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Abstract: This paper presents an updated and comprehensive description of offset-free MPC algorithms
for nonlinear (and linear) discrete-time systems, with the intended objectives of clarifying the main
concepts, showing new results, highlighting subtleties by means of challenging applications. First, the
offset-free tracking problem for nonlinear systems is presented, putting a strong accent on the role
of the disturbance model and observer, and then novel and stronger offset-free estimation results are
presented. Next, recent advances in linear offset-free MPC are described, which show the equivalence of
the velocity form algorithm (so far considered an alternative method) to a particular disturbance model
and observer. Then, the concepts of offset-free estimation are exploited to design an offset-free economic
MPC algorithm, which can asymptotically achieve the highest economic performance despite persistent
model errors and disturbances. Extensive application results are presented to show the benefits of offset-
free MPC algorithms over standard ones, and to clarify misconceptions and design errors that can prevent
constraint satisfaction, closed-loop stability, and offset-free performance.
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1. INTRODUCTION

The role of feedback in the design of effective control sys-
tems is central. In traditional PID control, for instance, the
error between reference and actual measured output is the sole
variable that determines the computed control action. In Model
Predictive Control (MPC), an optimal control problem is solved
at each decision time (mainly) because a new state measure-
ment (or estimate) becomes available. Feedback is necessary to
reduce the effect of disturbances and to cope with unavoidable
modeling errors. Nonetheless, the way in which feedback is
used to achieve offset-free tracking in the presence of persistent
errors or disturbances appears to be often a question of personal
preference among possible different methods.

In conventional linear (PID) control design, the offset-free
goal is achieved by integrating the tracking error. In the linear
quadratic regulation (LQR) framework, the use of disturbance
observers was proposed and discussed in (Davison and Smith,
1971; Kwakernaak and Sivan, 1972). In the context of MPC,
several methods have been proposed. In the first industrial im-
plementations, such as Dynamic Matrix Control [see e.g. (Prett
and Garcia, 1988, Sec. 5.2)], an output correction term defined
as the difference between the measured and the predicted output
was adopted. This method is probably the simplest disturbance
model, usually referred to as output disturbance model (Rawl-
ings, 2000), and it is known to be applicable only to open-loop
stable systems. In the context of state-space linear systems,
a wider range of approaches are known and applied. General
formulations based on disturbance models and observers have
been extensively discussed (Muske and Badgwell, 2002; Pan-
nocchia and Rawlings, 2003; Maeder et al., 2009), although an
important issue on which disturbance model is more effective
was matter of investigation until Rajamani et al. (2009) pre-
sented an important result on the equivalence of different dis-

turbance models. Alternative offset-free approaches are based
on a velocity form linear model, in which the input (and usually
also the state) are replaced by their variation between two time
steps [see e.g. (Pannocchia and Rawlings, 2001; Wang, 2004;
González et al., 2008; Betti et al., 2012, 2013) and references
therein]. The concepts of linear offset-free MPC have been
extended to nonlinear MPC in (Morari and Maeder, 2012).

The general goal of this paper is to shed some light on this
aspect of MPC theory and design, which is often overlooked in
academic papers but is fundamental for actual implementation.
The rest of the paper is organized as follows. In Section 2,
we present a comprehensive description of the available re-
sults on offset-free nonlinear MPC, and then we show new
results on the asymptotic convergence of the estimator. In Sec-
tion 3, the offset-free linear MPC design is discussed to show
that the velocity-form model is a special case of disturbance
model/observer, and not an alternative method as commonly
believed. In Section 4, we extend the concepts of offset-free
nonlinear MPC to design an economic MPC algorithm that
is able to cope with persistent errors while still achieving the
optimal ultimate economic performance. Three application ex-
amples are extensively presented in Section 5 to emphasize the
results of the previous sections, and to highlight possible pitfalls
of the offset design. Finally, we summarize the main achieve-
ments and sketch possible research directions in Section 6.

Notation. The fields of real (nonnegative real), integer (non-
negative integer), and complex numbers are denoted by R
(R≥0), I (I≥0) and C, respectively. The n-dimensional vector
space with components in R is denoted by Rn. For any x ∈ Rn,
the Euclidean norm is denoted by |x|. A matrix A∈Rn×n is said
to be Hurwitz if all its eigenvalues lie strictly inside the unit
circle. Given a sequence x = {x(0) x(1) . . .} and a,b ∈ I≥0,
a< b, we define: ‖x‖a:b =maxk∈I,a≤k≤b |x(k)|. A time-invariant



discrete-time system is written as x(k + 1) = f (x(k),u(k)) or
simply x+ = f (x,u) when it is not necessary to specify the
current time k. A function σ : R≥0→ R≥0 belongs to the class
K if it is continuous, zero at zero, and strictly increasing. A
function β : R≥0× I≥0→ R≥0 belongs to the class K L if for
each k≥ 0 the function β (·,k)∈K , and for each s∈R≥0 there
holds limk→∞ β (s,k) = 0.

2. OFFSET-FREE NONLINEAR MPC: DEFINITIONS,
KNOWN AND NOVEL RESULTS

2.1 Plant, nominal model and constraints

In the paper we are concerned with the control of time-invariant
dynamical systems in the form:

x+p = fp(xp,u,wp)

y = hp(xp,vp)
(1)

in which xp,x+p ∈ Rn denote the current and successor plant
states, u ∈ Rm is the control input, y ∈ Rp is the output, wp ∈
Rnw and vp ∈ Rnv denote plant state and output disturbances.
The plant output is measured at each time k ∈ I.

Functions fp :Rn×Rm×Rnw→Rn and hp :Rn×Rnv→Rp are
not known precisely but are assumed to be continuous. How-
ever, in order to design a Model Predictive Control algorithm
for (1), a time-invariant dynamical system model is known:

x+ = f (x,u)
y = h(x)

(2)

in which x,x+ ∈ Rn denote the current and successor model
states. The functions f : Rn×Rm → Rn and h : Rn → Rp are
assumed to be continuous.

