Simple and efficient moving horizon estimation
based on the fast gradient method

Bruno Morabito * Markus K 6gel** Eric Bullinger **
Gabriele Pannocchia Rolf Findeisen**

* Department of Civil and Industrial Engineering - Chemicaldineering
Section. University of Pisa, Italy. e-mail: br.morabito@agil.com,
gabriele.pannocchia@unipi.it.

** Institute for Automation Engineering, Otto-von-Gueridipiversity
Magdeburg, Germany. e-maimarkus.koegel, eric.bullinger,
rolf.findeiser @ovgu.de.

Abstract: By now many results with respect to the fast and efficient an@ntation of model predictive
control exist. However, for moving horizon estimation, yal few results are available. We present a
simple solution algorithm tailored to moving horizon esdtion of linear, discrete time systems. In a first
step the problem is reformulated such that only the stateaireas optimization variables, i.e. process
and measurement noise are eliminated from the optimizatioblem. This reformulation enables the
use of the fast gradient method, which has recently recaMetof attention for the solution of model
predictive control problems. In contrast to the model pride control case, the Hessian matrix is time-
varying in moving horizon estimation, due to the time-vag/nature of the arrival cost. Therefore, we
outline a tailored method to compute online the lower andenmigenvalues of the Hessian matrix
required by the here considered fast gradient method. litiaddwe discuss stopping criteria and
various implementation details. An example illustratesefficiency of the proposed algorithm.

Keywords:Moving horizon estimation, State estimation, Fast gradhiegthods.

1. INTRODUCTION Darby and Nikolaou (2007) implemented a look-up table and
function evaluation for real-time implementation of MHE fo
linear systems. Similarly to MPC, however, the number of
polytopes generated in the approach tends to grow combina-
torially with the number of constraints, which limits theai

Stat timati I fund talrolei inati
ate estimation plays a fundamental role in many apptioat of the problem that can be handled. Haverbeke et al. (2009)

It is often elementary for monitoring a system and frequentl _ L e . ;
utilized in combination with a state feedback controllesta- d€veloped a primal barrier interior-point method algaritfor
bilize a system. Estimation methods based on Kalman fiyerin/in€ar system exploiting the system structure.

compare Kailath et al. (2000), which are predominantly usegdor moving horizon estimation of constrained, linear, time
in applications, do not allow to easily include constraiots discrete systems we propose a simple, tailored algorittsada
the variables in a structured way. Therefore, Moving Hatizoon Nesterovs fast gradient method (Nesterov, 1983, 2084). F
Estimation (MHE) has received increasing interest sincaiit  gradient methods have recently received considerabletiatie
effectively take constraints on the variables into accoME  for the solution of optimization problems arising in modedp

is, similarly as its control “relative” Model Predictive @wol  dictive control, see e.g. Faulwasser et al. (2014); Jered. et
(MPC), based on the online solution of an optimization peabl (2014); Kégel and Findeisen (2011); Patrinos and Bemporad
over a finite horizon. Therefore, the challenge of an efficie2014): Richter et al. (2012, 2010); Zometa et al. (2012). To
real-time implementation arises, especially for high sémgp enable the efficient solution of the MHE problem using the
rates, limited computation power or large scale systems.  fast gradient method we propose to eliminate the optinogati
fyariables related to the noise from the optimization proble
This results in a sparse formulation with only the states as
optimization variables. In contrastto MPC, in MHE the Hassi
For fast MHE, different approaches have been investigatedatrix and thus also its eigenvalues are time-varying dikeeo
based on tailored solution approaches for the underlying ogrrival cost. Since the fast gradient method requires trysét
timization problem. For nonlinear systems results based eind smallest eigenvalues of the Hessian matrix (or tighbdeu
combinations of direct multiple shooting with Gauss-Newto on them), we discuss how to efficiently compute these based
iterations, see (Diehl et al., 2005; Kraus et al., 2006)emss  on the so-called inverse iteration, (Golub and Van Loan2301
tivity analysis and nonlinear programming, see e.g. Zasedd.  Additionally, we review stopping criteria and discuss timple-
(2008), exist. Also approximation based methods utiliZimig mentation of the proposed algorithm. The applicability pad
example singular value decompositions, see Jang et al4J201formance of the presented method is illustrated by an exampl
or in situ adaptive tabulation, see Abrol and Edgar (2014yeh To enable the efficient solution of the MHE problem using the
been considered.

