcloning the cDNA sequence 

for AcGFP-exon1-HTT-Q17/Q138 from pcDNA3.1zeo+ into pAAV-CAG-cis plasmid (Vector 

Biolabs, PA). The oligonucleotides used for PCR amplification are listed as follow:  

Primer EcoRI-HTT-For: 5’-AAGAATTCACCATGGCGACCCTGGAA-3’ 

Primer BamHI-HTT-exon1-Q17/Q138 –Rev: 5’-AAGGATCCCCTCGGTGCAGCGGCTCC-3’. 

AAV particles were prepared by Vector Biolabs (Philadelphia, PA USA). 

Animals 

Forty four female Wistar rats (175-200g) (Harlan Italy) were used in this study. The animals were 

housed in a controlled temperature (20-24°C) and humidity (40-70%) room maintained on a 12 hr 

dark/light cycle. Animals were placed in individually ventilated solid floor plastic cages (IVC 

Sealsafe
®
 Plus GR900, Tecniplast, Italy), 3 animals/cage. Food and water were available ad libitum. 

Animal experiments were carried out in conformity to the guidelines of the European Community’s 

Council for Animal Experiments (86/609/EEC and 2010/63/EU) and the Principle of Laboratory 

Animal Care. All efforts were made to minimize the number of animals used and their suffering. In 

the present study 10 animals were used in a pilot study to evaluate the development of infection and 

formation of aggregates; they were sacrificed 48h, 7d, 14d and 21d after surgery (N=2/3 per 

groups). The remaining 34 rats were sacrificed at 21d after surgery according to the scheme 

reported in supplementary information (Fig. 1S) and used for morphological determination and 

reference compound treatment (N=26), transcriptional analysis (N=3) and Magnetic Resonance 

Imaging and H1 MR Spectroscopy determinations (N=5). 
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Drugs 

Cystamine dihydrochloride  

Cystamine dihydrochloride (Sigma Chemical Co., MO, USA 333 mg/mL) was dissolved in 

Dulbecco’s PBS and used to fill osmotic minipumps (2ML4, Alzet, CA, USA) for the subcutaneous 

deliver of 100 mg/Kg/day of the compound continuously for 21 days. 

Stereotactic surgery 

Animals were deeply anesthetized (2-3% isoflurane, 60% O2, 40% N2O) and gently fixed with ear 

bars and head holder in a stereotaxic apparatus (Stoelting, IL, USA). Four microliters of Adeno-

Associated Virus (AAV9-Q138 or AAV9-Q17, 15.2x10
10 

Genome Copies, Vector Biolabs, USA) 

were injected in the right and in the left striatum, respectively (0.5 mm anterior; ±3.0 mm lateral to 

Bregma and 4.8 mm depth from dura, Paxinos and Watson 1998) by a Hamilton syringe (Hamilton, 

HV, USA) equipped with a 30 gauge blunt-tip (Fig 1). In animals treated with cystamine 

dihydroclorate, during viral injection, osmotic minipumps (2ML4, Alzet, CA, USA) were 

subcutaneously implanted in the upper part of the dorsum of the animal to continuously deliver the 

drug. After surgical suturing, rats were removed and individually caged until complete wound 

healing.  

Tissue preparation 

Twenty-one days after surgery animals were deeply anaesthetized (Tanax®, Intervet Italy) to be 

intracardially perfused with 4% paraformaldheyde, postfixed for 24 hours and cryoprotected with 

18% sucrose. Slices (30 µm thickness) were cryo-sectioned (Leica Microsystem CM1950, 

Germany) and processed for immunohistochemistry or immunofluorescence. 

Immunohistochemistry and immunofluorescence procedure 

Slices were processed as free-floating sections. Briefly, the primary antibody was added at the 

appropriate dilution (in Blocking buffer: PBS with 0.5% BSA and 0.05 % Triton-X for tissue 

permeabilization and left overnight under gentle agitation at room temperature. For 

immunohistochemical detection, the slices were incubated with the appropriate biotinylated 

secondary antibody (Vector Laboratories, CA, USA) in Blocking buffer for 90 min at room 

temperature under mild agitation, and the bound antibody was visualized by using Vectastain ABC 

Kit and DAB (Vector Laboratories, CA, USA). The sections were mounted, counterstained with 

Ematossilin (Carlo Erba Reagents, Italy), dehydrated and coverslipped with mounting medium 

(Leica Biosystem, Germany). For immunofluorescence detection, the slices were incubated with the 

appropriate AlexaFluor-conjugated secondary antibody (Invitrogen) in Blocking buffer for 90 min 

at room temperature under mild agitation and mounted on a slide with mounting medium 

(Vectashield with DAPI, Vector Laboratories, CA, USA). The images were acquired by confocal 
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microscopy (Zeiss LSM 510 META, Germany) or fluorescence microscopy (Nikon Eclipse 90i 

Japan). 