Let w ∈ Rn and v ∈ Rp be defined as:
w := fp(xp,u,wp)− f (x,u), v := hp(xp,vp)−h(x) (3)

The next assumption is considered throughout the paper.
Assumption 1. (General). Disturbances are bounded in com-
pact sets: w ∈W, v ∈ V.

Input and output are required to satisfy the following con-
straints at all times:

gu(u)≤ 0, gy(y)≤ 0 (4)
in which gu :Rm→Rqu and gy :Rp→Rqy are convex functions
defining the following compact convex sets:

U := {u∈Rm | gu(u)≤ 0}, Y := {y∈Rp | gy(y)≤ 0} (5)
Moreover, induced by the model (2) and the output constraint
set, the following state constraint set is defined:

X := {x ∈ Rn | gy(h(x))≤ 0} (6)
Remark 2. If the state is measurable, it follows that hp(xp,vp)=
xp and vp = 0 at all times. Clearly, in such cases, the model
output function is chosen as h(x) = x and Y also represents the
constraint set for the state.

Given a sequence of inputs u = {u(0),u(1), . . .} and an initial
state z, we define yz,u = {y(0),y(1), . . .} as the corresponding
sequence of outputs generated by system (2). We also denote
by x(k;z,u) the solution at time k of system (2). Next, we recall
the following definitions (Rawlings and Mayne, 2009, Sec.4.2).
Definition 3. (Observability). System (2) is observable if there
exists a finite No ∈ I and γ(·) ∈K such that for any two initial
states z1 and z2 and control sequence u, and all k ≥ No

|z1− z2| ≤ γ(‖yz1,u−yz2,u‖0:k) (7)

Definition 4. (Asymptotic stability of the estimate). Let x̂(k) be
an estimate of x(k;x0,u) obtained for system (2), given a se-
quence of output measurements yx0,u = {y(0), . . . ,y(k)} and a
(prior) estimate of the initial state x̄0. The estimate is asymp-
totically stable if there exists β ∈K L such that for all initial
state x0 and prior estimate x̄0 and k ∈ I≥0 there holds:

|x(k;x0,u)− x̂(k)| ≤ β (‖x0− x̄0‖,k) (8)

2.2 Offset-free tracking problem definition

The controlled output yc ∈ Rpc is defined as function of the
measured output:

yc = r(y) (9)
and ȳc ∈Y denotes its desired setpoint. The offset-free problem
is to design an output feedback MPC law u = κ(y) such that:

G1: Input and output constraints are satisfied at all times.
G2: The closed-loop system reaches an equilibrium.
G3: The following condition holds true:

lim
k→∞

yc(k) = ȳc (10)

For these goals (in particular G2 and G3) to be attainable the
following additional assumption is necessary.
Assumption 5. Disturbances are asymptotically constant, i.e.
there exist w̄ ∈W and v̄ ∈ V such that:

lim
k→∞

w(k) = w̄, lim
k→∞

v(k) = v̄ (11)

2.3 State augmentation and estimation

Offset-free MPC algorithms are generally based on an aug-
mented model (Muske and Badgwell, 2002; Pannocchia and
Rawlings, 2003; Maeder et al., 2009; Maeder and Morari,
2010). The general augmented model can be written as:

x+ = F(x,d,u)
d+ = d

y = H(x,d)
(12)

in which d ∈ Rnd is the so-called disturbance state or simply
disturbance. Functions F : Rn×Rnd ×Rm :→ Rn and H : Rn×
Rnd :→ Rp are assumed to be continuous, and consistent with
the nominal model, i.e. for all x ∈ Rn and u ∈ Rm there holds:

F(x,0,u) = f (x,u), H(x,0) = h(x) (13)
Remark 6. The disturbance d follows an integral dynamics.

We make the following assumption on the augmented system.
Assumption 7. The augmented model (12) is observable.
Remark 8. The augmented model (12) is observable only if
the nominal model (2) is observable. Conversely, given an
observable model (2), it is in general possible to define an
augmented model (12), with nd ≤ p disturbance states, that is
observable.

At each time k, given the measurement of the output y(k),
an observer for (12) is used to estimate the augmented state
(x(k),d(k)). For simplicity of exposition, we focus on a
‘steady-state Kalman filter like’ estimator, in which only the
current measurement of y(k) is used to update the prediction
of (x(k),d(k)) made at the previous decision time. Alternative
methods based on Moving Horizon Estimation (MHE) use in-
stead a sequence of previous output measurements, and can be
applied in a similar manner.



Without introducing the double-index notation, we define x̂(k)
and d̂(k) as the filtered estimate of x(k) and d(k) obtained using
the output measurement at time k. We instead use the symbols
x̂∗(k), d̂∗(k) and ŷ∗(k) to denote the predicted estimate of x(k),
d(k) and y(k), respectively, obtained at time k− 1 using the
augmented model (12), i.e.:

x̂∗(k) = F(x̂(k−1), d̂(k−1),u(k−1))

d̂∗(k) = d̂(k−1)

ŷ∗(k) = H(x̂∗(k), d̂∗(k))

(14)

Having defined the output prediction error as:
e(k) = y(k)− ŷ∗(k) (15)

the filtering relations can be written as follows:
x̂(k) = x̂∗(k)+κx(e(k))

d̂(k) = d̂∗(k)+κd(e(k))
(16)

We make the following assumption on the observer.
Assumption 9. (Nominal observer). The functions κx : Rp →
Rn and κd : Rp→ Rnd are continuous and satisfy:

κx(0) = 0, κd(e) = 0⇔ e = 0 (17)
Moreover, relations (14)–(16) form an asymptotically stable
observer for the augmented system (12).
Remark 10. From condition (17) in Assumption 9, it follows in
general that nd ≥ p. This observation and Remark 8 lead to the
choice nd = p.

The issues associated with the use of nd < p are highlighted
later in Section 5.

