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Abstract: By now many results with respect to the fast and efficient implementation of model predictive
control exist. However, for moving horizon estimation, only a few results are available. We present a
simple solution algorithm tailored to moving horizon estimation of linear, discrete time systems. In a first
step the problem is reformulated such that only the states remain as optimization variables, i.e. process
and measurement noise are eliminated from the optimizationproblem. This reformulation enables the
use of the fast gradient method, which has recently receiveda lot of attention for the solution of model
predictive control problems. In contrast to the model predictive control case, the Hessian matrix is time-
varying in moving horizon estimation, due to the time-varying nature of the arrival cost. Therefore, we
outline a tailored method to compute online the lower and upper eigenvalues of the Hessian matrix
required by the here considered fast gradient method. In addition, we discuss stopping criteria and
various implementation details. An example illustrates the efficiency of the proposed algorithm.

Keywords:Moving horizon estimation, State estimation, Fast gradient methods.

1. INTRODUCTION

State estimation plays a fundamental role in many applications.
It is often elementary for monitoring a system and frequently
utilized in combination with a state feedback controller tosta-
bilize a system. Estimation methods based on Kalman filtering,
compare Kailath et al. (2000), which are predominantly used
in applications, do not allow to easily include constraintson
the variables in a structured way. Therefore, Moving Horizon
Estimation (MHE) has received increasing interest since itcan
effectively take constraints on the variables into account. MHE
is, similarly as its control “relative” Model Predictive Control
(MPC), based on the online solution of an optimization problem
over a finite horizon. Therefore, the challenge of an efficient
real-time implementation arises, especially for high sampling
rates, limited computation power or large scale systems.

In comparison to fast MPC there are only limited results with
respect to the efficient implementation of MHE available.

For fast MHE, different approaches have been investigated
based on tailored solution approaches for the underlying op-
timization problem. For nonlinear systems results based on
combinations of direct multiple shooting with Gauss-Newton
iterations, see (Diehl et al., 2005; Kraus et al., 2006), or sensi-
tivity analysis and nonlinear programming, see e.g. Zavalaet al.
(2008), exist. Also approximation based methods utilizingfor
example singular value decompositions, see Jang et al. (2014),
or in situ adaptive tabulation, see Abrol and Edgar (2011), have
been considered.

Darby and Nikolaou (2007) implemented a look-up table and
function evaluation for real-time implementation of MHE for
linear systems. Similarly to MPC, however, the number of
polytopes generated in the approach tends to grow combina-
torially with the number of constraints, which limits the size
of the problem that can be handled. Haverbeke et al. (2009)
developed a primal barrier interior-point method algorithm for
linear system exploiting the system structure.

For moving horizon estimation of constrained, linear, time-
discrete systems we propose a simple, tailored algorithm based
on Nesterovs fast gradient method (Nesterov, 1983, 2004). Fast
gradient methods have recently received considerable attention
for the solution of optimization problems arising in model pre-
dictive control, see e.g. Faulwasser et al. (2014); Jerez etal.
(2014); Kögel and Findeisen (2011); Patrinos and Bemporad
(2014); Richter et al. (2012, 2010); Zometa et al. (2012). To
enable the efficient solution of the MHE problem using the
fast gradient method we propose to eliminate the optimization
variables related to the noise from the optimization problem.
This results in a sparse formulation with only the states as
optimization variables. In contrast to MPC, in MHE the Hessian
matrix and thus also its eigenvalues are time-varying due tothe
arrival cost. Since the fast gradient method requires the largest
and smallest eigenvalues of the Hessian matrix (or tight bounds
on them), we discuss how to efficiently compute these based
on the so-called inverse iteration, (Golub and Van Loan, 2012).
Additionally, we review stopping criteria and discuss the imple-
mentation of the proposed algorithm. The applicability andper-
formance of the presented method is illustrated by an example.
To enable the efficient solution of the MHE problem using the



fast gradient method we propose to eliminate the optimization
variables related to the noise from the optimization problem.
This results in a sparse formulation with only the states as
optimization variables. In contrast to MPC, in MHE the Hessian
matrix and thus also its eigenvalues are time-varying due tothe
arrival cost. Since the fast gradient method requires the largest
and smallest eigenvalues of the Hessian matrix (or tight bounds
on them), we discuss how to efficiently compute those based on
the so-called inverse iteration, compare Golub and Van Loan
(2012). Additionally, we review stopping criteria and discuss
the implementation of the proposed algorithm. The applicabil-
ity and the performance of the presented method are illustrated
by an example.