The primary antibodies used are: anti-HTT, clone EM48 (for aggregates, Millipore 1:1,000, Merk 

Millipore Germany), NeuN (marker of neuronal nuclei, mouse monoclonal antibody, Millipore, 

1:500, Merk Millipore Germany), ChAT (choline acetyl transferase, marker of cholinergic neurons, 

goat antiserum, Millipore, 1:200, Merk Millipore Germany), DARPP-32 (dopamine- and cyclic 

AMP-regulated phosphoprotein, marker of medium spiny neurons, rabbit polyclonal antibody 

Millipore, 1:500, Merk Millipore Germany), GFAP (glial fibrillary acidic protein, marker of 

astrocytes, rabbit polyclonal antibody DAKO, 1: 1000, Agilent Technologies CA, USA), Iba-1 

(ionized calcium binding adaptor molecule 1, marker of microglia, rabbit antibody, Wako, 1:500; 

Wako Germany). 

Immunohistochemical marker quantification 

All immunohistochemical markers were quantified on the entire striatal area by the Aperio digital 

pathology platform (Aperio Scanscope, Leica Biosystem, Germany); briefly, 4-6 slides per animal 

were digitalized by using the scanner then the right and left striata were manually identified for each 

slide creating a Region Of Interest (ROI) where specific macros of analysis were applied to quantify 

the signal. Each right striatum (AAV9-Q138) was compared with its contralateral (left) one (AAV9-

Q17). Data from each slide were averaged on a per animal basis and the resulting values were used 

for statistical analysis. 

NeuN was quantified as number of NeuN positive nuclei per area. ChAT was quantified as number 

of cells per area. DARPP-32, GFAP and Iba-1, were evaluated as positive pixel counts per area in 

the ROI. 

In the right striatum (Q138), GFP signal was used to quantify the number and dimensions of GFP 

positive aggregates in the right striatum. In particular, three slices centered in the injection region 

spaced at 500µm, were acquired by fluorescence microscopy (Nikon Eclipse 90i, Japan) and 

subsequently quantified with Matlab (The Mathworks, Natick, USA) using the Otsu’s method (Otsu 

et al., 1979) with minor modifications (La Rosa et al., 2013). 

Transcriptional analysis of AAV9-Ex1-AcGFP-Q138 and AAV9-Ex1-AcGFP-Q17-injected 

striatum 

For the analysis of mHTT-mediated transcriptional dysregulation, a small group of animals was 

sacrificed by decapitation, under deep anesthesia, to collect the right (AAV9-Q138) and left (AAV9-

Q17) striatum. Samples were homogenized in RLT buffer (Qiagen, The Netherlands) and RNA was 

extracted with the kit ALL Prep DNA/RNA (Qiagen) according to manufacturer’s instructions. One 

µg of mRNA isolated from the right and left striatum was retrotranscribed using the Quanti-Tect 
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Reverse Transcription-Kit (Qiagen, The Netherlands) according to the manufacturer’s instructions. 

For every RNA sample two independent reverse transcriptase reactions were performed. 

Quantitative real-time PCR (RT-qPCR) was performed in triplicate for the analyzed genes using the 

C1000™ Thermal Cycler (Biorad, CA,USA). All reactions were performed in a total volume of 20 

μl containing 10 ng cDNA, 10 µl iQ™ SYBR Green Supermix (Biorad, CA, USA) and 0.3 mM 

forward and reverse primers. The amounts of target gene mRNA were normalized to β-actin levels. 

The genes analyzed were 7DHCR, pENK, ADORA2A, DRD1 and DRD2 (Kuhn et al., 2007) and 

the PCR primers utilized are listed in Fig.4. 

Magnetic Resonance Imaging and H1 MR Spectroscopy  

Preclinical 1H-MRS experiments were performed with an MRI system (Bruker Pharmascan
®
 70/16, 

Germany) operating at 7 tesla (300Mhz for 1H). Circular polarized resonator optimized for rat brain 

was used for RF transmission while a dedicated quadrature 1H surface coil was positioned on the 

top of the rat brain. Localization of the volumetric region (voxel) in the striatum for the 

measurement of metabolite concentration was performed by a rapid magnetic resonance imaging 

survey of the brain where axial, coronal and sagittal images were recorded using fast spin-echo 

method. In the coronal plane (used for MRS exam), 18–21 images were recorded with a repetition 

time (TR) of 3000ms, an echo time (TE) of 33ms and total bandwidth of 50KHz. In all experiments, 

the image thickness was 1mm with an interslice distance of 1mm and acquisition time of about 

8m:44sec. FAST-MAP method, combined with additional linear shimming steps, was applied on 

3x3x3 mm voxel to shim the homogeneity of the magnetic field and optimize water suppression. 

The resulting waterline width was about 10Hz. Vapor water suppression scheme was applied prior 

of a Point REsolved Spectroscopy Sequence (PRESS) with TR was 3000msec, echo time TE 

20msec, 256 averages and spectral width of 4Khz (2048 points) on 15.625uL (2.5x2.5x2.5 mm) 

voxels localized in left and right striatum according to AAV9-Q17 and AAV9-Q138 injection’s sites. 

MRS spectra were fit using TARQUIN (Wilson et al. 2011) and metabolite concentrations were 

normalized in respect to control signal. 

