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Abstract— We recently proposed to accelerate online MPC
calculations by detecting and removing inactive constraints
from the online optimization problems as a function of the
current initial state. A number of variants of constraint
removal (CR) have been explored, ranging from detecting
inactive constraints based on precomputed regions of activity or
approximations thereof to online methods that do not require
any offline preparation. In typical applications CR can reduce
the computing times required for the calculation of the model
predictive control laws by 15% to 90%. Since CR is very easy
to implement, does not require any additional assumptions to
be fulfilled beyond the usual ones for stability, and can be
combined with all optimization algorithms, it is very easy to
cash in the described acceleration. Moreover, CR may prove
useful if an existing, established MPC implementation needs to
be accelerated, e.g., in order to use it on an embedded processor,
but replacing it altogether is not an option.

I. INTRODUCTION

Model predictive control (MPC) is a powerful tool for
controlling constrained, multivariable systems. MPC requires
to solve optimal control problems online, which makes it
computationally expensive, however.
For the important class of linear systems with linear con-
straints on the states and inputs the optimal control problem
to be solved is a quadratic program. Bemporad et al. [1]
showed that the solution to this quadratic program (QP) is
given by a piecewise affine function. Several approaches have
used the insights into the structure of the state feedback law
to solve the QPs more efficiently. Ferreau et al. [2] show
that the piecewise structure of the explicit control law can
be exploited to accelerate the online computations of MPC.
Pannocchia et al. [3] enumerate the active sets which occur
most frequently during runtime. Finally, the authors of the
present paper showed in [4]–[7] that the time to calculate
the control law can be significantly reduced by removing
constraints from consideration that are known to be inactive
at the optimum before solving the quadratic program. We
remark that this does not only entail removing constraints
that are always inactive (usually referred to as redundant
constraints) by preprocessing, but we remove constraints as
a function of the current initial state of the receding horizon
problem.
In this paper we present a detailed simulation study on the
approaches presented in [5]–[7]. First, we introduce the idea
of CR, briefly discuss its variants and their online com-
putational complexity. Then, we consider several examples
which differ with respect to the number of states, inputs and
horizon lengths. Both interior-point and active-set solvers are
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considered to investigate the influence of the QP solver.
II. PROBLEM STATEMENT

We consider linear discrete-time state space systems
x(t+ 1) = Ax(t) +Bu(t), (1)

with states x(t) ∈ Rn, inputs u(t) ∈ Rm, A ∈ Rn×n, B ∈
Rn×m, and (A,B) stabilizable. State and input constraints
read

x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, (2)
for all t, where U and X are compact full dimensional
polytopes that contain the origin in their interiors. MPC
regulates system (1) to the origin by solving the optimal
control problem

min
U,X

`f (x(N)) +
N−1∑
k=0

`(x(k), u(k))

s.t. x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , N − 1

x(0) = x,

x(k) ∈ X, k = 1, . . . , N,

u(k) ∈ U, k = 0, . . . , N − 1,

x(N) ∈ Xf ,

(3)

on a receding horizon1, where X = (x′(1), . . . ,x′(N))′,
U = (u′(0), . . . ,u′(N − 1))′, and N is the horizon length.
Moreover, `f (x) = 1

2x
′ P x and `(x, u) = 1

2x
′Qx+ 1

2u
′Ru,

where P ∈ Rn×n, P � 0, Q ∈ Rn×n, Q � 0 and
R ∈ Rm×m, R � 0 are the terminal, state and input
weighting matrix, respectively. Xf ⊂ Rn is a full dimen-
sional polyhedral terminal set which contains the origin in
its interior. We assume (Q1/2, A) to be detectable. Under
these assumptions it can be shown that (3) is a strictly convex
optimization problem.
By eliminating the states from (3), the optimal control
problem (3) can be rewritten as the following QP

V (x, U) = min
U

1

2
x′Y x+ x′FU +

1

2
U ′HU,

s. t. GU − Ex ≤ w,
P(x)

where Y ∈ Rn×n, F ∈ Rn×mN , H ∈ RmN×mN , G ∈
Rq×mN , w ∈ Rq , E ∈ Rq×n, and q denotes the number of
constraints. H is a positive definite matrix and thus P(x) has
a unique solution if it exists [1].