2.4 Target calculation, optimal control problem and receding
horizon implementation

Given the current estimate of the augmented state (x̂(k), d̂(k)),
an offset-free MPC algorithm needs to compute the equilibrium
target that ensures exact tracking of the controlled variable. De-
pending on input/output dimensions and on the system dynam-
ics, such a target may not be unique. Hence, in the general case
we solve the following target problem denoted by Ps(ȳc, d̂(k)):

min
x,u,y

`s(y,u) (18a)

subject to:

x = F(x, d̂(k),u) (18b)

y = H(x, d̂(k)) (18c)
r(y) = ȳc (18d)

y ∈ Y, u ∈ U (18e)
in which `s :Rp×Rm :→R is the steady-state cost function. We
assume that (18) is feasible and we denote its (unique) solution
as (xs(k),us(k),ys(k)).

Remark 11. Problem Ps(ȳc, d̂(k)) is parametric in the con-
trolled variable setpoint and in the current disturbance estimate.
It needs therefore to be solved at each decision time, and not
only when the setpoint changes.

Let x = {x0 x1 · · · xN} and u = {u0 u1 · · · uN−1} be, re-
spectively, a state sequence and an input sequence. For i =
0, . . . ,N − 1, let yi = H(xi, d̂(k)) be the model output corre-
sponding to a state xi and disturbance estimate d̂(k). Further-
more, let x̃i := xi−xs(k) for i= 0, . . . ,N, and ũi := ui−us(k) for

i = 0, . . . ,N − 1. The following finite-horizon optimal control
problem, denoted by P(x̂(k), d̂(k),xs(k),us(k),ys(k)), is posed:

min
x,u

N−1

∑
i=0

`(x̃i, ũi)+Vf (x̃N) (19a)

subject to:

x0 = x̂(k) (19b)

xi+1 = F(xi, d̂(k),ui) (19c)

H(xi, d̂(k)) ∈ Y, ui ∈ U (19d)
x̃N ∈ X f (19e)

in which ` :Rn×Rm→R≥0 is a strictly positive definite convex
function. Vf : Rn → R≥0 and X f are, respectively, a terminal
cost function and a terminal set, designed according to the usual
stabilizing conditions (Rawlings and Mayne, 2009, Sec. 2.5).

Assuming that problem (19) is feasible, its solution is denoted
by (x0(k),u0(k)) and the associated receding horizon imple-
mentation is given by:

u(k) = u0
0(k) (20)

Remark 12. In problem P(·), the disturbance estimate d̂(k) is
a fixed parameter. Consequently, P(·) can be rewritten as a
regulation problem in the deviation variables {x̃i, ũi}.
Remark 13. Following the ideas of (Limon et al., 2008), the
target problem Ps(·) and the dynamic optimization problem
P(·) could be merged together in a single optimization problem
(Betti et al., 2013).

2.5 Asymptotic stability and offset-free tracking

In order to establish offset-free tracking, it is necessary that the
closed-loop system reaches an asymptotically stable equilib-
rium. Establishing conditions under which this occurs is very
hard because of the combined presence of state estimator, tar-
get calculation and dynamic optimization. Indeed, almost all
available methods for offset-free MPC assume that an asymp-
totically stable equilibrium has been reached, and then show
that offset-free control is attained at such an equilibrium. One
noticeable exception is the robust offset-free linear MPC algo-
rithm proposed in (Betti et al., 2013), which is designed under
the assumption that the full state is measurable at each time.
Such an algorithm uses the so-called velocity form model (Pan-
nocchia and Rawlings, 2001), which is reviewed later in Sec-
tion 3 and for which equivalence to a particular disturbance
model and observer has been recently established in (Pannoc-
chia, 2015).

We next present the main offset-free result and a stream-
lined proof. Similar results and arguments have been shown in
(Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003;
Maeder et al., 2009; Morari and Maeder, 2012).
Theorem 14. Assume that the target calculation problem (18)
and the regulation problem (19) are feasible at all times, and
that the closed-loop system reaches an equilibrium with input
u∞ and output y∞. It follows that:

r(y∞) = ȳc (21)

Proof. If the closed loop reaches a steady state, stability of
the observer implies that the augmented state estimate also
reaches a steady state. Let (x̂∞, d̂∞) be such a steady state,
and let ŷ∗∞ := H(x̂∞, d̂∞). From (14) and (16), we can write



d̂∗∞ = d̂∞ = d̂∗∞ +κd(y∞− ŷ∗∞), which implies κd(y∞− ŷ∗∞) = 0.
From (17), it then follows y∞ = ŷ∗∞ = ŷ∞.

We now turn our attention to the target calculation problem
Ps(ȳc, d̂∞), and denote its solution as (xs,∞,us,∞,ys,∞). At steady
state, the first element of the optimal control sequence is given
by u∞, and the corresponding first element of the optimal
state sequence is x̂∞. Closed-loop stability of the equilibrium
and positive definiteness of the cost function `(·) imply that
(x̂∞,u∞) = (xs,∞,us,∞), which, coupled with (18c)–(18d) and the
previous relations, imply that r(y∞) = r(ŷ∞) = r(ys,∞) = ȳc. 2

We next present a novel result on the asymptotic stability and
offset-free estimation under state feedback.
Theorem 15. Assume that the state is measurable (i.e. y = x),
and that the augmented model and observer functions are:

F(x,u,d) := f (x,u)+Bdd, H(x,d) := x,
κx(e) = e, κd(e) = Kde (22)

with Bd ∈ Rn×n invertible, and BdKd = I.