Statistic analysis  

MRS derived metabolite concentrations as well as neurodegeneration, neuroinflammation and gene 

expression data from  AAV9-Q138 versus AAV9-Q17 injected striata, were evaluated by paired 

Student’s t-test with a significance level of α = 0.05. Efficacy of reference compounds on 

neurodegenerative and neuroinflammation markers was evaluated on data normalized in respect to 

the contralateral area and then averaged on a per subject basis (Q138/Q17 ratio). Univariate 

statistical analyses of each marker were carried out applying non parametric one-way ANOVA 
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model (Kruskal Wallis) on treatment level as fixed effect with a significance level of α = 0.05. Post 

Hoc pair-wise comparisons were performed using Dunnett multiple comparisons to evaluate 

treatment efficacy versus vehicle control group.  

All statistical analyses were performed using GraphPad Prism 5.03 (GraphPad Software Inc, CA, 

USA) and Matlab (The Mathworks, Natick, USA). 

 

Results 

 

Generation of an AAV-based HD expression system for in vivo modeling 

In order to develop an acute rat model of HD neurodegeneration useful as a first-line in vivo 

compound testing tool, we designed recombinant adeno-associated viral constructs for the delivery 

of the exon 1 of mutant huntingtin into the striatum. The AAV9 serotype was chosen for its ability 

to infect neuronal cells (Aschauer et al, 2013; Huda et al. 2014), as also confirmed through in house 

experiments with several AAV serotypes (data not shown). The exon 1 of mutant HTT with a polyQ 

expansion of >100 was chosen for its capacity to induce robust aggregation and neurotoxicity, and 

for its coherence with one of the transgenic mouse models of HD most widely employed for drug 

screening the R6/2 model (Mangiarini et al., 1996). Following generation of the plasmid constructs 

and production of the viral particles, these were tested for correct expression of the encoded mHTT-

GFP fusion protein by infecting primary rat cortical neurons (Supplementary data Fig 2SA and B) 

and examining protein expression by Western blotting using an antibody specific for a huntingtin N-

terminal epitope (EM48 antibody) (Fig. 2S C). Subsequently to positive outcome from in vitro 

study, AAV9-Q138, encoding mHTT-GFP, was injected in the right striatum of female rats, whereas 

the contralateral striatum was injected with the same number of genome copies of AAV9-Q17, 

carrying the an equivalent HTT-GFP with a wild-type expansion (Fig 1A). The principal objective 

was to establish a neuropathological model rather than a behavioural model, and therefore a 

monolateral AAV mHTT-GFP model, where the contralateral hemisphere is instead injected with 

AAV expressing wild type HTT-GFP as a control, was preferred for the advantages in 

morphological evaluation. The injection of AAV9-Q138 and AAV9-Q17 led to the infection of 

almost the entire striatum areas with marginal diffusion to corpus callosum (Fig 1B). During the 

observation period prior to sacrifice (3 weeks), daily clinical signs monitoring revealed no obvious 

abnormalities. Furthermore, a pilot evaluation of locomotor activities by rota-rod, reflected no 

impairments caused by monolateral AAV9-Q138 infection (data not shown) in line with findings 

from other laboratories although with different viral vector (de Almeida et al., 2002). It is pertinent 

to mention that Franich et al., (2008) reported behavioral deficit in AAV-injected animals. 
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The injection of AAV9-Q138 determined the appearance of GFP positive aggregates in the entire 

striatal area detectable mainly inside neuronal nuclei as fluorescent aggregates that superimpose on 

a more diffuse GFP fluorescence, as confirmed by confocal microscopy (Fig.1D). The aggregates 

appeared at a relatively early post-injection time (48 hours), increasing progressively as measured at 

day 7 and 15 and reaching the highest level of expression at day 21 (Fig. 3S, in supplementary 

materials), when aggregates positive to EM48 antibody were densely spread in the entire striatal 

area (Fig 1E); AAV9-Q17 injection resulted in a more diffused GFP signal, with some GFP-positive 

cells with neuronal-like morphology and the absence of aggregates, detected 21 days after virus 

injection (Fig. 1C). Co-staining with antibody NeuN for neuronal determination and GFAP for 

astroglial cells revealed that mHTT is predominantly expressed in neurons rather than astrocytes, 

although these latter are not resistant to AAV9 infection (Fig. 1 F-G). We also examined the 

microglia cells with an antibody against Iba-1, a protein upregulated in activated microglia (Ito et 

al, 1998). Many activated microglia cells that stained intensely with Iba-1 were detected around 

infected neurons in AAV9-Q138 striatum (Fig. 1 H) and some of them contained crumble mHTT 

aggregates presumably derived by macrophage function exerted by the activated cells although, as 

for astrocytes, a primary infection cannot be not excluded. 