A. Notation
Consider any matrix M ∈ Ra×b. We denote by M i the i-th
row vector of M . By X ⊆ X we denote the set of states
for which the P(x) is feasible. Let U? : X → UN and
u? : X → U be the optimal solution of P(x) and its first m
elements, respectively. Let V ? : X → R, V ?(x) = 1

2x
′Y x+

x′FU?(x) + 1
2U

?′(x)HU?(x) be the corresponding optimal

1The notation x(0) = x is understood to mean that the initial condition
for the prediction is set to the current system state. We choose this notation
for simplicity here, because the predicted states are eliminated eventually
(see P(x)).



value function.
Let Q = {1, . . ., q}. We call a constraint active for an
arbitrary but fixed x ∈ X , if GiU?(x) − Eix = wi and
inactive, if GiU?(x)−Eix < wi. It is meaningful to define
the sets of active and inactive constraints for every state,

A(x) =
{
i ∈ Q

∣∣GiU?(x)− Eix = wi
}
,

I(x) = Q\A(x),
(4)

respectively. For later use we note that the solution of
the optimization problem min

U
V (x, U), i.e. P(x) without

constraints, is given by
U?(x) = −H−1F ′x. (5)

P(x) is solved by a continuous piecewise affine function of x,
defined on a partition of the state space into a finite number
of convex polytopes [1]. In other words, there exists nP
polytopes Pi, gains K̄i ∈ RmN×n and biases b̄i ∈ RmN

such that

U?(x) =


K̄1 x+ b̄1 if x ∈ P1,

...
...

K̄nP x+ b̄nP if x ∈ PnP .

(6)

III. CONSTRAINT REMOVAL IN MODEL PREDICTIVE
CONTROL

It is the central idea of constraint removal to eliminate
constraints that are inactive at the optimal solution from the
quadratic program P(x) before solving it. We start by stating
the reduced optimal control problem more precisely.
Proposition 1 (Reduced optimization problem) [7] Let
x ∈ X be arbitrary and let Ĩ ⊆ I(x) be any subset of
the inactive constraints. Consider the reduced optimization
problem

V (x, Ũ) = min
Ũ

1

2
x′Y x+ x′FŨ +

1

2
Ũ ′HŨ,

s. t. GQ\ĨŨ − EQ\Ĩx ≤ wQ\Ĩ .

P̃(x)

Then P̃(x) and P(x) have the same unique solution Ũ?(x) =
U?(x).
The question arises how the subset Ĩ can be constructed
before solving the optimization problem. Several methods
exist. We briefly summarize them in Secs. III-A and III-B.

A. Constraint removal based on structural information
Two approaches are discussed in Sec. III-A. The first one is
based on so-called regions of activity, the second approach
uses the cost function to identify inactive constraints.

Regions of activity
Regions of activity Gi have been introduced in [4], [5] to
identify the set Ĩ before runtime. The region of activity of
constraint i is defined as a subset of X in which the constraint
is active, i.e. Gi = {x ∈ X | i ∈ A(x)}, or equivalently,