In comparison to fast MPC there are only limited results wit
respect to the efficient implementation of MHE available.



fast gradient method we propose to eliminate the optinopati Mayne, 2009) and the references therein for more details. Th
variables related to the noise from the optimization proble optimization based nature of MHE allows to take the bounds
This results in a sparse formulation with only the states am x; andvi into account; in contrast to classical estimation
optimization variables. In contrastto MPC, in MHE the Hassi techniques such as Kalman filtering, see Kailath et al. (2000
matrix and thus also its eigenvalues are time-varying diledo Rao et al. (2001); Rawlings and Mayne (2009).

arrival cost. Since the fast gradient method requires tiyei
and smallest eigenvalues of the Hessian matrix (or tighhdsu
on them), we discuss how to efficiently compute those based

The general idea in MHE to estimaig, c.f. Rawlings and
Wyne (2009), is to solve at each time instant

the so-called inverse iteration, compare Golub and Van Loan minJ(V, W, X, s, Ms) (2
(2012). Additionally, we review stopping criteria and dise e .

the implementation of the proposed algorithm. The applicab S.L.Xj 41 = AXj + BUj +w;

ity and the performance of the presented method are illestra yj =CXj +V;

by an example. LK eX, VeV,

The remainder of this work is structured as follows. Secflon wheres = max0,k — N) denotes the start of the estimation
presents the problem formulation. In Section 3 we illustratwindow, N is the (maximum) estimation window size, also
how to formulate the optimization problem by using only thecalled estimation horizon,=s,... .k, j=s,....k—1 andX =
states as optimization variables. Section 4 gives a ddtail¢Xi}, V= {V;}, W= {W;}, u= {u;} andy = {yj}. %, s> 0, is
description of the proposed solution method. In Section 5 wi&e prior estimate ok using the information available prior to
illustrate the results. Finally, we provide a summary anttim&s k= s. The cost functiod is given by
future working directions. = , 1kt ,
IV,W, %, %6, M) =35 > [Whllg-1+5 > [Villgr  (3)
2. PROBLEM FORMULATION 2 ;s Q 2 ;s R

1o o2
: . . =||%s — Ksl|5 -
This section presents the class of considered systems @nd ou + 2|| S sHﬂsl’

lines the moving horizon estimation procedure. where the choice of the so-called arrival cost maftix which
weights the influence of the estimatgf6r i > 0, is discussed
2.1 Considered problem class below. As an estimate fog at each time, the optimal value of

R from (2) is usedx =% 1

Time-invariant, discrete-time, linear systems of the form The choice of the estimation windows sipeis a trade-off

Xier1 = AXc+ B+ W, (1) between the maximum size of the optimization problem (2)
Yk = Cx¢ + V. and the estimation performance: using a smalleeduces the
are considered, werk > 0 denotes the timex, € R" the Computational demand, but can lead to deteriorated esténat

state,ux € R™ the known inputw € R" the unknown process Note that the optimization problem (2) is a convex, quadrati
noise,yi € RP the observed output ang € RP the unknown program, which needs to be solved at every time-instance, so
measurement noise. The matrices have appropriate dinmsnsign, efficient solution is of key interest. Therefore, we pnése
and(A,C) is assumed to be detectable. the following section a tailored solution approach.