AAV9-Q138 HTT exon 1 induces neurodegeneration and neuroinflammation in the rat 

striatum  

In order to quantify the decrease in NeuN-positive cells (neurons labelled with Neuronal Nuclei 

antibody) observed by immunofluorescence at 21 days post injection, we developed and optimized 

an automated segmentation-based analysis of the immunohistochemical signal. NeuN-positive cells 

have been used as histochemical markers of neurons and are widely employed for the quantification 

of neurodegeneration in various HD models, including an LV-based HD rat models (Regulier et al., 

2003). The NeuN-positive cell density was significantly lower in the AAV9-Q138 injected side 

when compared to the AAV9-Q17-injected contralateral striatum (Fig 2 A-C and L, t=7.684, d.f.=9, 

p<0.001). DARPP-32, a regulator of dopamine receptor signaling is expressed in ca. 95% of 

medium size spiny neurons (MSNs) and is not expressed in other striatal cell types (Anderson and 

Reiner, 1991; Ouimet et al., 1998; Arlotta et al., 2008;). In order to quantify the degeneration of 

medium spiny neurons (MSNs), the most abundant neuronal type in the striatum and the most 

affected in HD, we also implemented a quantitative immunohistochemical analysis of DARPP-32, 

asDARPP-32 down regulation is an early marker of neuronal dysfunction in HD (Luthi-Carter et al., 

2000, de Almeida et al., 2002, Bibb et al., 2000). Following AAV9-Q138 injection in the right 

striatum, DARPP-32 levels decreased compared to AAV9-Q17, especially in the area surrounding 

the injection site (Fig 3D-F and M). The quantification of DARPP-32 staining, expressed as positive 
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pixel counts within the striatal area, confirmed a statistically significant decrease of DARPP-32 

signal in the AAV9-Q138 injected striatum.(t=5.608, d.f.=8, p<0.001, Fig 2D-F and M). In addition, 

we also investigated the impact of AAV9-Q138 injection on striatal cholinergic (ChAT positive) 

neurons, a subpopulation of large size interneurons in the striatum. The number of ChAT positive 

neurons was lower in AAV9-Q138-injected striatum than in the AAV9-Q17-injected one (t=7.356, 

d.f.=9 p<0.001, Fig 2 G-I and N). Aperio Scanscope system used for the quantification of 

neurodegenerative markers allow the determination of the striatal area, revealing, no substantial 

shrinkage or modification of the striatal area at the selected period (3 weeks from AAV injection).  

Emerging evidence suggests a role of neuroinflammation in HD progression (Politis et al., 2015; 

Crotti and Glass, 2015). We therefore examined the neuroinflammatory response in the AAV9-Q138 

injected striatum with the quantification of microglia and astrocytes. Although signs of glial 

activation were visible in the AAV9-Q17 contralateral striatum, several rounded, amoeboid 

microglia were exclusively detected in the AAV9-Q138 striatum (Fig 3A and C). Automated 

morphometrical quantification of microglial response in the right and left striatum showed a 

statistically significant increase in microglia activation in AAV9-Q138-injected striatum compared 

to the AAV9-Q17-injected (t=9.058, d.f.=8, p<0.001, Fig. 3 G).  

As shown in Fig 3 D, E, F and G, GFAP-immunoreactivity was analyzed as an indicator of 

astrogliosis. As for microglia, Q138 injection induced massive activation of astrocytes. Automated 

morphometrical quantification of GFAP response in the right and left striatum (positive pixel 

count/area) showed a statistically significant increase in astrocytes activation in Q138-injected 

striatum with respect to Q17 (t=2.83, d.f.=8, p<0.05). Thus, the AAV9 HTT exon 1 model 

reproduces several histological phenotypes observed in HD and HD models, including EM48-

positive protein aggregation, downregulation of striatal neuronal markers (including those for 

MSNs and cholinergic neurons), and glial activation (astrocytes and microglia) in a manner 

dependent on the presence of an expanded (mutant) polyglutamine repeat.  

Although our focus was related to striatal area, during the pilot experiment aimed to reveal the 

amount of infection by mean GFP epifluorescence (Fig. 3S), we analyzed the amount of GFP 

signaling in the globus pallidus and substantia nigra, for evaluating the AAV vector axonal 

transport. Three weeks after viral injection a weak GFP labelling was observed (data not shown) 

and no further investigations were carried out. Notably, Franich et al. (2008) reported relevant 

degeneration also in these target areas detected at longer period (5 weeks after viral injection). 

AAV9-Q138 HTT exon 1 induces transcriptional dysregulation in the rat striatum  

We next asked if this model could reproduce some of the molecular changes associated with mutant 

HTT expression in other preclinical models, namely transcriptional dysregulation (e.g. see Kuhn et 
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al. 2007). Therefore, a quantitative RT-PCR was carried out on samples from AAV9-Q138 and 

AAV9-Q17-injected striata, and the expression of selected genes known to be dysregulated in HD 

models was examined: 7DHCR, pENK, ADORA2A, DRD1 and DRD2 (Kuhn et al., 2007; Valenza 

and Cattaneo, 2011). As for other studies (e.g. Kuhn et al., 2007), we focussed on striatal gene 

expression because the striatum is described as the HD brain region with the most dramatic 

neuropathology and the most robust mRNA changes. As shown in Fig 4, mHTT induced selective 

gene expression modulation, with steady-state mRNA levels of 7DHCR (t=8.73, df=2, p<0.05) A2a 

receptor (t=5.37, df=2, p<0.05), PENK (t=26.67, df=2, p<0.01), DRD1A (t=10.12, df=2, p<0.01) 

and DRD2 (t=11.5, df=2, p<0.01) receptors in Q138 injected mice are significantly decreased 

relatively to contralateral striata injected with the AAV9-Q17 encoding virus. We did not observe 

significant changes in striatal BDNF mRNA levels (data not shown), consistent with reports 

indicating the cortex as the principal corticostriatal site of BDNF expression (reviewed in Baydyuk 

and Xu, 2014). Therefore, the model can at least in part reproduce the transcriptional dysfunction 

induced by mutant HTT in other preclinical HD models. 