Gi = {x ∈ X |GiU?(x)− Eix = wi}. (7)
By definition this yields

i ∈ A(x) if and only if x ∈ Gi. (8)
Assume the regions of activity have been determined before
runtime of the MPC, and let x ∈ X be arbitrary. Then we
can determine, for every constraint i ∈ Q, if it is active by
checking whether x ∈ Gi.
Unfortunately, the regions of activity are neither convex nor
connected in general [5]. Both determining the Gi offline and
carrying out tests of the type x ∈ Gi is therefore computation-

ally expensive. Since it may in fact be prohibitive to check
whether x ∈ Gi for all i online, we suggested to use convex
outer approximation Ĝi ⊃ Gi of the regions of activity [5].
If, however, we replace Gi by a convex outer approximation
Ĝi ⊃ Gi, the equivalence in (8) no longer holds but has to
be replaced by the implication

i ∈ A(x) implies x ∈ Ĝi.
This leads to the following lemma.
Lemma 1 [5], [7] Let x ∈ X be arbitrary, let i ∈ Q be
an arbitrary constraint and let Gi be as in (7). Consider any
outer approximation Ĝi ⊃ Gi of the region of activity Gi.
Then

x 6∈ Ĝi ⇒ i ∈ I(x),

i.e. constraint i is inactive at the optimal solution to P(x).
Several convex outer approximations can be envisioned, for
example, ellipsoids or hyperrectangles. In the remainder
of the paper we denote these two cases by Ei and Hi,
respectively. See [5] for their construction.

Constraint removal based on the cost function
We showed in [7] that inactive constraints can also be
detected using the optimal cost function V ?(x). To do so,
a lower bound σ?

i on V ?(x) for all x ∈ Gi is calculated
before runtime for each constraint. Formally, σ?

i satisfies
σ?
i < V ?(x) for all x ∈ Gi, (9)

where Gi is as in (7). If the optimal cost function of the
closed-loop system is a Lyapunov function, it is strictly
decreasing along any trajectory of the closed-loop system.
Thus, if the cost function drops below the precalculated
value, the corresponding constraint will remain inactive along
the (nominal) trajectory of the system. This is summarized
in the following lemma.
Lemma 2 [7] Let x(t0) ∈ X be arbitrary, let i ∈ Q be an
arbitrary constraint and assume σ?

i ∈ R satisfies (9).
Then

V ?(x(t0)) < σ?
i ⇒ i ∈ I(x(t)), t ≥ t0,

i.e. constraint i remains inactive along the trajectory of the
closed-loop system.
Lemma 2 does not only provide a criterion for the detection
of inactive constraints, but also guarantees that the constraint
remains inactive for all future time steps t ≥ t0. This
is obviously very different from the inclusion tests given
in Lemma 1, which have to be repeated in every time
step. The lower bounds σ?

i can be calculated by solving a
strictly convex optimization problem of the same size as P(x)
(see [7] for details). Since the value of V ?(x(t0)) must
be known to identify inactive constraints, Lemma 2 cannot
be applied at the initial state. Since σ?

i = ∞ results for
redundant constraints [7], they can be removed even at the
initial state.

B. Online constraint removal
The methods presented so far require to calculate some
information offline, which is then used to identify the inactive
constraints online. Some of these calculations are computa-
tionally expensive. In addition, the precalculated information
depends on parameters of the MPC formulation (3) such
as weighting matrices or horizons. Thus, a recalculation is



TABLE I
CALCULATIONS AND COMPUTATIONAL EFFORT REQUIRED TO IDENTIFY INACTIVE CONSTRAINTS.

Name Description Inclusion test Online Effort

hyp-MPC Hyperrectangular approximation of Gi x 6∈ Hi ⇒ i ∈ I(x) O
(
n2
)

ell-MPC Ellipsoidal approximation of Gi x 6∈ Ei ⇒ i ∈ I(x) O
(
n2
)

pre-lyap-MPC Upper bounds on the cost function V ?(x) < σi ⇒ i ∈ I(x) O (1)

lyap-MPC Online constraint removal ‖Gi‖cU < Eix+ + wi ⇒ i ∈ I(x) O
(
n+ (n2+nmN)/q