The remainder of this work is structured as follows. Section2
presents the problem formulation. In Section 3 we illustrate
how to formulate the optimization problem by using only the
states as optimization variables. Section 4 gives a detailed
description of the proposed solution method. In Section 5 we
illustrate the results. Finally, we provide a summary and outline
future working directions.

2. PROBLEM FORMULATION

This section presents the class of considered systems and out-
lines the moving horizon estimation procedure.

2.1 Considered problem class

Time-invariant, discrete-time, linear systems of the form

xk+1 = Axk+Buk+wk, (1)
yk =Cxk+ vk.

are considered, werek ≥ 0 denotes the time,xk ∈ R
n the

state,uk ∈ R
m the known input,wk ∈ R

n the unknown process
noise,yk ∈ R

p the observed output andvk ∈ R
p the unknown

measurement noise. The matrices have appropriate dimensions
and(A,C) is assumed to be detectable.

We assume that the statexk and the measurement noisevk are
each constrained to polytopic, compact, convex sets:xk ∈ X

andvk ∈ V. Often, process noisewk and measurement noisevk
are assumed to be (approximately) zero mean, Gaussian white
noise with covariances given byQ andR, respectively, compare
Rawlings and Mayne (2009). For the initial statex0, an estimate
x̃0 with covarianceΠ0 is available atk = 0. Note, while this
provides for MHE somehow a relation to the stochastic optimal
Kalman Filter, a pure deterministic setting is also possible. We
assume thatQ,RandΠ0 are positive definite.

Remark 1.(Neglection of bounds on the process noisewk)
Considering bounds only on the state and measurements is
motivated by many practical applications: constraints on the
state x can represent physical boundaries (e.g.concentrations,
temperature, pressures, liquid level) and constraints on the
measurements noise vk can be obtained from the specification
of the sensors (e.g.maximum error). In contrast, it is often more
difficult to obtain bounds on the process noise wk, except in a
few special cases such as e.g. in (Rausch et al., 2014).

2.2 Moving horizon estimation

To estimate the statexk, k > 0 of system (1) based on the
information available before the time instantk, one can use
moving horizon estimation, see (Rao et al., 2001; Rawlings and

Mayne, 2009) and the references therein for more details. The
optimization based nature of MHE allows to take the bounds
on xk and vk into account; in contrast to classical estimation
techniques such as Kalman filtering, see Kailath et al. (2000);
Rao et al. (2001); Rawlings and Mayne (2009).

The general idea in MHE to estimatexk, c.f. Rawlings and
Mayne (2009), is to solve at each time instant

min
v̂,ŵ,x̂

J(v̂, ŵ, x̂, x̃s,Πs) (2)

s.t. x̂ j+1 = Ax̂ j +Buj +wj

y j =Cx̂ j + v̂ j

x̂i ∈ X, v̂ j ∈V,

wheres = max(0,k− N) denotes the start of the estimation
window, N is the (maximum) estimation window size, also
called estimation horizon,i = s, . . . ,k, j = s, . . . ,k−1 andx̂ =
{x̂i}, v̂ = {v̂ j}, ŵ = {ŵj}, u = {u j} andy = {y j}. x̃s, s> 0, is
the prior estimate ofx using the information available prior to
k= s. The cost functionJ is given by

J(v̂, ŵ, x̂s, x̃s,Πs) =
1
2

k−1

∑
i=s

‖ŵi‖2
Q−1 +

1
2

k−1

∑
i=s

‖v̂i‖2
R−1 (3)

+
1
2
‖x̃s− x̂s‖2

Π−1
s
,

where the choice of the so-called arrival cost matrixΠs, which
weights the influence of the estimate ˜xs for i > 0, is discussed
below. As an estimate forxk at each time, the optimal value of
x̂k from (2) is used: ˜xk = x̂⋆k

1 .