AAV9-Q138 HTT exon 1 induces metabolic changes in the rat striatum. 

1H Magnetic Resonance Spectroscopy (1H-MRS) allows in vivo measurement of prominent 

cerebral metabolites, including N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) as 

neuronal integrity markers, Creatine (Cr) as a marker of the energetic status of the tissue and Myo-

Inositol (Myo-Ins) as a glial cell marker (Zhu et al. 2006). Recent evidence demonstrates changes in 

the local concentrations of these metabolites in patients affected by Huntington’s disease at pre-

manifest and early stages (Sturrock et al. 2010). To evaluate effects induced by mutant and wild 

type HTT injection in striatal metabolite concentration, N-acetylaspartate (NAA), N-

acetylaspartylglutamate (NAAG), Myo-Inositol (Myo-Ins) and Creatine (Cr) were detected by H1 

Spectroscopy (Fig. 5 A and B) in AAV9-HTT injected animals. N-acetylaspartate (NAA) and N-

acetylaspartylglutamate (NAAG) were analyzed as total NAA (tNAA). The tNAA/Cr and Ins/Cr 

ratio were calculated for each side (AAV9-Q17 and AAV9- Q138) and used for statistical analysis. 

Paired Student’s t-test analysis showed that Myo-Ins/Cr (Fig. 5 C) was significant higher in the 

AAV9-Q138-injected side than in the AAV9-Q17-injected side (t=-3.0066 d.f.=4, p<0.05), while 

tNAA/Cr concentration (Fig. 5D) was lower in the AAV9-Q138 side with respect to the AAV9-Q17 

injected side (t=5.9771, d.f.=4, p<0.05). Interestingly, therefore, the AAV9-Q138 striatal injection 

appears to induce some of the metabolic dysfunctions observed in patients during the early phases 

of the disease, further supporting the translational value of the model. 

Reversal of AAV9-Q138 induced phenotypes by tool compound: validation of the model as in 

vivo tool for profiling candidate therapeutics 
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Having established that the AAV9-Q138-based model can reproduce a variety of phenotypes 

relevant to HD pathology, we sought to establish if these changes could be reverted by established, 

reference pharmacological treatments, an essential prerequisite for its utility as an in vivo drug 

screening tool. We selected Cystamine as a reference agent which previous studies have 

demonstrated to reduce the characteristic histopathological phenotypes in the R6/2 transgenic 

mouse model, expressing a mutant exon 1 HTT protein of comparable polyglutamine expansion to 

the AAV9-Q138 rat striatal model (Dedeoglu et al. 2002).  

The effects of Cystamine (100 mg/kg/day sc via Alzet mini-pumps for 21 days) were analyzed on 

morphological parameters of neurodegeneration and neuroinflammation (NeuN, DARPP-32, ChAT, 

Iba-1) using the ratio between the AAV9-Q138- and AAV9-Q17-injected striatum.One-way ANOVA 

and Dunnett’s post hoc test revealed that Cystamine significantly increased NeuN positive cells in 

respect to vehicle treated animals (Fig. 6B and C) (ANOVA F(2,16)= 6.654, p<0.01), while only a 

tendency toward amelioration was observed in other neurodegeneration (DARPP-32, Fig 6D) or 

neuroinflammation parameters (data not shown).  

 

Discussion 

The development of efficacious therapeutics for human neurodegenerative diseases is critically 

dependent on the availability of preclinical models faithfully reproducing the genetic, molecular and 

pathological events observed in patients. In particular, the translational value of in vivo models and 

readouts is one of the key factors associated with therapeutic success in the clinic. However, the 

most physio-pathologically relevant models are very often ill-suited to meet the necessity of rapid 

parallel probing of several potentially relevant therapeutic mechanisms with tool compounds in an 

in vivo setting, prior to full-scale prosecution of a target/mechanism with an integrated drug 

discovery and development program. This is a desired condition where knowledge of the molecular 

events associated with the pathology is relatively scarce, as in the case of neurodegenerative 

diseases such as HD. Therefore, a first-line in vivo model capable of handling multiple 

pharmacological interrogations with a battery of readouts reproducing those found in more 

complex, more pathophysiologically relevant (genetic) models and in human disease would increase 

the capacity and the turnover of therapeutics discovery, enabling the successive testing of the most 

promising candidate therapeutics in the longer, more complex trials in genetic models. We therefore 

sought to develop an acute in vivo model of HD capable of producing robust phenotypes 

comparable with those observed in one of the most widely employed HD mouse model, the R6/2 

model. We demonstrated the relevance of this model in drug discovery processes by confirming the 

neuroprotective effect of a compound already shown to be effective in other HD models. To our 
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knowledge, these data consist in the first evidence of pharmacological modulation of the damages 

induced by mutant Htt in a viral-injected rodent model. Notably several elegant data have been 

produced using genetic modulation of protein expressions capable to counteract the insults 

produced by viral infections of mHtt (Franich et al., 2008, Popiel et al., 2012, Taylor et al 2013). 