)
necessary if these parameters are adjusted during controller
tuning.
This motivates the search for methods that identify inactive
constraints without precalculated information. Such a method
is presented in [6]. The method is essentially based on two
ideas. For one, if a bound cU ∈ R is known on the norm of
the optimal input vector, i.e. ‖U?(x)‖2 ≤ cU , this bound can
be used to detect inactivity. This is stated more precisely in
the following lemma.
Lemma 3 [6] Let x ∈ X be arbitrary and assume there
exists cU ≥ 0 such that ‖U?(x)‖2 ≤ cU . Then∥∥Gi

∥∥
2
cU < Eix+ wi ⇒ i ∈ I(x), (10)

i.e. constraint i is inactive at the optimal solution to P(x).
Secondly, appropriate bounds cU can be calculated from
geometric properties of the bounds and the decay of the
optimal cost function along any closed-loop trajectory. As-
sume that the optimal cost function V ?(x) is a Lyapunov
function of the closed-loop system. Since V ?(x) is strictly
decreasing under this assumption, the current state x and any
candidate U ∈ RmN have to satisfy V (x, U) < V ?(x−), or,
equivalently

1

2
x′Y x+ x′FU +

1

2
U ′HU < V ?(x−), (11)

where x− is the preceding state, i.e. x = Ax− +Bu?(x−).
We showed in [6] that (11) defines an ellipsoid in the
augmented input space, which can be rewritten as
U =

{
U ∈ RmN

∣∣∣‖U +H−1Fx‖21
2H
≤ ρ(x−)

}
, (12)

where ρ(x−) is a strictly positive function [6]. Thus, the
optimal solution to P(x) is restricted to lie inside the ellip-
soid (12), i.e. U?(x) ∈ U . The ellipsoid U implies an upper
bound cU on ‖U?(x)‖2, which can be used together with (10)
to detect inactive constraints [6]. We stress that the bound
cU cannot be applied at the initial state, since V ?(x−) is
unknown. However, we show in [6] how to combine cU with
a second bound that does not depend on x− and therefore is
available at the initial state.
IV. SOME NOTES ON THE COMPUTATIONAL COMPLEXITY

We describe the computational effort required to detect inac-
tive constraints with the methods summarized in the previous
section. We use the symbol O (·) to denote the order of the
number of elementary floating point arithmetic operations
such as additions, multiplications and comparisons necessary
for a given calculation. For example, the inner product a′b
for a ∈ Rn, b ∈ Rn is of order O (n), since it requires n
multiplications and n− 1 additions.

Hyperrectangular and ellipsoidal approximations of Gi
We have to check whether x ∈ Hi (resp. x ∈ Ei) to
determine whether the constraint i is active. It is easy to
show that O

(
n2
)

operations are required if Hi (resp. Ei) is
a hyperrectangle (resp. ellipsoid) [5].

Upper Bound on V ?(x) on Gi
According to Lemma 2 we have to test whether V ?(x) < σ?

i .
Since this is a comparison of two real numbers, this test is
of order O (1).

Online constraint removal
We have to test whether ‖Gi‖cU < Eix + wi to
check if constraint i is inactive. Since the inner product
Eix is involved, O (n) operations are needed. Determin-
ing cU requires O

(
n2 + nmN

)
operations, which yields

O
(
(n2 + nmN)/q

)
operations per constraint on average.

The number of arithmetic operations is therefore of order
O
(
n+ (n2 + nmN)/q

)
for each constraint.