(1) The observer is nominally asymptotically stable.
(2) For any w respecting Assumption 5, there holds:

lim
k→∞

x(k)− x̂∗(k) = 0, lim
k→∞

d̂∗(k) = B−1
d w̄ (23)

Proof. (Observability and stability of the observer) To prove
this result, we consider that the “actual” augmented state
evolves as:

x(k+1) = f (x(k),u(k))+Bdd(k)
d(k+1) = d(k)

(24)

Recall that in this case the prediction error is e(k) = x(k)−
x̂∗(k). Since κx(e) = e, it follows that x̂(k) = x(k) for all k ∈ I.
Therefore, the “predicted” augmented state is given by:

x̂∗(k+1) = f (x(k),u(k))+Bd d̂(k)

d̂∗(k+1) = d̂(k)
(25)

whereas the filtered disturbance estimate, d̂(k), is given by:
d̂(k) = d̂∗(k)+Kde(k) = d̂∗(k)+Kd(x(k)− x̂∗(k)) (26)

By combining (24), (25) and (26), and defining ed(k) := d(k)−
d̂∗(k), we obtain:[

e+

e+d

]
=

[
−BdKd Bd
−Kd I

][
e
ed

]
=

[
−I Bd
−Kd I

][
e
ed

]
= M1

[
e
ed

]
(27)

It is easy to see that the matrix M1 in (27) is nilpotent of degree
2, i.e. M 2

1 = 0, which proves the nominal asymptotic stability
of the observer of the augmented system.
(Asymptotic zero estimation offset) We study the estimation
error with respect to the process state, which evolves as:

x(k+1) = f (x(k),u(k))+w(k) (28)
We again have that x̂(k) = x(k) for all k ∈ I. Combining (28),
(25), (26) and BdKd = I, we obtain:[

e(k+1)
d̂∗(k+1)

]
=

[
−I −Bd
Kd I

][
e(k)

d̂∗(k)

]
+

[
w(k)

0

]
= M2

[
e(k)

d̂∗(k)

]
+

[
w(k)

0

]
(29)

The matrix M2 is also nilpotent of degree 2, so that
[

e(k)
d̂∗(k)

]
→[

e∞

d̂∗∞

]
as k→ ∞. Since Kd is invertible, the limit values are:

e∞ = 0, d̂∗∞ = B−1
d w̄ (30)

which completes the proof. 2

3. OFFSET-FREE LINEAR MPC: DISTURBANCE
MODELS, WHAT ELSE?

In this section we restrict our attention to the case in which
the nominal model (2) is linear and the controlled variable is a
linear combination of the output, i.e.

f (x,u) := Ax+Bu, h(x) :=Cx, r(y) := Dy (31)
It is assumed that the following condition holds true:

rank
[

A− I B
DC 0

]
= n+ pc (32)

which ensures that problem (18) can admit a solution.

We present the general disturbance model and the velocity form
model. Then, we show that the latter method is equivalent to the
use of a particular case of disturbance model/observer, covering
and strengthening the results recently reported in (Pannocchia,
2015), which also showed that the method proposed in (Tatjew-
ski, 2014) is a particular case of disturbance model/observer.

3.1 Disturbance model and observer

The augmented model functions in (12) read as follows:
F(x,u,d) := Ax+Bu+Bdd, H(x,d) :=Cx+Cdd (33)

and the observer functions are linear, in the form:
κx(e) := Kxe, κd(e) := Kde, (34)

in which Kx ∈ Rn×p, Kd ∈ Rnd×p and rank(Kd) = nd .

Compactly, we define the augmented state ξ :=
[

x
d

]
, the aug-

mented model matrices:

Aa :=
[

A Bd
0 I

]
, Ba :=

[
B
0

]
, Ca := [C Cd ] (35)

and write the augmented model dynamics as:
ξ
+ = Aaξ +Bau
y =Caξ

(36)

Similarly, let Ka :=
[

Kx
Kd

]
be the augmented observer gain

matrix, and let the filtered estimate of the augmented state be

denoted as ξ̂ :=
[

x̂
d̂

]
. For the linear augmented model (36), the

general observer relations (14)–(16) can be written as:

ξ̂ (k) = Aaξ̂ (k−1)+Bau(k−1)+Kae(k) (37)
Remark 16. Asymptotic stability of the augmented observer re-
quires that the characteristic matrix (Aa−KaCaAa) is Hurwitz.

The next proposition summarizes the main results regarding
the design of offset-free linear MPC algorithms based on a
disturbance model (Pannocchia and Rawlings, 2003).
Proposition 17. Consider the augmented matrices given in
(35). The following results hold true:

(1) The pair (Ca,Aa) is detectable (observable) if and only if
(C,A) is detectable (observable) and

rank
[

A− I Bd
C Cd

]
= n+nd (38)

(2) There exist matrices (Bd ,Cd) such that condition (38)
holds if and only if nd ≤ p.



(3) If nd = p, it follows that any asymptotically stable ob-
server gain matrix is such that Kd is invertible and the
offset-free Assumption 9 holds true.

3.2 Velocity form

Another known method to design a linear offset-free MPC al-
gorithm is to use the so-called velocity form model (Pannocchia
and Rawlings, 2001; Wang, 2004; González et al., 2008; Betti
et al., 2012, 2013), which is obtained from the nominal model
(31) by defining the state increment δx(k) := x(k)− x(k− 1),
the input increment as δu(k) := u(k)− u(k− 1), and rewriting
the nominal model as follows:

δx+ = Aδx+Bδu
y+ = y+Cδx+ = y+CAδx+CBδu

(39)

If we define the augmented state of the velocity form model as

ξδ :=
[

δx
y

]
and the associated matrices:

Aδ :=
[

A 0
CA I

]
, Bδ :=

[
B

CB

]
, Cδ := [0 I] (40)

the velocity form model can be written as:
ξ
+
δ
= Aδ ξδ +Bδ δu

y =Cδ ξδ

(41)

Remark 18. The second block component (y) of the velocity
form state is measurable, but the first block component (δx)
may not be measurable. So, in general, an observer is also
needed for this model form to estimate δx.

Let Kδ :=
[

Kδx
Ky

]
be the associated observer gain matrix for the

velocity form model. The general observer relations (14)–(16)
for the velocity form model can be written compactly as:

ξ̂δ (k) = Aδ ξ̂δ (k−1)+Bδ δu(k−1)+Kδ e(k) (42)
We remark that Kδ should be chosen such that (Aδ −KδCδ Aδ )
is Hurwitz.

The next proposition (easily proved) summarizes the main
properties of the velocity form model.
Proposition 19. Consider the velocity form model matrices in
(40). The following results hold true:

(1) The pair (Cδ ,Aδ ) is detectable if and only if (C,A) is
detectable.