Recombinant viral vectors-based models offer several advantages: they can be used in any 

mammalian species, the onset and temporal progression of the pathogenicity can be controlled by 

selecting the time and amount of viral vector, the transgene can be introduced in discrete areas of 

the CNS. As result, the use of viral vector constructs allows the generation of genetic rodent disease 

model more rapidly and more economically than is required for breeding and maintenance a colony 

of transgenic mice. 

Recombinant AAV has emerged as one of vectors of choice for gene transfer to the CNS, because its 

transduction of dividing and non-dividing cells and strong neural tropism (Grieger and Samulski, 

2012). The packaging capacity of 4.7 kilobases precludes AAV vector-mediated overexpression of 

full-length HTT, but N-terminal truncated HTT constructs have been successfully used previously 

to recapitulate some of the phenotypic characteristics of HD in experimental animals (de Almeida et 

al., 2002, DiFiglia et al., 2007) compared to the widely used HD transgenic mouse model Tg R6/2 

(Mangiarini et al., 1996). It is pertinent to mention that several labs also developed robust HD 

models by producing LV infections in cells (Zala et al., 2005) and in rodent (rev. by Ruiz and 

Deglon 2012). 

The AAV serotype used in the present study, AAV2/9, was selected among other phenotypes after 

testing in rat brain and evaluating the spreading of infection, the type of cell infected and the 

inflammatory response determined by the viral injection. From this preparatory study the rAAV2/9 

serotype was chosen for its predominantly neuronal tropism, significant spreading and lower 

inflammatory response determined with respect to the other AAV phenotypes or other LV tested. 

The use of a double injection in the different brain hemispheres allows the direct comparison of the effects of 

WT HTT versus mutant HTT in the same animal, decreasing the inherent inter-subject variability during 

morphological analysis.  

Our model is characterized by the appearance of intranuclear, cytoplasmic and neuritic aggregates 

very early following injection (48 hours), increasing progressively (7 and 15 days, data not shown) 

and reaching high levels by 21 days, when aggregates densely populate the entire striatal area. 

Intracellular aggregates observed in the present study resemble those previously described in a 

number of in vitro and in vivo studies. Indeed previous studies showed that both nuclear and neuritic 

aggregates are present in many HD transgenic mice (R6/2, N171-82Q and Hdh 
80 CAG

). In R6/2 and 

Hdh 
80 CAG

 knock-in mice the neuritic aggregates appear later than nuclear aggregates (Li et al., 

1999, Schilling et al., 1999, Li et al., 2000). The disparity in aggregate load has been postulated to 
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be at least in part dependent on the levels of HTT expression, with low levels of mutant HTT 

favoring the formation of small and abundant aggregates in axons and dendrites, whereas the 

development of nuclear inclusions is associated by the presence of high levels of HTT (de Almeida 

et al., 2002). 

Huang and collaborators (2008) used high-capacity adenoviral (HC-Ad) in vivo infection, to deliver 

truncated or full-length HTT-with a poly 128 glutamine repeats of, in the mice striatum. They found 

differential localization of inclusions: mutant truncated HTT caused very fast formation of 

inclusions mainly in the nucleus, however, mutant full-length HTT led to a much slower 

accumulation of inclusions that were localized in the cytoplasm rather than in the nucleus, both in 

vitro and in vivo. Interestingly, in HD patients both nuclear and cytoplasmic inclusions have been 

detected, moreover, neuropil aggregates are prevalent in cortical and striatal neurons (DiFiglia et al., 

1997).  

Initial studies using adeno-associated virus (AAV) serotype 2 (Senut et al., 2000) or LV vectors (de 

Almeida et al., 2002) to express mHTT, recapitulate some key elements of the disease and resulted 

in a limited degree of neurodegeneration 5-8 weeks after injection into the striata of rats. A 

behavioral phenotype was not characterized in these studies. Also in our model a preliminary 

behavioral experiments aimed to evaluate the loco-motor coordination was conducted and our 

animals behaved normally. This occurrence is most probably due to mono-lateral degeneration 

induced by our experimental protocol. A non-human primate model of HD, generated by LV 

injection to the macaque putamen, exhibiting striatal neurodegeneration and a progressive motor 

phenotype, was described (Palfi et al., 2007). DiFiglia and collaborators, also reported a robust and 

rapid onset phenotype characterized by striatal neurodegeneration and behavioral impairment in 

mice as early as 2 weeks after AAV injection (DiFiglia et al., 2007). 

Many studies have consistently shown that the degenerative process does not equally affect all 

striatal neurons, but preferentially affects GABAergic medium-sized spiny neurons (Cicchetti and 

Parent, 1996, Ferrante et al., 1987, Ruiz and Deglon 2012). The down-regulation of DARPP-32, a 

mediator of dopamine receptor signaling expressed in 96% of striatal medium-sized spiny neurons, 

is commonly used as an early marker of neuronal dysfunction induced by mHTT in LV-based HD 

rat model as well as HD transgenic mice (Luthi-Carter et al., 2000, de Almeida et al., 2002, Bibb et 

al., 2000). 