Table I gives a summary.
V. SIMULATION STUDY

Four MPC problems (3) serve as examples in this simulation
study. These four examples are summarized in Tab. II; some
details on the system are given in the Appendix. We combine
the examples with four different QP solvers. Specifically
these are the interior-point and active-set solver of the Matlab
Optimization Toolbox [8] (int-pnt-cvx and act-set for short,
respectively) and the interior-point solver qpip and the active-
set solver qpas from the QPC library [9]2.
Combining four different examples and four different QP
solvers obviously results in 16 example-solver-combinations.
For each of these 16 combinations, we run 5 MPC variants:
• full-MPC: MPC without constraint removal.
• hyp-MPC: Constraint removal with hyperrectangular ap-
proximation of the regions of activity.
• ell-MPC: Constraint removal with ellipsoidal approxima-
tion of the regions of activity.
• pre-lyap-MPC: Constraint removal with precalculated
bounds on the objective function.
• lyap-MPC: Online constraint removal.
We refer to each of the 5× 16 = 80 MPC implementations
as a case for short. We generate random initial values x ∈ X
for every system and calculate trajectories for the MPC-
controlled system until ‖x(t)‖ ≤ 10−3 for every initial
condition. The specific numbers of initial conditions and QPs
are summarized in Tab. II. Note that more than 106 QPs are
solved in every case. The same initial conditions are used in
all cases for a given example. We implemented the QPs in

2All QPs were implemented in Matlab and solved on an Intel i5-3570
CPU with 8Gb RAM running Suse Linux with Kernel 3.11.10-7.

TABLE II
SUMMARY OF THE SAMPLE SYSTEMS

Name n m N mN q #x0 #QPs
MIMO30 10 3 30 90 780 6747 1110569

MIMORED30 10 3 30 90 556 6900 1136212
MIMO75 10 3 75 225 1950 6900 1136212
COMA40 12 3 40 120 1200 8098 1155202
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Fig. 1. Cumulative distribution function hcdf(tMPC) for the examples MIMO30 (a-d), MIMO75 (e-h), MIMORED30 (i-l) and COMA40 (m-p). Results
for hyp-MPC, ell-MPC, lyap-MPC and pre-lyap-MPC are in green, red, magenta and black, respectively, and results for full-MPC are in blue. Note that
ellipsoidal outer approximations of the regions of activity could not be determined for MIMO75 and COMA40.

the form P̃(x), i.e., after eliminating the predicted states. We
claim without giving details that the proposed approach can
also be applied to (3) directly.

A. Interpretation of the results
We compare computational times using the cumulative distri-
bution functions (cdf) hcdf(tMPC). The cumulative distribution
function hcdf(t) is defined as the fraction of QPs in which
the control law is found in time t or less. For each of the
16 combinations we determine the cumulative distribution
function that results with hyp-MPC, lyap-MPC, pre-lyap-
MPC and full-MPC. We only determined the cdf that results
with ell-MPC for the examples MIMO30 and MIMORED30,
since the calculation of the ellipsoidal approximations of
the regions of activity was not possible for the examples
MIMO75 and COMA40 in any reasonable time.
Computational times for the cases with constraint removal
comprise the time required for constructing the set J (x),
to set up the reduced quadratic program P̃(x), and to solve
P̃(x).

The cdfs for all 80 cases are shown in Fig. 1(a-p) grouped by
the 16 example-solver-combinations. Intervals for tMPC are
chosen such that approximately the range [0, 0.99] of the cdf
is visible. By definition of the cdf, the time tMPC such that
hcdf(tMPC) = 1 is the maximal computational time obtained
for the respective case.

Results for MIMO30, Fig. 1(a–d)
• Consider the results achieved by pre-lyap-MPC and lyap-
MPC for the MIMO30 example first, cf. Fig. 1(a–d), black
and magenta curve. Approximately 55% and 65% of the
QPs are detected to be unconstrained by pre-lyap-MPC and
lyap-MPC, respectively. While full-MPC solves a QP, no
optimization problem is solved at all by pre-lyap-MPC and
lyap-MPC, but the optimal control law of the unconstrained
case (5) can be evaluated immediately. Consequently, pre-
lyap-MPC and lyap-MPC provide the optimal input sequence
very quickly. This gives rise to the leftmost shoulders on all
black and magenta curves in Figs 1(a–d).
• For all solvers pre-lyap-MPC and lyap-MPC outperform



TABLE III
RELATIVE DIFFERENCE OF THE AVERAGE COMPUTATION TIMES OF LYAP-MPC, PRE-LYAP-MPC, ELL-MPC AND HYP-MPC COMPARED TO

FULL-MPC. THE VALUES IN EACH FIELD CORRESPOND TO LYAP-MPC, PRE-LYAP-MPC, ELL-MPC AND HYP-MPC, RESPECTIVELY.