(2) The pair (Aδ ,Bδ ) is stabilizable if and only if (A,B) is
stabilizable and condition (32) holds true.

Since y is measured, it is customary to use a deadbeat observer
for this second component of the state ξδ , i.e. Ky = I, so that
from (42) it follows ŷ(k) = y(k). In this case, the only matrix
to choose is Kδx, and the following result holds true. The next
result (easily proved) explains the conditions that Kδx should
satisfy to ensure stability of the observer.
Proposition 20. Let Ky = I. The velocity form observer char-
acteristic matrix (Aδ −KδCδ Aδ ) is Hurwitz if and only if Kδx
is chosen such that (A−KδxCA) is Hurwitz.
Remark 21. We notice by inspection that the observer charac-
teristic matrix (Aδ −KδCδ Aδ ) has p eigenvalues at the origin.

3.3 Velocity form equivalent disturbance model

We now show that the velocity form model, with deadbeat
observer gain Ky = I, is equivalent to a particular disturbance

model/observer. This new result, first shown in (Pannocchia,
2015), is here reported and proved in a slightly different form.
Theorem 22. Consider the velocity form model (41) and ob-
server (42), with a stable output deadbeat observer gain Kδ =[

Kδx
I

]
. This is equivalent to using the following disturbance

model and observer gains:
Bd = Kδx, Cd = I−CKδx, Kx = Kδx, Kd = I (43)

Proof. By expanding and rearranging the various terms in (42),
and recalling (40), we obtain:

δ x̂(k) = (A−KδxCA)δ x̂(k−1)+(B−KδxCB)δu(k−1)
+Kδx(y(k)− ŷ(k−1))

ŷ(k) = y(k)
which can also be rewritten as:

δ x̂(k) = (A−KδxCA)δ x̂(k−1)+
(B−KδxCB)δu(k−1)+Kδx(y(k)− y(k−1)) (44)

Now consider the evolution of the augmented system with
matrices given in (43), which can be written:

x̂(k) = Ax̂(k−1)+Bu(k−1)
+Kδx(y(k)−C(Ax̂(k−1)+Bu(k−1))) (45)

By rewriting (45) at time k−1 and taking the difference of both
sides, we obtain:

δ x̂(k) = Aδ x̂(k−1)+Bδu(k−1)+Kδx(y(k)− y(k−1))
−KδxC(Aδ x̂(k−1)+Bδu(k−1))) (46)

which can be rewritten as

δ x̂(k) = (A−KδxCA)δ x̂(k−1)+
(B−KδxCB)δu(k−1)+Kδx(y(k)− y(k−1)) (47)

The proof is completed by comparing (47) with (44). 2

3.4 Equivalence in the state feedback case

If the state is measurable, the previous relations between
the velocity form and disturbance model methods become
even stronger. Since the state is measurable, it may be desir-
able/possible to use a deadbeat observer for the state, i.e. such
that x̂(k) = x(k).

When the state is measurable, the augmented matrices of the
disturbance model method read as follows:

Aa =

[
A Bd
0 I

]
, Ba =

[
B
0

]
, Ca = [I Cd ] (48)

with Bd ∈ Rn×n, Cd ∈ Rn×n (i.e. nd = n), and Ka is chosen
such that (Aa−KaCaAa) is Hurwitz. The general detectability
condition (38) is consequently replaced by:

rank
[

A− I Bd
I Cd

]
= 2n (49)

A state/disturbance deadbeat observer is then designed by sat-
isfying the following restrictions:

rank(Bd) = n, Cd = 0, Kx = I, Kd = B−1
d (50)

Remark 23. Using (50), it is straightforward to see that Aa−
KaCaAa =

[
0 0

−B−1
d A 0

]
, i.e. the observer characteristic matrix has

all its eigenvalues at zero.

In the velocity form model, the augmented matrices are still
defined in (40), and Kδ should be chosen such that (Aδ −
KδCδ Aδ ) is Hurwitz. In the state feedback case, the state/output



deadbeat observer is obtained by choosing Kδx = I and Ky = I.
With such a choice, we see Aδ −KδCδ Aδ =

[
0 −I
0 0

]
, i.e. the

observer characteristic matrix has all its eigenvalues at zero.

We now present the equivalence results.
Theorem 24. Assume the state is measurable, and consider the
velocity form model (41) and observer (42), with a state/output

deadbeat observer gain Kδ =

[
I
I

]
. This model is a particular

case of disturbance model with:
Bd = I, Cd = 0, Kx = I, Kd = I (51)

Proof. The result is a direct consequence of the equivalence
relations (43), with Kδx = I and C = I. 2

4. OFFSET-FREE ECONOMIC MPC

We discuss in this section how the fundamentals of offset-free
design can be embedded into an economic MPC framework,
in order to ensure that the best economic performance can
be achieved despite the presence of persistent discrepancies
between the actual process and the MPC model.

4.1 A brief overview of economic MPC

To set up a framework that is consistent with the previous
results on output feedback offset-free MPC, we consider an
economic stage cost function defined in terms of measurable
quantities, namely input and output. We denote such a cost
function as `e(y,u), with `e : Rp×Rm → R. At each decision
time, let x̂(k) be the estimate of the current state. Let x =
{x0 x1 · · · xN} and u = {u0 u1 · · · uN−1} be, respectively, a
state sequence and an input sequence. Then, the economic
MPC solves the following optimization problem, denoted by
Pe(x̂(k),xs):

min
x,u

N−1

∑
i=0

`e(h(xi),ui) (52a)

subject to:

x0 = x̂(k) (52b)
xi+1 = f (xi,ui) (52c)

gu(ui)≤ 0, gy(h(xi))≤ 0 (52d)
xN = xs (52e)

in which xs represents the feasible equilibrium state such that
`e(·) is minimized. As usual, only the first input of the optimal
solution to (52) is sent to the plant, i.e. u(k) = u0

0(k), and at the
next decision time a new problem Pe(·) is solved for the new
current state estimate.