The choice of the estimation windows sizeN is a trade-off
between the maximum size of the optimization problem (2)
and the estimation performance: using a smallerN reduces the
computational demand, but can lead to deteriorated estimates.

Note that the optimization problem (2) is a convex, quadratic
program, which needs to be solved at every time-instance, so
an efficient solution is of key interest. Therefore, we present in
the following section a tailored solution approach.

Remark 2.(Arrival cost matrixΠi , choice of ˜xi )
The choice of the arrival cost matrixΠi and the choice of
x̃i are crucial for a good estimation performance. Incorrect
choices can lead to inferior estimation and even an unstable
estimation error dynamics, see (Rao et al., 2001; Rawlings
and Mayne, 2009) for more details. We consider here only the
simple approach using the prior state estimatex̃i as estimate
of xi computed at k= i − 1 and to updateΠi using a Kalman
filtering update

Πk+1 =AΨkA
T +Q, (4a)

Ψk =Πk−ΠkC
T(CΠkC

T +R)−1CΠk. (4b)

Note thatΠk will converge to a unique fix pointΠ∞, where the
matrix Π∞ as well asΠi are positive definite, because(A,C)

is detectable,(A,W
1
2 ) is stabilizable and V,Π0 are positive

definite, compare Kailath et al. (2000).

Remark 3.(Feasibility of MHE problem (2))
Since wk is not constrained, the arising optimization problem
is always feasible under the assumptions made, i.e. that the
measurements are consistent withV andX: for every yk there

1 Note that we consider here an estimate ˆxk using only information available
prior to the time instancek: the so-called predicted or a priori estimate, compare
Kailath et al. (2000). The proposed approach can be extendedsuch that alsoyk

is used, i.e. to obtain the a posteriori (also called filtered) state estimate.



exists xk and vk such that yk = Cxk + vk, xk ∈ X and vk ∈ V.
There is always a wk such that(1) is satisfied.

3. REFORMULATION OF THE OPTIMIZATION
PROBLEM

We first formulate the MHE optimization problem (2) such that
the optimization is performed only over the state trajectory
x̂, i.e. eliminating the noise sequencesŵ and v̂. This idea
is inspired by similar ideas exploited in MPC, c.f. Mancuso
and Kerrigan (2011), where the inputs are eliminated from the
control variables to increase the speed of interior point methods.

First one can straightforwardly eliminate the measurement
noisev̂ as optimization variable, see Haverbeke et al. (2009),
by replacing‖v̂i‖2

V−1, v̂i ∈V by ‖yi −Cx̂i‖2
V−1 andyi −Cx̂i ∈V,

respectively. The resulting optimization problem possessas
optimization variables the state trajectoryx̂ and the process
noise sequencêw. Furthermore, the optimization problem has
a structure similar to so-called “sparse formulations” in MPC,
see e.g. Mancuso and Kerrigan (2011); Wang and Boyd (2010).

Following the idea of Mancuso and Kerrigan (2011), we pro-
pose to additionally eliminatêw as optimization variables by
using the state-space equation of the dynamics, i.e. replacing
ŵi in the cost function by ˆxi+1−Ax̂i −Bui.

Expressing the cost function (3) in terms ofx̂ results in

J(x̂, x̃s,Πs,u,y) =
1
2
‖x̃s− x̂s‖2

Π−1
s
+

1
2

k−1

∑
i=s

‖yi −Cx̂i‖2
R−1

+
1
2

k−1

∑
i=s

‖x̂i+1−Ax̂i −Bui‖2
Q−1. (5)

This allows to formulate the cost function in a compact way

J(x̂, x̃s,Πs,u,y) =
1
2

x̂THx̂+ x̂T f (x̃s,y,u)+g(x̃s,y,u), (6)

where H is a symmetric, positive-definite, block-tridiagonal
matrix and f (x̃k−N,y,u) is a vector that can be written as
f (x̃s,y,u) = f̃ (x̃s,y)+Fu. H, F and f are given by

f̃ (x̃s,y) =













Mys−Π−1
s x̃s

Mys+1
...

Myk−1
0













, H =















U GT 0 . . . 0
G D GT . . . 0
0 G D . . . 0
...

...
.. .

. . .
...