Name int-pnt-cvx qpip qpas act-set
MIMO30 -82.8% -84.1% -23.6% -30.7% -76.6% -76.6% 89.4% 127.2% -65.2% -63.2% 358.4% 635.8% -51.1% -48.8% 19.2% 35.5%

MIMORED30 -82.8% -80.9% 5.3% -1.9% -68.9% -68.5% 94.6% 162.9% -58.8% -54.9% 437.5% 763.2% -44.2% -44.2% 36.1% 55.3%
MIMO75 -87.3% -89.1% – -39.7% -82.3% -84.5% – 10.6% -76.5% -78.0% – 136.1% -55.3% -54.9% – 17.5%
COMA40 -82.8% -80.3% – 8.5% -75.3% -73.5% – 132.3% -55.2% -48.3% – 489.7% -16.5% -15.3% – 24.0%

full-MPC in the sense that the cdfs for both pre-lyap-MPC
and lyap-MPC always lie to the left and above that for full-
MPC. This is not the case for ell-MPC and hyp-MPC. Here,
only for the int-pnt-cvx solver the cdfs lies to the left and
above that for full-MPC. For the solvers qpip, qpas and act-
set the cdfs of both ell-MPC and hyp-MPC lie to the right of
that for full-MPC, which implies that ell-MPC and hyp-MPC
have larger calculation times than full-MPC.
• The maximal computation time required by pre-lyap-MPC
and lyap-MPC is smaller than that required by full-MPC
for all QP solvers in the MIMO30 example. The maximal
computation times required by ell-MPC and hyp-MPC are
only smaller for the int-pnt-cvx solver, and larger than that
required by full-MPC for qpas, qpip and act-set.
Results for MIMORED30, Fig. 1(e–h)
• Consider the results achieved by pre-lyap-MPC and lyap-
MPC first, cf. Fig. 1(e–h), black and magenta curves. Again,
approximately 55% and 65% of the QPs are detected to be
unconstrained by pre-lyap-MPC and lyap-MPC, respectively.
See the first comment on the MIMO30 results for a more
detailed discussion.
• Again, pre-lyap-MPC and lyap-MPC outperform full-MPC
in the sense stated in the second comment on the MIMO30
results. Full-MPC is faster than hyp-MPC and ell-MPC for
the solvers qpip, qpas and act-set. The cdf of full-MPC and
both hyp-MPC and ell-MPC are similar for the combination
of MIMORED30 with int-pnt-cvx.
• Consider the cdfs of the full-MPC cases (blue curves in
Fig. 1(e–f)). These cdfs have approximately the same shape
as the corresponding ones for MIMO30 (blue curves in
Fig. 1(a–d)), but they are shifted to smaller values of tMPC
here. This shift results, since the redundant constraints have
been removed here. It appears to be small for the active-
set solvers at first sight, but closer inspection reveals that it
is still considerable. The leftmost shoulders are located at
0.65 · 10−3s and 0.56 · 10−3s for the solver qpas in Fig. 1(c)
and Fig. 1(g), respectively. This amounts to an acceleration
by about 20%. For the solver act-set the leftmost shoulders
are located at 5.6 · 10−3s and 4.4 · 10−3s (see Fig. 1(d) and
Fig. 1(h), respectively), which amounts to an acceleration by
about 14%.
• Consider the cdfs of lyap-MPC and pre-lyap-MPC next.
Note that these cdfs also have approximately the same shape
as the corresponding cdfs resulting the MIMO30 example,
but the shift is much smaller compared to that resulting for
full-MPC. As an example consider the cdfs resulting for
the act-set solver. The cdf of lyap-MPC and pre-lyap-MPC
equals 0.7 at 2.71 · 10−3s and 2.63 · 10−3s in Fig. 1(a), and
the cdfs equal 0.7 at 2.69·10−3s and 2.67·10−3s in Fig. 1(e).
This amounts to a shift of about 0.7% and 1.5%, respectively.