In human HD brain, there is a relative sparing of striatal interneuron populations that are immune-

positive for ChAT (Ferrante et al., 1987). In our model, we observed a significant reduction of all 

neuronal population analyzed (NeuN, DARPP-32 and ChAT) reflecting the high neuronal tropism 

of our viral vector. These results are in agreement with those reported for another AAV-based 
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model, where the over-expression of (construct) induced an almost complete loss of NPY, PARV 

and ChAT immunoreactivity within the AAV-HD70 striatal expression area in HD model (Franich et 

al., 2008). In a LV model analysis conducted 12 weeks after injection revealed a substantial survival 

of NADPH-d interneurons, although in presence of aggregates (de Almeida et al., 2002). 

Our model revealed a marked neuroinflammatory response, as activation of glia cells, both 

astrocytes and microglia. A pronounced astrocytosis accompanied the neuronal loss in the striatum 

is a well described process (Vonsattel et al., 1985) and more recently a significant role of microglia 

in HD patients is come out (Politis et al., 2011).  

Microglia is the major glial component of the CNS playing a critical role as resident 

immunocompetent and phagocytic cells, and activated microglia serves as scavenger cell in 

pathological lesions in the event of infection, inflammation, trauma, ischemia and 

neurodegeneration in the CNS (Tsuji et al., 2005).  

Initial studies showed that microglia activation in HD patients correlates with disease progression as 

assessed by loss of dopamine D2 receptor binding sites (Pavese et al., 2006; Tai et al, 2007). 

Interestingly, Tai et al, (Tai et al., 2007b) showed that microglia activation is also evident in 

presymptomatic HD gene carriers and can be detected up to 15 years before predicted age of onset; 

moreover a higher level of microglia activation correlates with lower level of dopamine D2 receptor 

binding sites and was associated with a higher probability of developing HD in 5 years. These 

findings indicate the microglia activation as an early event associated with subclinical progression 

of HD (Moller et al., 2010). In our model, microglia appeared to be strongly activated by Q138 

injection, determining the appearance of bushy cells, surrounding some mHTT aggregates. If this 

microglia response is the effort to degrade mHTT aggregates to protect neurons from mHTT 

toxicity is a matter of debate and needs to be further investigated. 

The use of the in vivo localized 1H Magnetic Resonance Spectroscopy (1H-MRS) allows the 

measure of cerebral metabolites in our model. To our knowledge, these data represent the first 

evidence of the use of this technique to detected brain metabolite changes in vivo in a viral-injected 

rodent model and the analogies with the results obtained in patients affected by HD (Sturrock et al. 

2010) further demonstrated the validity of our experimental model.  

Transcriptional dysregulation is a hallmark of HD and has been assessed in patient’s autoptic tissues 

as well as in several transgenic models such as R6/2 mice. In particular, they are characterized by 

dysregulation of genes encoding neuronal receptors such as adenosine A2a receptor (ADORA2A, 

Kuhn et al., 2007; Tarditi et al., 2006), dopamine receptors D1 and D2 (DRD1 and DRD2, Luthi-

Carter et al., 2000; Kuhn et al., 2007), cholesterogenic genes like 7DHCR and hmgcoAr (Leoni et 

al., 2011; Valenza et al., 2007, 2010, Zuccato et al., 2001) and neuropeptides like pro enkefalin 
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(pENK) (Kuhn et al., 2007). Our quantitative gene expression data demonstrate that our AAV-Q138 

rat model recapitulates the transcriptional alteration of genes previously identified in other HD 

models and in HD patients. These alterations reflect an HD phenotype linked to cholesterol 

biosynthesis dysfunction and receptor dysregulation. 

The positive effect of Cystamine administration on striatal neurodegeneration in our HD rat model, 

comparable to that achieved by genetic therapy (Franich et al., 2008, Taylor et al., 2013) supports 

the usefulness of the model as a higher throughput, lower turnover time, bridging in vivo model 

filling the gap from purely in vitro/ex vivo models (primary neuronal cultures, organotypic cultures) 

to genetic in vivo models for HD. 

In conclusion, our comprehensive characterizations demonstrate that our model recapitulates the 

multiple neuropathological hallmarks of the HD disease (neurodegeneration, protein aggregation, 

neuroinflammatory events, transcriptional dysregulation and brain metabolite changes), and the 

possibility to modulate these events may be useful for better understanding the mechanisms at the 

basis of the pathology. 
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Figure Legends 

Fig. 1 Panel A: Schematic representation of the site of injection of the two viral preparations in rat 

brain.  Four microliters (15.2x10
10

GC) of AAV-Exon1-Q138-GFP and AAV-Exon1-Q17-GFP were 

injected in the right and in the left striatum respectively, (0.5 mm anterior; ±3.0 mm lateral to 

Bregma and 4.8 mm depth from dura) by a Hamilton syringe equipped with a 30 gauge blunt-tip. 

Panel B: microphotograph showing the GFP epiflourescence in the injected striata. Panel C-D: 

Confocal microphotograph of AAV9-Ex1-AcGFP-Q17 (C) and AAV9-Ex1-AcGFP-Q138 (D) 

illustrating the GFP signal. Note the diffused GFP signal in the entire striatal area of Q17- injected 

striatum while the injection of mHTT determined massive production of GFP positive aggregates in 

the entire striatal area; scale bar: 100 µm. Panel E: microphotograph showing the EM-48 

immunolabeling (black aggregates) in the AAV-Exon1-Q138-injected striatum Scale bar: 50 µm. 