We assume that the statg and the measurement noigeare Remark 2.(Arrival cost matrixIl;, choice ofX)

each constrained to polytopic, compact, convex set& X The choice of the arrival cost matrik; and the choice of

andvy € V. Often, process noisg, and measurement noisg X are crucial for a good estimation performance. Incorrect

are assumed to be (approximately) zero mean, Gaussian whit®ices can lead to inferior estimation and even an unstable

noise with covariances given lIyandR, respectively, compare estimation error dynamics, see (Rao et al., 2001; Rawlings

Rawlings and Mayne (2009). For the initial stagean estimate and Mayne, 2009) for more details. We consider here only the

%o with covariancellg is available atk = 0. Note, while this simple approach using the prior state estiméifeas estimate

provides for MHE somehow a relation to the stochastic ogtimaf % computed at k=i — 1 and to updatdl; using a Kalman

Kalman Filter, a pure deterministic setting is also possiliVe filtering update

;ssumi tlh?ND, Rland_l'lo afrE pos(i;ive der:inite. o My 1 =AWAT +Q, (4a)
emark 1.(Neglection of bounds on the process noig _ T T -1

Considering b%unds only on the statepand measurements is Wi =M= (CI‘I;@ +R) Cllk (4b)

motivated by many practical applications: constraints twe t Note that will converge to a unique fix poii., where the

state x can represent physical boundariegy(concentrations, Mmatrix . as well asfl; are positive definite, becaugé,C)

temperature, pressures, liquid level) and constraints be t is detectable(A,W?) is stabilizable and V[ are positive

measurements noisg van be obtained from the specificationdefinite, compare Kailath et al. (2000).

of the sensom@g.mammum error). In contrast, itis often.more Remark 3.(Feasibility of MHE problem (2))

difficult to obtain bounds on the process noisg except in a Since w is not constrained, the arising optimization problem

few special cases such as e.g. in (Rausch et al., 2014). is always feasible under the assumptions made, i.e. that the

. . ) . measurements are consistent withand X: for every y, there
2.2 Moving horizon estimation

. 1 Note that we consider here an estimataising only information available
To estimate the statg, k > 0 of system (1) based on the prior to the time instanck: the so-called predicted or a priori estimate, compare

infOI’_matiOI’l_ avai|ab|e b_efore the time instaktone €an Use Kailath et al. (2000). The proposed approach can be extesuighithat alsg
moving horizon estimation, see (Rao et al., 2001; Rawlimgs a is used, i.e. to obtain the a posteriori (also called filtpedte estimate.



exists x and \ such that y = Cx+ W, X € X and y € V.
There is always a wsuch that(1) is satisfied.

3. REFORMULATION OF THE OPTIMIZATION
PROBLEM

Observe that the optimization problem (7) has no equality
constraints, all inequality constraints are formulatedsomyle
stages XN Y(y;) depends only o "andy;) and the matrix
H is time-varyingand has a block tridiagonal structure. These
features provide the basis for the tailored algorithm priest

in the following section.

We first formulate the MHE optimization problem (2) such that
the optimization is performed only over the state trajector
X, i.e. eliminating the noise sequencésand V. This idea ]
is inspired by similar ideas exploited in MPC, c.f. Mancusd © Solve (2) we propose to use Nesterov's fast gradient ndetho
and Kerrigan (2011), where the inputs are eliminated froen thse€e (Nesterov, 1983, 2004) for more details.

control variables to increase the speed of interior poinhwds.  Nesterov’s fast gradient method, sketched in AlgorithmsL, i

First one can straightforwardly eliminate the measuremet€!l suited for optimization problems of the form (7). Note
noise¥ as optimization variable, see Haverbeke et al. (2009)atL and i are upper and lower bounds on the eigenvalues
by replacing|¥i[2_,, % € V by lyi —C%|2 ; andy; —C& €V,  Of H L = Ama(H), K < Amin(H). Furthermore, praf, Z(y))
respectively. The resulting optimization problem possess 1S & Euclidean projection onté(y). After every instance the
optimization variables the state trajectatyand the process subopt|mallty*of theAicu.r rent estimate is investigated. éfad,
noise sequencé. Furthermore, the optimization problem hag? bounde onJ” — J(X'), i.e. the difference between the current
a structure similar to so-called “sparse formulations” ip® Solutiond(X') and the optimal valug” is evaluated. The algo-
see e.g. Mancuso and Kerrigan (2011); Wang and Boyd (201 hm terminates if this bound is below a specified thresiuold

ifa maximum number of iterations is reached.
Following the idea of Mancuso and Kerrigan (2011), we pro- ) . - . .
pose to additionally eliminatd& as optimization variables by K€y points for a simple, yet efficient implementation are the
using the state-space equation of the dynamics, i.e. rieglac SPPPINg criterion, the projections and the computatiothef
W, in the cost function by 1 — A% — Bu. largest/smallest eigenvalue dfas discussed in the following.