0 0 0 . . . Q−1















,

F =

















ATQ−1B . . . 0
−Q−1B . . . 0

...
...

...
...

. . . ATQ−1B
0 0 −Q−1B

















,

where0 is theRn zero vector and

U = ATQ−1A+CTR−1C+Π−1
s , M =−CTR−1,

D = ATQ−1A+CTR−1C+Q−1, G=−Q−1A.

Finally, problem (2) witĥx as optimization variables becomes

min
x̂∈Z(y)

J(x̂, x̃s,Πs,u,y), (7)

whereZ(y) with Y(y) = {x|y−Cx∈ V} is given by

Z(y) = (X∩Y(ys))× . . .× (X∩Y(yk−1))×X. (8)

Observe that the optimization problem (7) has no equality
constraints, all inequality constraints are formulated onsingle
stages (X∩Y(yi) depends only on ˆxi and yi) and the matrix
H is time-varyingand has a block tridiagonal structure. These
features provide the basis for the tailored algorithm presented
in the following section.

4. FAST GRADIENT METHOD BASED MHE

To solve (2) we propose to use Nesterov’s fast gradient method,
see (Nesterov, 1983, 2004) for more details.

Nesterov’s fast gradient method, sketched in Algorithm 1, is
well suited for optimization problems of the form (7). Note
that L and µ are upper and lower bounds on the eigenvalues
of H: L ≥ λmax(H), µ ≤ λmin(H). Furthermore, proj(ξ ,Z(y))
is a Euclidean projection ontoZ(y). After every instance the
suboptimality of the current estimate is investigated. In detail,
a bounde on J⋆− J(x̂i), i.e. the difference between the current
solutionJ(x̂i) and the optimal valueJ⋆ is evaluated. The algo-
rithm terminates if this bound is below a specified thresholdor
if a maximum number of iterations is reached.

Key points for a simple, yet efficient implementation are the
stopping criterion, the projections and the computation ofthe
largest/smallest eigenvalue ofH as discussed in the following.
We refer to Section 4.5 for the overall MHE algorithm.

Algorithm 1 Fast gradient algorithm

Require: H, f , L, µ > 0, x̂0, ε, Z(y), imax

Setz0 = x̂0, e= ∞, i = 0
while e> ε andi ≤ imax do ⊲ Stopping criterion

i = i +1
∇J(zi−1) = Hzi−1+ f ⊲ Gradient computation
ξ = zi−1− 1

L ∇J(zi−1)

x̂i = proj(ξ ,Z(y)) ⊲ Projection ontoZ(y)

zi = x̂i +
√

L−√µ√
L+

√µ (x̂
i − x̂i−1)

Bound suboptimalitye
end while
return x̂i

4.1 Stopping criteria

In order to balance the accuracy of the solution with the
computation time, we aim at using tailored stopping criteria to
stop the fast gradient algorithm once a good enough solution
has been found. We focus on two different types of criteria to
determine when to stop. First we investigate an online criterion
based on the results of Richter and Morari (2012, Section IV-
B). Second we consider an offline criterion, which computes a
worst case bound on the maximum number of iterations using
results of Nesterov (1983, 2004); Richter et al. (2012).

Online stopping criterion: As online stopping criterion we
use the results for the fast gradient method of Richter and
Morari (2012, Section IV-B), which is based on a lower bound
on the so-called gradient mapping. The main idea is to use a
lower bound Jil on the optimal valueJ∗, such that

J(x̂i)− J∗ ≤ J(x̂i)− Ji
l ≤ ε, (9)

whereε is the required tolerance. Additionally, one demands
also that the sequence{Ji

l}∞
i=0 has the propertyJi

l → J∗ asi →
∞, which enables to achieve arbitrary smallε. Using properties



of gradient projection (Nesterov, 1983, 2004), the following
criterion can be obtained (Richter and Morari, 2012):

1
2

(

1
µ
− 1

L

)

‖L(zi−1− xi)‖2 ≤ ε, (10)

wherex andz are as in Algorithm 1.

Offline stopping criterion / Bound on the worst case number of
iterations: As alternative to an online stopping criterion one
can compute the number of iterations offline, which guarantees
in the worst case a certain suboptimality of the solution, by
utilizing results adapted from the MPC case (Richter et al.,
2012). This requireŝx0 = proj(x̂α − 1

L (Hx̂α + f ),Z(y)) as
starting point, wherexα is an initial guess.