Panels F-H Confocal microphotographs of the AAV-Exon1-Q17-injected striatum (F) and the AAV-

Exon1-Q138-injected striatum (G) illustrating the immunoreactivity for NeuN (red) and GFAP (sky 

blue) and GFP epifluorescence (green), merge: note that GFP-mHTT aggregates are mostly 

expressed in neurons; Panel H, activated microglia exerts macrophagic functions on mHTT 

aggregates. Confocal microphotographs of mHTT aggregates (DAPI epifluorescence, blue, GFP 

epifluorescence, green, and Iba-1, red) immunoreactivity in the AAV-Exon1-Q138-GFP-injected 

striatum. Scale bar: 20 µm. 

 

Fig. 2 Neurodegenerative damage induced by mHTT aggregates expression- Panels A-I: Bright 

Field microphotographs of the NeuN (A-C), DARPP-32 (D-F) and ChAT (G-I) immunoreactivity in 

coronal slides (panels A, D and G, 1X) and in AAV-Exon1-Q17-injected (panels B, E and H) and the 

AAV-Exon1-Q138-GFP-injected (panels C, F and I) striatum. Scale bar: B-C, E-F,: 100 µm. Scale 

bar: H-I: 50 µm Panels L-N: histograms of NeuN, DARPP-32 and ChAT immunoreactivity 

quantification (number of cells or Positive Pixel Counts per area) in the Q17 (white) and Q138 

(grey) injected striatum. Paired T-test analysis revealed that mHTT injection significantly decreased 

the amount of NeuN, DARPP-32 and ChAT immunoreactivity in respect to WT HTT injection. 

*P<0.05 and ** P< 0.001. 

 

Fig. 3 Neuroinflammatory reaction induced by mHTT aggregates expression. Panels A-F: Bright 

Field microphotographs of the Iba-1 (Panels A-C) and GFAP (Panels D-F) immunoreactivity in 

coronal slides (Panels A and D, 1X) and in AAV-Exon1-Q17-injected (Panels B and E) and the 

AAV-Exon1-Q138-GFP-injected (Panels C and F) striatum. Note the strong inflammatory reaction 

in the right striatum in comparison to contralateral. Scale bar: 50 µm. Panels G-: histograms of Iba-

1 and GFAP quantification in the Q17 (white) and Q138 (grey) injected striatum. Paired T-test 
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analysis revealed that mHTT injection significantly increased the amount of Iba-1 and GFAP 

positive cells in respect to WT HTT injection. * P< 0.05 and ** P< 0.001. 

 

Fig. 4 mHTT induced selective gene expression modulation. Quantitative RT-PCR detection of the 

expression of: 7DHCR, pENK, ADORA2A, DRD1 and DRD2 in the striata obtained from animals 

injected with WT HTT (Q17) and m-HTT (Q138) in the left and in the right striatum, respectively. 

Data are expressed as ratio of Q138/Q17. The Q138 injection significantly decreased the expression 

of 7DHCR, pENK, ADORA2A, DRD1 and DRD2. * P< 0.05 and ** P< 0.01. 

 

Fig. 5 mHTT induced alteration of striatal metabolism detected by H
1
 Magnetic Resonance 

Spectroscopy (H
1
-MRS). Panel A and B: H

1
-MRS spectra from voxels in the Q17 and Q138 -

injected striatum, respectively. Panel C and D: histograms of Myo-Ins/Cr and tNAA/Cr 

quantification. Paired t-test analysis showed that m-HTT injection significantly increased Myo-Ins 

and decreased tNAA concentrations. *P<0.05 for both. 

 

Fig. 6 Effects of Cystamine on NeuN immunoreactivity in the striatum. Panels A-B: Representative 

Bright Field microphotographs of the NeuN in Q138-injected striatum of Vehicle (A), Cystamine 

(B) treated animals. Scale bar: 50 µm. Panel C: Histograms of the ratio of NeuN quantification in 

the Q138 and Q17 injected striatum in animals treated with vehicle (white), Cystamine (light grey) 

for 21 days. One-way ANOVA analysis revealed that Cystamine significantly increased the ratio of 

Q138/Q17 NeuN positive cells in respect to vehicle treated animals. * P< 0.01. Panel D: 

Histograms of the ratio of DARPP-32 quantification in the Q138 and Q17 injected striatum in 

animals treated with vehicle (white), Cystamine (light grey) for 21 days. One-way ANOVA analysis 

revealed only a tendency to increase the ratio of Q138/Q17 DARPP-32 positive cells (P= 0.06). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6
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Highlights 

 rAAV2/9-Exon 1 HTT 17 or 138 CAG was used to create a new rat model of HD. 

 Exon 1 HTT-Q138 induced neurodegeneration and neuroinflammation in the striatum. 

 Genomic analysis and H
1
-MRS study revealed high association with human HD 

hallmarks. 

 We pharmacologically validated our model using cystamine. 

 Our model provide useful tool for drug discovery process. 