We refer to Section 4.5 for the overall MHE algorithm.

4. FAST GRADIENT METHOD BASED MHE

Expressing the cost function (3) in termsfofesults in
J(%,%s, 1 ~Lige— g2 1k71-CA-2
I(X,%s, s,U7Y)—§HXs—Xs||n;1+§iZSHYI— %illz-1

Algorithm 1 Fast gradient algorithm

Require: H, f,L, 4> 0,8% €, Z(y), imax
Setz’ =%%, e=w,i=0
while e > € andi < imax do

i=i+1 _

0J(Z 1Y) =HZ 1+ f
§=2"1-f0(Z

X = prOj(}Z(y))

i _ i L-VH g gi-1
Z =X +ﬁ+\/ﬁ(x X'

1kt ) ) > Stopping criterion
+§;s||xi+1_AXi_BuiHQfl- (5)

> Gradient computation
This allows to formulate the cost function in a compact way

" 1.+ . . N - > Projection ontd
J(Xaxs7ns7u7)’):EXTHX‘FXTf(X&%U)+g(X57y7U)7 (6) : )

whereH is a symmetric, positive-definite, block-tridiagonal

matrix and f(%_n,Yy,u) is a vector that can be written as Bou_nd suboptimalite
- 2 . end while
f(Xs,y,u) = f(%,y)+ Fu.H, F andf are given by return &
Mys — Mg % UG’ 0T ... 0
y MYs+1 GDG ..Q0 4.1 Stopping criteria
f()h(‘Sv y) = : ) H = O G D e O )
My'k71 Lo In order to balance the accuracy of the solution with the
0 00 0..Q% computation time, we aim at using tailored stopping critéo
T stop the fast gradient algorithm once a good enough solution
AQB... O has been found. We focus on two different types of criteria to
-Q'B ... 0 determine when to stop. First we investigate an onlinerioite
F_ . . . based on the results of Richter and Morari (2012, Section IV-
- ' ’ B). Second we consider an offline criterion, which computes a
: . ATQ 1B worst case bound on the maximum number of iterations using
0 0 —Q'B results of Nesterov (1983, 2004); Richter et al. (2012).
whereQ is theR" zero vector and Online stopping criterion: As online stopping criterion we
U=ATQ'A+C'RIC+ r|s*1, M=-C'R1, use the results for the fast gradient method of Richter and
D—ATOA+CTRIC+ Q! G—-QlA Morari (2012, Section IV-B), which is based on a lower bound

) . 0 ] on the so-called gradient mapping. The main idea is to use a
Finally, problem (2) withk as optimization variables becomes |ower bound J on the optimal valug*, such that
iy R Ne, ). @) I®) -0 <IK) - <&, (©)
; _ -~ PR wheree¢ is the required tolerance. Additionally, one demands
whereZ(y) with ¥(y) = {xly - Cx< V} is given by also that the sequengd; }2 , has the property; — J* asi —
Z(y) = (XNY(ys)) x ... x (XNY(¥-1)) xX. (8) o, which enables to achieve arbitrary smalUsing properties



of gradient projection (Nesterov, 1983, 2004), the follogvi (single states are measured). In our experience such sstops
criterion can be obtained (Richter and Morari, 2012): often be found in chemical engineering applications.