Using the results of Richter et al. (2012), we obtain the follow-
ing upper bound on the iterations number

imax= min





















ln2ε − lnLd2

ln
(

1−
√

µ
L

)











,

⌈
√

2Ld2

ε
−2

⌉











, (11)

which ensures thatJ(x̂i)− J⋆ ≤ ε, where

d(x̂α) = max
x̂∈Z(y)

‖x̂− x̂α‖. (12)

Note that the boundd depends ony. We can compute such an
upper bounddmax ond, by using

dmax(x̂α) = max
x̂∈X×X×...×X

‖x̂− x̂α‖2. (13)

Remark 4.(Choice ofx̂α )
There are two alternatives for the choice of the initial guess x̂α .
First we can use cold-starting, i.e. always use the same initial
guesŝxα . If we choosêxα such that dmax is minimized, then this
reduces the upper bound on the required number of iterations
(11)and thus the worst case complexity, (Richter et al., 2012).

A second alternative is to use so-calledwarm starting, i.e. to
choosex̂α based on the solution at the time step before in
order to be closer to the next solution. This reduces usuallythe
number of iterations required until the stopping criterion(10)
is satisfied. Unfortunately, it is challenging to obtain a bound
on the number of required iteration in the worst-case.xα .

4.2 Euclidean projections

The fast gradient algorithm (Algorithm 1) requires in each step
a Euclidean projection. This projection is defined by

proj(ξ ,Z(y)) = arg min
ζ∈Z(y)

‖ζ − ξ‖2
2. (14)

SinceZ(y) is a polytopic set, the projection requires to solve
a convex, quadratic program. Fortunately,Z(y) is separable, so
that this projection can be done stage-wise:

proj(ξ ,Z(y)) =









proj(ξs),X∩Y(ys))
...

proj(ξk−1,X∩Y(yk−1))
proj(ξk,X)









. (15)

This means we need to solve in general up toN+1 quadratic
programs for the projection, each withn decision variables.
However, simple, explicit representation of the projection
proj(ξi ,X∩Y(yi)) are possible for specific types of sets.

For example ifX∩Y(yi) is a box, then the projection is rather
simple, c.f. Nesterov (2004). Note thatX∩Y(yi) is a box, ifX
as well asV are boxes andC contains only one entry per row

(single states are measured). In our experience such setupscan
often be found in chemical engineering applications.

4.3 Computational effort of the fast gradient method

The amount of calculation required for the fast gradient algo-
rithm (Algorithm 1) is dominated by the computation of the
gradient and/or the effort for the Euclidean projections, com-
pare Section 4.2.

For the gradient computation, which requires a matrix-vector
multiplication and a vector addition, one can exploit the special
structure of theH matrix to avoid unnecessary computations.
Clearly, if multiple computational entities are available, one
can easily parallelize the projections, which can be done stage-
wise, as well as in form of the gradient computation, due to
the special structure ofH. This can significantly reduce the
computational time.

With respect to the memory demand we need to store the
vectorsxi , xi−1, zi , f , the setZ(y) and the matricesU , G, D,
Q−1 to express the matrixH.

Note that for the overall MHE algorithm, we need additional
computations to updatef , which requires additionally to store
u, y, F , Πs and the system data (A, B, C, Q, R). Finally, one
needs to also computeL andµ , which requires some additional
computation and also increases the memory demand as outlined
in the following. The main difference to MPC is the necessity
to adaptL andµ at all time steps, sinceH is time-varying.

4.4 Efficient determining bounds on the eigenvalues

The fast gradient method requires bounds on the maximum and
minimum eigenvalues of the matrixH, denoted byL andµ > 0
on them respectively.

Unfortunately, the matrixH is here, in contrast to MPC, in
general time-varying as (a) its size grows for the firstN steps
and (b) the arrival costΠk is time-varying, unlessΠ0 is equal
to the steady state value, see e.g. Rawlings and Mayne (2009);
Richter et al. (2012); Wang and Boyd (2010). Therefore, one
needs to compute these bounds at each time step.