4.2 An offset-free economic MPC algorithm

If the actual plant equals model (2) and the state is measured,
under mild conditions, it can be shown that the closed-loop sys-
tem state converges asymptotically to the equilibrium xs (Diehl
et al., 2011; Rawlings et al., 2012). On the other hand, if the
actual plant (1) differs from the nominal model (2), besides
the issues of robust stability and constraint satisfaction, the
closed-loop system may converge to an equilibrium that is not
optimal, i.e. in which `e(·) is not minimized. For instance, under
Assumption 5, the best plant equilibrium is:

min
x̄p,ū,ȳ

`e(ȳ, ū) (53a)

subject to:

x̄p = f (x̄p, ū)+ w̄ (53b)
ȳ = h(x̄p)+ v̄ (53c)

ū ∈ U, ȳ ∈ Y (53d)

Clearly, it would be desirable to achieve this same equilibrium
input/output even if the actual plant (1) is not known precisely.
To this aim, we augment the nominal system (2) and define the
augmented model (12), whose current state (x̂, d̂) is estimated
from the output measurement by the observer (14)–(16).

Then, the (current) best equilibrium steady state is given by:

(xs(k),us(k),ys(k)) := arg min
x,u,y

`e(y,u) (54a)

subject to:

x = F(x, d̂(k),u), y = H(x, d̂(k)) (54b)
gu(u)≤ 0, gy(y)≤ 0 (54c)

Remark 25. Since d̂(k) is not necessarily constant, the equilib-
rium problem (54) needs to be solved at each decision time.

Consequently, we modify problem (52) into an offset-free eco-
nomic MPC problem:

min
x,u

N−1

∑
i=0

`e(H(xi, d̂(k)),ui) (55a)

subject to:

x0 = x̂(k) (55b)

xi+1 = F(xi, d̂(k),ui) (55c)

gu(ui)≤ 0, gy(H(xi, d̂(k)))≤ 0 (55d)
xN = xs(k) (55e)

Finally, the first input of the optimal solution to (55) is sent
to the plant, and at the next decision time the whole procedure
(augmented state estimation, equilibrium calculation, economic
MPC problem) is solved again.

We now present the main result on offset-free economic MPC,
which is stated and proved assuming state feedback.
Theorem 26. Under the assumptions of Theorem 15, assume
that equilibrium problem (54) and the economic MPC problem
(55) are feasible at all times, and that the closed-loop system
reaches an equilibrium with input and output (u∞,y∞). The
achieved ultimate cost `(y∞,u∞) is the same as that in (53).

Proof. If the closed-loop reaches an equilibrium with input and
output (u∞,y∞), stability of the observer implies that the aug-
mented state estimate also reaches a steady state. Let (x̂∞, d̂∞)
be the augmented state estimate at the reached equilibrium, and
let (xs,∞,us,∞,ys,∞) be the solution to (54) given the equilibrium
disturbance estimate d̂∞. It follows that the applied input u∞,
which is the first element of the optimal control sequence solu-
tion to (55), is equal to us,∞.

Under the assumptions of Theorem 15, we observe that w̄ =
lim
k→∞

w(k) = lim
k→∞

Bd d̂(k) = Bd d̂∞, and therefore: f (x,u)+ w̄ =

F(x, d̂∞,u) (and obviously h(x) = x = H(x, d̂∞)). Hence, prob-
lem (54) and problem (53) are identical, and this completes the
proof. 2



5. ILLUSTRATIVE EXAMPLES

We present several numerical examples to highlight the con-
cepts and results discussed in this paper. Simulations are per-
formed using the Python interface to the open-source CasADi
framework (Andersson, 2013), and the arising NLPs/QPs are
solved with IPOPT (Wächter and Biegler, 2006).

5.1 Offset-free nonlinear MPC of a cart-pole system in the
presence of obstacles

Problem description and control task. The first system we
consider is a mechanical one and its schematic is depicted in
Fig. 1. It consists of one prismatic (translational) joint and one
revolute joint. This system is usually referred to as cart-pole.
The configuration of the system is q = [q1 q2]

T , where q1 > 0 is
the horizontal displacement of the cart and q2 is the rotation
angle of the pole around the hinge O, taken with respect to
the vertical direction. The state of the system is therefore x =
[x1 x2 x3 x4]

T = [q1 q2 q̇1 q̇2]
T . The center of mass G of the pole

is at a distance r from O. The cart has mass M, and the pole has
mass m and moment of inertia JG with respect to the center of
mass G. The gravitational acceleration g= 9.81 m/s2 acts in the
−y direction of a world frame. A horizontal force u > 0 acts in
the +x direction of a world frame on the cart and represents the
only control input applied to the system. The goal of the MPC
regulator is to apply a proper force u to move the system from
the initial state x0 = [0 0 0 0]T to the final state xN = [q f

1 0 0 0]T ,
where q f

1 represents a position beyond the two obstacles jutting
downward from the ceiling (Fig. 1). The novelty with respect
to the classical cart-pole control problem is represented by
the introduction of such obstacles. The requirement that the
controller has to steer the pole to its final state while always
maintaining a minimum clearance from the obstacles represents
an additional, non trivial, difficulty, as the joint angle q2 must
belong to [−π/2,π/2].

The Lagrangian dynamics of the system can be written in the
standard form as:

B(q)q̈+n(q, q̇) = Pu (56)

where B(q) ∈ R2×2 is the symmetric, positive definite inertia
matrix, n(q, q̇) ∈ R2 is the vector collecting Coriolis, centrifu-
gal and gravitational terms, P ∈ R2 is the actuation vector, and
u ∈ R is the horizontal force applied to the cart.

For the cart-pole system, the explicit expressions of the above
quantities are:

B(q) =
[

Mt −mlc2
−mlc2 JO

]
, n(q, q̇) =

[
mlq̇2

2s2
−mgls2

]
, P =

[
1
0

]
(57)

where c2 = cosq2 = cosx2 and s2 = sinq2 = sinx2, and the posi-
tions Mt = M+m, JO = JG +ml2 were made. It is worth noting
that the above equations are equivalent to: (i) the translational
dynamic equilibrium of the whole system along +x, and (ii) the
rotational dynamic equilibrium around hinge O.