1/1 1

> (H - E> H'—(Zi*l - xi)||2 <E, (10) 4.3 Computational effort of the fast gradient method

wherex andz are as in Algorithm 1. The amount of calculation required for the fast gradienbalg

Offline stopping criterion / Bound on the worst case number &thm (Algorithm 1) is dominated by the computation of the
iterations:  As alternative to an online stopping criterion onedradient and/or the effort for the Euclidean projectioreme
can compute the number of iterations offline, which guarste Pare Section 4.2.
in the worst case a certain suboptimality of the solution, bor the gradient computation, which requires a matrix-eect
utilizing results adapted from the MPC case (Richter et almyltiplication and a vector addition, one can exploit thecal
2012). This requires® = proj(X® — £(HX? + f),Z(y)) as structure of theH matrix to avoid unnecessary computations.
starting point, where“ is an initial guess. Clearly, if multiple computational entities are availabtme
Using the results of Richter et al. (2012), we obtain theofgl 2" easily parallelize the projections, which can be domgest
ing upper bound on the iterations number wise, as _weII as in form of t_he grad@nt_ computation, due to
the special structure dfi. This can significantly reduce the

N2 — InLd?2 L2 computational time.

iM*=min { | ——— —=2 (11) -
n(1 0\ | € ’ With respect to the memory demand we need to store the
”( - \/E) vectorsx', X1, Z, f, the setZ(y) and the matrice), G, D,

which ensures thal(%') — J* < &, where Q' to express the matrii.

d(x%) = max |[x—X%]. (12) Note that for the overall MHE algorithm, we need additional
XeL(y) computations to updatg, which requires additionally to store
Note that the bound depends ory. We can compute such anuy, y, F, Mg and the system data#\(B, C, Q, R). Finally, one

upper boundi™®* ond, by using

d™X(%) = max  [|x—&9|2
XeXxXx...xX

Remark 4.(Choice ofk%)

needs to also computeand, which requires some additional
computation and also increases the memory demand as @lutline
in the following. The main difference to MPC is the necessity
to adapt. andu at all time steps, sincd is time-varying.

There are two alternatives for the choice of the initial gai%.

First we can use cold-starting, i.e. always use the sam@init 4.4 Efficient determining bounds on the eigenvalues

guesx?. If we choos&“ such that @ is minimized, then this

reduces the upper bound on the required number of iteratiorghe fast gradient method requires bounds on the maximum and
(11)and thus the worst case complexity, (Richter et al., 2012)minimum eigenvalues of the matri, denoted by. andu > 0

A second alternative is to use so-calledrm startingi.e. to 0N them respectively.

chooseX“ based on the solution at the time step before iunfortunately, the matrix is here, in contrast to MPC, in
order to be closer to the next solution. This reduces usuhéy general time-varying as (a) its size grows for the fissteps
number of iterations required until the stopping criteri@t0)  and (b) the arrival codfly is time-varying, unles§lg is equal

is satisfied. Unfortunately, it is challenging to obtain auipd  to the steady state value, see e.g. Rawlings and Mayne (2009)
on the number of required iteration in the worst-casg. Richter et al. (2012); Wang and Boyd (2010). Therefore, one

needs to compute these bounds at each time step.

4.2 Euclidean projections o . .
In principle, one can easily obtain an upper bound on the

eigenvalueslL = ||H|[;. In contrast, finding a lower bound
u > 0is not that easy. For example= (||H~1(|1) ! requires
. _ 2 inverting the matrixH, a rather large computational effort.
proj(&, Z(y)) = argZEn%(rQ) 1{ =&l (14)  Additionally, note that using loose bounds on the eigerasif

. . . L , H can decrease the convergence speed. Therefore, we propose
SinceZ(y) is a po_lytoplc set, the projection requires to solvg, computeAmax(H) andAmin(H) online at each step.
a convex, quadratic program. Fortunatélyy) is separable, so

that this projection can be done stage-wise:
proj(és), XNY(ys))

The fast gradient algorithm (Algorithm 1) requires in eatdps
a Euclidean projection. This projection is defined by

The inverse iteration: To tackle the challenge of computing
Amax(H) and Amin(H) we propose to use an iterative method
called inverse iteration. This method allows one to exphuit
(15) structure of the matrixd. In the following we shortly review
the inverse iteration, for more details we refer to Golub and