In principle, one can easily obtain an upper bound on the
eigenvalues:L = ‖H‖1. In contrast, finding a lower bound
µ > 0 is not that easy. For exampleµ = (‖H−1‖1)

−1 requires
inverting the matrixH, a rather large computational effort.
Additionally, note that using loose bounds on the eigenvalues of
H can decrease the convergence speed. Therefore, we propose
to computeλmax(H) andλmin(H) online at each step.

The inverse iteration: To tackle the challenge of computing
λmax(H) and λmin(H) we propose to use an iterative method
called inverse iteration. This method allows one to exploitthe
structure of the matrixH. In the following we shortly review
the inverse iteration, for more details we refer to Golub and
Van Loan (2012). Basically, the inverse iteration computesan
eigenvalueλ i of the matrixH iteratively by

qi =
r i−1

‖r i−1‖2
(16a)

r i = (H −θ I)−1qi (16b)

λ i =
rT
i Hr i

rT
i r i

, (16c)



whereθ ∈R is the so-called shift andr0 6= 0 is a starting vector.
The choice of the shiftθ determines the convergence. In detail,
it is known thatλ i converges to the eigenvalue, which is closest
to θ . This enables to compute the extreme eigenvalues ofH: for
the choiceθ = ‖H‖1 > λmax(H) (θ = 0 < λmin(H)) we have
λ i → λmax(H) (λ i → λmin(H)).

Implementation of the inverse iteration: In order to reduce
the computational burden, we aim to avoid the explicit com-
putation of the inverse ofM = H − θ I . Note that(H − θ I)−1

is symmetric and constant within the inverse iteration methods,
therefore we propose to utilize Cholesky factorizations tosolve
efficiently the systemMr i = qi .

Since, forθ = 0,M is positive definite, we can proceed straight-
forwardly, compare Golub and Van Loan (2012): compute the
Cholesky factorizationKKT = M at the beginning (K is a lower
triangular matrix). In a second step solveMr i = qi at every
iteration of the inverse iteration via Cholesky substitutions:

Ksi = qi , KT r i = si . (17)

For the caseθ = ‖H‖1, M =H−‖H‖1I is negative definite, but
(−M)r i =−qi can be solved similarly as above.

Computational effort of inverse iterations: The computa-
tional effort in the proposed approach is governed by the
Cholesky factorizations ofH and ‖H‖1I −H, which have to
be performed once per execution of the inverse iteration, as
well as the computation ofHr i (or (‖H‖1I −H)r i) and the for-
ward/backward substitutions in every iteration of the method.
Clearly, Hr i can be efficiently computed similarly as above
by exploiting the problem structure. Note that also for the
Cholesky factorization and substitutions the block tridiagonal
structure ofH can be utilized, see e.g. Wang and Boyd (2010),
which can significantly reduce the computational load and the
memory demand for largeN.

Finally, note that theH matrix depends only on the arrival cost
matrix Πk and the time instancek, i.e. not on the actual mea-
surements or inputs. This allows to compute the eigenvalues
λMax(H) and λMin(H) before the measurement is known. So
one can do these computations in advance and onceyk, uk are
available, one can start with the MHE reducing the time delay
of the estimation procedure.

4.5 Overall MHE algorithm

The proposed overall MHE algorithm is given by:

1) UpdateH, f , Πk (see Sections 2.2, 3).
2) ComputeL, µ with inverse iteration (see Section 4.4).
3) Wait untilyk−1 anduk−1 are available.
4) Solve (7) with Nesterov’s gradient method (Algorithm 1).
5) Return ˆxi

k and set ˜xk+1 = x̂i
k.

Steps 1 and 2 can be done beforeyk−1 and uk−1 become
available, because they are independent of these values.

5. SIMULATION RESULTS

We consider a chemical reaction system formed by two contin-
uous stirred-tank reactors (CSTRs) followed by a non-adiabatic
flash separator (see Figure 1) taken from Venkat et al. (2006).
The overall reaction consists of:

A
k1→ B

k2→C,

whereB is the product andC an unwanted side product. These
reaction take place in both reactors. The product of the second
CSTR is sent to the flash for separating the excessA which
has higher relative volatility thanB andC. The vapor phase,
which is rich inA, is partially purged and the remaining part
is condensed back to the first CSTR. For details regarding the
plant scheme we refer to Venkat et al. (2006, Example 8.2).