Thus, very similar calculation times result from applying
lyap-MPC and pre-lyap-MPC to both MIMO30 and MI-
MORED30, which suggests that both lyap-MPC and pre-
lyap-MPC remove many of the redundant constraints during
runtime.
• The maximal computation time required by pre-lyap-MPC
and lyap-MPC is smaller than that required by full-MPC
for all QP solvers in this example. The difference is less
pronounced for the active-set solvers than for the interior-
point solvers. The maximal computation times required by
hyp-MPC is larger than that required by full-MPC for qpas,
qpip and act-set, and smaller than that required by full-MPC
for int-pnt-cvx. The maximal computation times required by
ell-MPC is larger in all cases.
Results for MIMO75, Fig. 1(i-l)
• Again, approximately 55% and 65% of the QPs are de-
tected to be unconstrained by pre-lyap-MPC and lyap-MPC
(black and magenta curves in Figs. 1(i-l)), respectively. See
the first comment on the MIMO30 results for a more detailed
discussion.
• MPC with constraint removal outperforms MPC without
constraint removal for all solvers in the sense stated in the
second comment on the MIMO30 results.
• All curves have approximately the same shape as the
corresponding ones for MIMO30, but they are shifted to
larger values of tMPC here. This result is consistent with the
fact that both MIMO30 and MIMO75 are based on the same
system (1) and the same constraints (2), but the number of
constraints is larger here due to the larger horizon.
• The maximal computation time required by pre-lyap-MPC
and lyap-MPC is smaller than that required by full-MPC for
all QP solvers in this example. The maximal computation
times required by hyp-MPC is larger than that required by
full-MPC for qpas and act-set, and smaller than that required
by full-MPC for int-pnt-cvx and qpip.
Results for COMA40, Fig. 1(m-p)
• Approximately 55% and 65% of the QPs are detected to be
unconstrained by pre-lyap-MPC and lyap-MPC, respectively.
See the first comment on the MIMO30 results for a more
detailed discussion.
• Pre-lyap-MPC and lyap-MPC outperform full-MPC for all
solvers (cf. Fig. 1(m-p)) in the sense discussed in the second
comment on the MIMO30 results. In this example full-MPC
is always faster than hyp-MPC.
• The maximal computation time required by pre-lyap-MPC
and lyap-MPC is smaller than full-MPC. The same observa-
tion holds as stated in the third comment on the MIMO30
example.
Table III summarizes the relative reduction of the average
computation times for lyap-MPC, pre-lyap-MPC, ell-MPC



and hyp-MPC compared to full-MPC. For example, a relative
reduction of -82.8% can be achieved by applying lyap-
MPC on the MIMO30 example in combination with the
int-pnt-cvx solver. The data confirm that a large reduction
results from applying lyap-MPC and pre-lyap-MPC to all
examples (between -68% and -89% for interior-point solvers
and between -17% and -78% for active-set solvers). Hype-
MPC and ell-MPC increase the computation time in several
cases (cf. Tab III, combination MIMO30 with qpas solver).