. ’Z — :
proj(&,Z(y)) proj(&ic1,X N Y(yi-1)

proj(&, X) Van Loan (2012). Basically, the inverse iteration compuates
This means we need to solve in general uiNte 1 quadratic eigenvalue\; of the matrixH iteratively by
programs for the projection, each withdecision variables. Fi_1
However, simple, explicit representation of the projettio Gi = m (16a)
pl‘O](EhXﬂY(-M)) are po_s&ble for specific typ(-es of se-ts. = (H—61) 1 (16b)
For example ifXNY(y;) is a box, then the projection is rather (THY;

simple, c.f. Nesterov (2004). Note tHEN Y (y;) is a box, ifX Ai= iT ', (16¢)
as well asV are boxes an@ contains only one entry per row rri



wheref € R is the so-called shift ang #£ 0 is a starting vector. whereB is the product an@ an unwanted side product. These
The choice of the shiff determines the convergence. In detailreaction take place in both reactors. The product of thers&co
it is known that); converges to the eigenvalue, which is closesESTR is sent to the flash for separating the exdesghich

to 6. This enables to compute the extreme eigenvalues é6r  has higher relative volatility thaB andC. The vapor phase,
the choiced = ||H|1 > Amax(H) (8 = 0 < Amin(H)) we have which is rich inA, is partially purged and the remaining part

by . _ is condensed back to the first CSTR. For details regarding the
Ai = Amax(H) (Ai = Amin(H)): plant scheme we refer to Venkat et al. (2006, Example 8.2).
Implementation of the inverse iteration: In order to reduce D

the computational burden, we aim to avoid the explicit com-

putation of the inverse dfl = H — 81. Note that(H — 81)~% F FE R P

is symmetric and constant within the inverse iteration roé# ot

therefore we propose to utilize Cholesky factorizationsdlve

efficiently the systenMr; = . J »—J F w 'Hb

Since, for@ = 0, M is positive definite, we can proceed straight-

T W m| '"Eli 5

forwardly, compare Golub and Van Loan (2012): compute the
Cholesky factorizatioKK™ = M at the beginningK is alower  Fig. 1. Example system: Two reactors followed by a flash drum.
triangular matrix). In a second step soliv; = g; at every
iteration of the inverse iteration via Cholesky substans: The system isionlinearandstableg with 12 states (liquid levels,

Ks =g, K'ri=s. (17) temperature, concentration AfandB in each subsystem) and

6 control inputs (flowd, F;, D and heat exchangevg). We
For the cas® = ||H||1, M = H — ||H||1] is negative definite, but assume that all liquid levels and all temperatures are medsu
(—M)rj = —q;j can be solved similarly as above. i.e. we have 6 measurements. To obtain a linear model we
linearise the system around the steady state and discittize

Computational effort of inverse iterations: The computa- with a sampling time of (s.
té%%?ésif;ogc'tgrit;;tifrr,gpdoff e;ng ﬁ)mﬁ?ci] |_I|S v?/ﬁi\::ir?g/eb%/o th\‘?\/e consider box constraints on the states as well as on the
be performed once per execution of the inverse iteration, feeasurement noise
well as the computation dfir; (or (||[H| 1| —H)r;) and the for- X={xeR"X <x <x'},
ward/backward substitqti_ons in every iterat_ion of the rodth Yy = {xe Rn|vl < yi— Cxe < W1,
Clearly, Hr; can be efficiently computed similarly as above )
by exploiting the problem structure. Note that also for thdh which X' andx" are lower and upper bounds on the states
Cholesky factorization and substitutions the block trgiaal ~ (Physical bounde.g. minimum and maximum height or mass
structure oH can be utilized, see e.g. Wang and Boyd (2010§raction) andv!/\*' are lower/upper bound on the measurement
which can significantly reduce the computational load ared tHnoise, i.e. on the sensors accuracy.

memory demand for larg. Fig. 2 reports the result for a characteristic state the Métgilt
Finally, note that théi matrix depends only on the arrival costUtilizing a suboptimality threshold of = 10~* and a window
matrix My and the time instanck, i.e. not on the actual mea- Size ofN = 20 using the proposed algorithm. The process and
surements or inputs_ This allows to Compute the eigenva|ug§asurement noise have been simulated as uniform random
Amax(H) and Amin(H) before the measurement is known. Sd10IS€.

one can do these computations in advance and ppag are

available, one can start with the MHE reducing the time delay .;
of the estimation procedure. L
g 33
4.5 Overall MHE algorithm S 3
£
) og
—

The proposed overall MHE algorithm is given by: 510 15 20 25 30 5% 0
Time (s)

1) UpdateH, f, Ny (see Sections 2.2, 3). !
2) Computel, p with inverse iteration (see Section 4.4).