FI

D

Wr Wm Wb

Hr

Hb
Hm

Fp
Fr FII

Fm

Fb

Fig. 1. Example system: Two reactors followed by a flash drum.

The system isnonlinearandstable, with 12 states (liquid levels,
temperature, concentration ofA andB in each subsystem) and
6 control inputs (flowsFI , FII , D and heat exchangersWi). We
assume that all liquid levels and all temperatures are measured,
i.e. we have 6 measurements. To obtain a linear model we
linearise the system around the steady state and discretizeit
with a sampling time of 0.1s.

We consider box constraints on the states as well as on the
measurement noise

X= {x∈ R
n|xl ≤ xk ≤ xu},

Yk = {x∈ R
n|vl ≤ yk−Cxk ≤ vu},

in which xl andxu are lower and upper bounds on the states
(physical boundse.g.minimum and maximum height or mass
fraction) andvl /vu are lower/upper bound on the measurement
noise, i.e. on the sensors accuracy.

Fig. 2 reports the result for a characteristic state the MHE result
utilizing a suboptimality threshold ofε = 10−4 and a window
size ofN = 20 using the proposed algorithm. The process and
measurement noise have been simulated as uniform random
noise.
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Fig. 2. Temperature in flash separator. (Red: estimates, green:
measurements, black: real values)

To illustrate the performance we used an Intel Core i7 - 4770
CPU with a clock frequency of 3.4 GHz and a simple prototype
implementation of the proposed approach. In Fig. 3 we illus-
trate for different horizon lengths along a simulation of 500
time steps the total computation time spent in the proposed
approach and the time required by the fast gradient method
only. As mentioned in Section 4.5 one can do the computation
related to the inverse iteration/Kalman filtering formulasbefore
the measurements and inputs atk are available.

For comparison, the computation times using the Matlab solver
quadprogrequires 1.95s forN = 5 using the active-set method



and 18.4s forN = 50 using the structure-exploiting interior
point method (we have chosen the fastest method fromquad-
prog for each case). So for this example the simple implemen-
tation of the proposed approach is around 3.5 times faster, if
the computation time of the inverse iteration are included,and
between 5 (forN = 50) to 7 (forN = 5) times faster if the time
spent in the inverse iteration and the Kalman filtering formulas
are excluded.
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Fig. 3. Total computation times for 500 time steps. Blue: time of
fast gradient method only. Red: time of overall algorithm.

6. SUMMARY AND FUTURE WORKING DIRECTIONS

We investigated the application of Nesterov’s fast gradient
method (Nesterov, 1983, 2004) to moving horizon estimation
for linear system. In particular, we formulated the problem
such that only the states{x̂i} are optimization variables and
proposed to use the inverse iteration to compute the required
extreme eigenvalues of the time-varying Hessian matrix online.
We discussed the implementation of the overall approach. A
simple example illustrated the performance of the proposed
algorithm.

Future works will focus on a more detailed analysis of the
proposed approach, a comparison of the proposed approach
with existing methods and extensions to other classes of moving
horizon estimation. Moreover, we want to investigate the influ-
ence of the inaccurate solution onto the estimation performance
and the stability of the estimation error. Additionally, weplan
to extend the approach to nonlinear moving horizon estimation.
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Richter, S., Mariéthoz, S., and Morari, M. (2010). High-speed
online MPC based on a fast gradient method applied to power
converter control. InProc. American Control Conf., 4737–
4743.

Venkat, A.N., Rawlings, J.B., and Wright, S.J. (2006). Stability
and optimality of distributed, linear model predictive control.
Part I: State feedback. Technical Report 2006-03, Texas-
Wisconsin Modeling and Control Consortium.

Wang, Y. and Boyd, S. (2010). Fast model predictive control
using online optimization. IEEE Transactions on Control
Systems Technology, 18(2), 267–278.

Zavala, V.M., Laird, C.D., and Biegler, L.T. (2008). A fast
moving horizon estimation algorithm based on nonlinear
programming sensitivity.Journal of Process Control, 18(9),
876–884.
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