The explicit nonlinear equations in state space form appear as:ẋ1
ẋ2
ẋ3
ẋ4

=


x3
x4

−a(x2)mls2
(
JOx2

4−mglc2
)

−a(x2)mls2
(
mlx2

4c2−Mtg
)
+a(x2)

 0
0

JO
mlc2

u

(58)

 obstacles
(fixed walls)

cart

pole

O

Gg

1q

u

,  Gm J
2q

Fig. 1. Schematic of the cart-pole system with obstacles.

where we defined a(x2) = [JOMt − (ml cosx2)
2]−1.

Results and discussion. We first consider the case in which
the full state of the system is measurable, i.e. h(x) = x in (2),
and we compare two MPCs:

• NMPC0 uses no disturbance model: F(x,d,u) = f (x,u)
and H(x,d) = h(x) = x, with a linear deadbeat observer:
κx(e) = e.

• NMPC1 uses a state disturbance model: F(x,d,u) =
f (x,u)+ d and H(x,d) = h(x) = x, with a deadbeat aug-
mented linear observer: κx(e) = e and κd(e) = e.

For both controllers we use a discretization time Ts = 0.12 s,
an MPC horizon with N = 25, and a quadratic cost function.
The optimal control problem is solved in both state and control
sequences, according to a direct multiple shooting scheme in
which integration of the model is performed using a fixed step
(Ts/10) Runge-Kutta algorithm. Control force is constrained
in the range [−100, 100] N, and during the simulation an
external unmeasured disturbance force is superimposed to test
the disturbance rejection capabilities of the controllers.

Closed-loop simulation results are reported in Fig. 2: the top
panel shows the horizontal displacement and rotation angle,
along with the system inputs (control force and unmeasured
disturbance), vs. time. The bottom panel reports the prediction
errors on these two states. An accompanying video showing
the cart-pole system behavior is available in (Pannocchia et al.,
2015). From these results we see that, due to persistent predic-
tion errors, NMPC0 is not able to stabilize the cart-pole system
in the final position. On the other hand, NMPC1 succeeds in
this task thanks to the quick suppression of the prediction error.

We next consider the more difficult case in which only two
states, cart displacement and pole rotation angle, are measured.

• NMPC2 uses a linear (input) disturbance model with one
disturbance state: F(x,d,u) = f (x,u)+Bdd and H(x,d) =
h(x) = x, in which Bd is chosen as the Jacobian matrix of
f (x,u) with respect to the input u at the final equilibrium.
A linear observer, κx(e) = Kxe and κd(e) = Kde, is de-
signed as a steady-state Kalman filter for the linearized
augmented model at the final equilibrium.
• NMPC3 uses a linear (input/output) disturbance model

with two disturbance states: F(x,d,u) = f (x,u)+Bdd and
H(x,d) = h(x)+Cdd = x+Cdd, in which the first column
of Bd is chosen as the Jacobian matrix of f (x,u) with
respect to the input u at the final equilibrium, whereas
the second column of Bd and Cd are chosen so that
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Fig. 2. State feedback control of the cart-pole: comparison of
standard vs. offset-free NMPC.
the augmented system is observable. A linear observer,
κx(e) =Kxe and κd(e) =Kde, is designed as a steady-state
Kalman filter for the linearized augmented model at the
final equilibrium.

Results are reported in Fig. 3. We notice that both MPCs suc-
ceed in the task with rather similar performances. It should be
noticed that NMPC2 is using only one disturbance state even if
two measurements are available, and hence Assumption 9 does
not hold for NMPC2. Nonetheless, it is able to suppress offset
because the actual disturbance enters the system with the same
dynamics of the input. At any steady state this effect is correctly
modeled by the chosen linear (input) disturbance model, but
different disturbances may not be rejected by NMPC2. On the
other hand, NMPC3 uses two disturbances, and therefore it is
capable of ensuring offset-free reconstruction by zeroing the
prediction error for any asymptotically constant disturbance.
It should be mentioned that the design of an observable aug-
mented system is nontrivial for this example because of the
presence of two integrators in the discretized model dynamics
(at any equilibrium). For instance, a linear output disturbance
model with Bd = 0 and Cd = I is not expected to be observable
for this case.

5.2 Offset-free linear MPC of a nonisothermal CSTR

Process description and control objectives. The second ex-
ample is a nonisothermal continuous stirred tank reaction
(CSTR) in which an irreversible, exothermic reaction A→B
occurs in the liquid phase. The process is described by the
following set of ODEs, in which the state x = [c T h]T (re-
actant concentration, reactor temperature, liquid level) and u =

Closed-loop responses of two states and inputs (control and disturbance)
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Fig. 3. Output feedback control of the cart-pole: comparison of
two offset-free NMPCs.

[Tc F ]
T (coolant temperature and outlet volumetric flow rate),

and the model parameters are taken from (Rawlings and Mayne,
2009, p. 52).[ẋ1

ẋ2
ẋ3

]
=


F0c0−u2x1

πr2x3
− k0 exp(− E

Rx2
)x1

F0(T0−x2)
πr2)x3

− ∆H
ρCp

k0 exp(− E
Rx2

)x1 +
2U0

rρCp
(u1− x2)

F0−u2
πr2


(59)

The input is constrained u ∈ [295, 305]K× [0, 0.25]m3/min,
and the control task is to regulate the outlet concentration at
c̄ = 0.500 kmol/m3 and the liquid level at h̄ = 0.659 m. This
operation is particularly difficult because: (i) this is an open-
loop unstable equilibrium, (ii) we use a linear model x+ =
f (x,u) in all MPCs, while the controlled process (59) is highly
nonlinear because of the exothermic reaction, (iii) from time
5 min to 6 min the inlet flow rate increases linearly acting as
unmeasured disturbance. All MPCs use a horizon of N = 50, a
discretization time of 0.2 min, and a quadratic cost function.