VI. CONCLUSION

Considerable reductions of the online computational effort
result for the Lyapunov-function-based variants of constraint
removal (lyap-MPC and pre-lyap-MPC, see the beginning
of Sec. V for an explanation of these abbreviations). While
the computational effort for detecting inactive constraints is
higher for lyap-MPC than for pre-lyap-MPC (see Sec. IV),
both methods result in very similar overall online com-
putation time. This indicates that lyap-MPC detects more
inactive constraints. This conjecture is corroborated by the
fact the lyap-MPC detects unconstrained MPC problems
most frequently (leftmost shoulders in Fig. 1). Since lyap-
MPC does not involve expensive offline calculations, it is
the method of choice for constraint removal. The other
variants (ell-MPC and hyp-MPC) only result in reductions
if combined with one of the interior point solvers (int-
pnt-cvx). The reduction achieved in these cases are always
smaller than for lyap-MPC and pre-lyap-MPC. Moreover,
the maximal computation time required by ell-MPC and hyp-
MPC increases for several example-solver combinations (see
for example Fig. 1(c)). In these cases the effort required to
identify the inactive constraints is larger than the savings
obtained from solving P̃(x) instead of P(x).
The achieved reductions are in general larger for the interior-
point solvers than for the active-set solvers. This is consistent
with the fact that interior-point-solvers always involve all
constraints in their calculations. Consequently, removing
some of them in advance has a large effect. Active-set
solvers, in contrast, operate on a subset of the constraints
and therefore may not encounter a particular constraint,
regardless of whether it is removed in advance or not.
The effect of disturbances and plant-model-mismatch re-
mains to be investigated. Since constraint removal is based
on conservative approximations of the regions of activities of
the constraints, we expect there exists an inherent robustness,
which will, however, be difficult to quantify.
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APPENDIX
MIMO30: We consider the state space system (1) resulting from discretizing
the continuous-time transfer function

G(s) =


−5s+1

36s2+6s+1
0.5s
8s+1

0

0
0.1(−10s+1)

s(8s+1)
−0.1

(64s2+6s+1)s
−2s+1

12s2+3s+1
0

2(−5s+1)

16s2+2s+1

 , (13)

with zero-order hold and sampling time Ts = 1s. After removing uncon-
trollable states from (13), the resulting state space model has 10 states and
3 inputs. The resulting system matrices are give in [10]. We consider the
state and input constraints (2) −10 ≤ xi(t) ≤ 10, ∀i ∈

(
1, · · · , 10

)
,

−1 ≤ uj(t) ≤ 1, ∀j ∈
(
1, · · · , 3

)
, respectively. We choose the weighting

matrices as Q = In×n, R = 0.25Im×m and P as the solution of the
discrete-time algebraic Riccati equation (DARE). The horizon is N = 30.
In summary, the resulting quadratic program has 90 decision variables
and 780 constraints. We reparametrize the inputs with the LQR controller
proposed in [11]. A condition number κ(H) = 2.51 results from this
reparameterization.
MIMORED30: System matrices, constraints, weighting matrices and the
input reparametrization are the same as in MIMO30. In contrast to
MIMO30, we here remove redundant constraints from P(x). A constraint
is called redundant if it never becomes active (see for example [12,
Sec. 4.1.1, p. 128 ff.] or [13, Def. 5, p. 492 ff.]).
MIMO75: MIMO75 differs from MIMO30 only with respect to the horizon
length, which is set to N = 75 here. System matrices, constraints, weighting
matrices and the input reparametrization are as in MIMO30. The resulting
optimization problem P(x) has mN = 225 decision variables and q =
1950 inequality constraints.
COMA40: This system models a linear chain of six masses connected to
each other by springs, and to rigid walls on both ends of the chain [14], [15].
All masses and all spring constants are set to unity. There exist three inputs
u1, u2, u3 that model forces between the first and second, third and fifth,
and fourth and sixth mass, respectively. The resulting system has 12 states
and 3 inputs. Discretizing with zero-order hold and sample time Ts = 0.5s
yields a system of the form (1). The state space matrices are given in [15].
The state and input constraints read −4 ≤ xi(t) ≤ 4, i = 1, . . . , 12,,
−0.5 ≤ uj(t) ≤ 0.5, j = 1, . . . , 3, respectively. We choose Q =
In×n, R = Im×m and set P to the solution of the DARE. The resulting
quadratic program P(x) has mN = 120 decision variables and q = 1200
inequality constraints for a horizon of N = 40. After reparameterization
with the LQR controller proposed in [11], a condition number of κ(H) =
1.47 results.
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