3) Wait untily,_; anduy_; are available.

4) Solve (7) with Nesterov's gradient method (Algorithm 1).

5) Returnx and seig, 1 = R..

Fig. 2. Temperature in flash separator. (Red: estimatesngre
measurements, black: real values)

To illustrate the performance we used an Intel Core i7 - 4770
Steps 1 and 2 can be done befgfe, and u,_, become CPU with a clock frequency of 3.4 GHz and a simple prototype
available, because they are independent of these values.  implementation of the proposed approach. In Fig. 3 we illus-

trate for different horizon lengths along a simulation 0050

5. SIMULATION RESULTS time steps the total computation time spent in the proposed

approach and the time required by the fast gradient method
We consider a chemical reaction system formed by two contienly. As mentioned in Section 4.5 one can do the computation
uous stirred-tank reactors (CSTRs) followed by a non-aatiab related to the inverse iteration/Kalman filtering formutagore
flash separator (see Figure 1) taken from Venkat et al. (2006)e measurements and inputkaire available.

The overall reaction consists of: For comparison, the computation times using the Matlabesolv

AkpXR C, quadprogrequires 1.95s foN = 5 using the active-set method



and 18.4s forN = 50 using the structure-exploiting interior parameter systemComputers & Chemical Engineering3,
point method (we have chosen the fastest method fjoad- 159-172.

prog for each case). So for this example the simple implemederez, J., Goulart, P., Richter, S., Constantinides, Gridgan,
tation of the proposed approach is around 3.5 times faster, i E., and Morari, M. (2014). Embedded Online Optimization
the computation time of the inverse iteration are includeti for Model Predictive Control at Megahertz RatedEEE
between 5 (foN = 50) to 7 (forN = 5) times faster if the time ~ Transactions on Automatic Contrd9(12), 3238—-3251.

spent in the inverse iteration and the Kalman filtering folasu Kailath, T., Sayed, A.H., and Hassibi, B. (2000)Linear
are excluded. Estimation Prentice Hall, Upper Saddle River.

Kogel, M. and Findeisen, R. (2011). A fast gradient method

6 for embedded linear predictive control. Rroc. IFAC World
wa Congress1362-1367.
T Kraus, T., Kuhl, P., Wirsching, L., Bock, H., and Diehl, M.
‘EZ (2006). A Moving Horizon State Estimation algorithm ap-

plied to the Tennessee Eastman benchmark proceBsotn
0 IEEE Robotics & Automation Society Conf. on Multisensor
10 20 30 40 50 ; X !
Estimation window size N Fusion and Integration for Intelligent Systems

Mancuso, G.M. and Kerrigan, E.C. (2011). Solving constdin
Fig. 3. Total computation times for 500 time steps. Bluegtioh LQR problems by eliminating the inputs from the QP. In
fast gradient method only. Red: time of overall algorithm. Proc. IEEE Conf. on Decision & Control and European
Control Conf, 507-512.
Nesterov, Y. (1983). A method of solving a convex program-
6. SUMMARY AND FUTURE WORKING DIRECTIONS ming problem with convergence ra®1/k?). Soviet Math-
ematics Doklady27(2), 372—-376.

We investigated the application of Nesterov's fast gradie -
method (Nesterov, 1983, 2004) to moving horizon estimatiolhlensﬁgg?i\gn\.(' A(Zgggi)c"nct(r)%?sgt%vbgft,ﬂf;dggigogng;?e?g

for linear system. In particular, we formulated the problem
such that only the state} are optimization variables and Boston.

dqt y the i ! teration t te th . Patrinos, P. and Bemporad, A. (2014). An accelerated dual
proposed to use the inverse iteration to compute the redjuire gradient-projection algorithm for embedded linear model
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