Results and discussion. We consider the state feedback case,
i.e. y = h(x) = x, and define the controlled variable as yc =

r(y) = [x1 x3]
T . We compare two linear MPCs:

• LMPC0 uses a (partial) state disturbance model:

F(x,d,u)= f (x,u)+
[

d1
0
d2

]
, with deadbeat augmented state

observer Kx = I, Kd =
[

1 0 0
0 0 1

]
.

• LMPC1 uses a (full) state disturbance model: F(x,d,u) =
f (x,u)+d with deadbeat augmented state observer Kx = I,
Kd = I.



0 5 10 15 20

Time (min)

0.490

0.495

0.500

0.505

0.510

0.515

c
(k

m
ol

/m
3
) Target value

LMPC0
LMPC1

0 5 10 15 20

Time (min)

350.0

350.2

350.4

350.6

350.8

351.0

351.2

T
(K

)

LMPC0
LMPC1

0 5 10 15 20

Time (min)

0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670

h
(m

)

Target value
LMPC0
LMPC1

0 5 10 15 20

Time (min)

297.5

298.0

298.5

299.0

299.5

300.0

T
c

(K
)

LMPC0
LMPC1

0 5 10 15 20

Time (min)

0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125

F
(m

3
/m

in
) LMPC0

LMPC1

Fig. 4. State feedback control of the CSTR: comparison of
states and inputs using linear MPCs.

We remark that both augmented models are observable and the
associated deadbeat observers are nominally stable. However,
we notice that in LMPC0, disturbances are added only to the
two controlled states (x1 and x3), but not to the other measured
state (x2), whereas in LMPC1 a disturbance is added to each
state. Hence Assumption 9 does not hold for LMPC0.

Closed-loop results (states and inputs) are shown in Fig. 4.
From these results, we see that LMPC0 is unable to achieve
offset-free control in the two controlled variables when the
inlet flow rate disturbance occurs, and indeed the closed-loop
system becomes unstable due to the inherent mismatch be-
tween the nominal linear model and the nonlinear controlled
process (59). Depending on the observer and controller tuning,
we could obtain a stable closed-loop behavior with LMPC0,
but still there would be offset because of the use of two dis-
turbances in the presence of three measurements. It is also
possible to find an augmented observer gain (Kx,Kd) in a way
that offset-free control is achieved, but this observer gain would
depend on the MPC cost function parameters (Pannocchia and
Rawlings, 2003; Maeder et al., 2009). Such a practice is not
recommended, in general, because it requires simultaneous re-
tuning of the observer whenever the controller cost function
parameters (state and input penalties) change. On the other
hand, LMPC1 is perfectly able to achieve offset-free control
given that it uses the correct number of disturbances in its aug-
mented model. Finally, given the equivalence results discussed
in Sections 3.3 and 3.4, an MPC based on the velocity form
model would behave identically to LMPC1 because it would
(inherently) use three disturbances.

5.3 Offset-free economic MPC of a nonisothermal CSTR

The last example that we present concerns the same process
of Section 5.2, but in this case the nonlinear nominal model

Closed-loop responses of state and input variables
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Fig. 5. Output feedback control of the CSTR: comparison of
standard vs. offset-free economic NMPCs.

(59) is used in the design of economic nonlinear MPCs, as
described in Section 4. We assume to measure only x1 and x3,
i.e. y= [x1 x3]

T , and the economic cost function is `e(y,u) = y1,
so that the reactant concentration has to be minimized, while the
following output constraints are imposed:

0.5≤ y1 ≤ 1.0, 0.5≤ y2 := x3 ≤ 0.75 (60)
As in the previous section, from time 5 min to 6 min the inlet
flow rate increases linearly, acting as an unmeasured distur-
bance. All MPCs use a horizon of N = 50 with a discretization
time of 0.2 min.

Two output feedback economic NMPCs are compared:

• eNMPC0 uses no disturbance model: F(x,d,u) = f (x,u)
and H(x,d) = h(x) = x and a linear state observer: κx(e) =
Kxe, in which Kx is chosen as a steady-state Kalman filter
gain at the nominal equilibrium.

• eNMPC1 uses a linear (input) disturbance model:
F(x,d,u) = f (x,u) + Bdd and H(x,d) = h(x) = x, in
which Bd is chosen as the Jacobian matrix of f (x,u) with
respect to the input u at the nominal equilibrium. A linear
observer, κx(e) = Kxe and κd(e) = Kde, is designed as
a steady-state Kalman filter for the linearized augmented
model at the nominal equilibrium.

Closed-loop results are reported in Fig. 5: the top panel shows
controlled and inputs variables, whereas the bottom panel



shows the prediction error on the two controlled variables.
From these results we observe that eNMPC0 makes the closed-
loop system unstable due to the fact that output constraints
are permanently violated. In fact, both output prediction errors
do not vanish at steady state, whereas in eNMPC1 both out-
put prediction errors are quickly eliminated, and consequently
the actual output constraints are satisfied. From this example,
we can appreciate how offset-free prediction of the outputs is
necessary to make sure that an economic controller does not
destabilize the closed-loop system in the attempt to recover
from a current output that does not satisfy the constraints.

6. CONCLUSIONS

This paper has described the latest advances in the design
of offset-free MPC algorithms. We presented a self-contained
summary of the available results for nonlinear MPC, based on
the use of disturbance models and observers, and we extended
the existing asymptotic convergence results. Then we focused
on linear MPC and showed that a commonly known method
based on the velocity form model is indeed a particular case
of disturbance model, and not an alternative route to offset-
free tracking. We also extended the concept of offset-free es-
timation to the design of economic MPC for systems with per-
sistent errors/disturbances. Challenging examples of nonlinear
processes (controlled by nonlinear MPC, linear MPC, and eco-
nomic MPC) have been included to highlight the significance of
the presented results, and also to emphasize specific subtleties
related to the number of used disturbances and to the process
dynamics, which may result in an incorrect design.

A final note is reserved to future directions in this research
area. On the one hand, it may be useful to explore the issue
of disturbance modeling (i.e. where to put the disturbances)
in nonlinear system, coupled with nonlinear observers (MHE,
most notably). On the other, robust stability questions for offset-
free (linear, nonlinear, economic) MPC are still wide open.
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