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ABSTRACT 

The natural mummification process of the human gut represents a unique opportunity to study 

the resulting microbial community structure and composition. While results are providing 

insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no 

studies have demonstrated that the process of natural mummification also results in the 

preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-

Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to 

viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) 

and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the 

Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted 

putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included 

Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and 

Yersinia. Predicted functional categories associated with bacteriophages showed a representation 

of structural, replication, integration, and entry and lysis genes. The present study suggests that 

the natural mummification of the human gut results in the preservation of bacteriophage DNA, 

representing an opportunity to elucidate the ancient phageome and to hypothesize possible 

mechanisms of preservation.  
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INTRODUCTION 

The human gut microbiome is home to diverse communities comprised of bacteria, 

archaea and eukaryotes (Yatsunenko et al., 2012, Hoffmann et al., 2013); yet, an increasing 

number of studies have demonstrated that the human gut is also inhabited by diverse viral 

communities, many of which are bacteriophages (Minot et al., 2011, Minot et al., 2013). 

Bacteriophages play important roles in biogeochemical cycles (Fuhrman, 1999) and in the 

evolution of their bacterial hosts (Ai et al., 2000, Bollback & Huelsenbeck, 2001, Coberly et al., 

2009, Minot et al., 2013, Cvirkaite-Krupovic et al., 2015); however, we are just beginning to 

understand the role of bacteriophages as part of the human microbiome (Sun & Relman, 2013, 

Abeles & Pride, 2014). Previous studies have demonstrated that bacteriophages are part of the 

human oral (Pride et al., 2012, Edlund et al., 2015), skin (Robles-Sikisaka et al., 2013, Denesvre 

et al., 2015), genitourinary tract (Santiago-Rodriguez et al., 2015a) and gut microbiomes 

(Breitbart et al., 2003, Minot et al., 2011, Hofer, 2013, Cadwell, 2015, Ray, 2015). 

Bacteriophages also have major impacts in human health and disease (Willner et al., 2009, 

Willner et al., 2011, Ly et al., 2014, Landini et al., 2015, Norman et al., 2015, Santiago-

Rodriguez et al., 2015b, Wang et al., 2015). In diseases such as periodontitis, the relative 

abundance of bacteriophages belonging to the Myoviridae family is higher in subjects with the 

disease compared to subjects with good periodontal health. While results may be influenced by 

the representation of myoviruses in databases, these bacteriophages are believed to shape oral 

bacterial communities by lysing their hosts, thus, are believed to promote periodontal disease (Ly 

et al., 2014, Santiago-Rodriguez et al., 2015b). Other more serious diseases, including 

inflammatory bowel disease (IBD), have also associated bacteriophages with a dysbiosis of the 

gut bacterial communities, probably resulting in the disease (Norman et al., 2015). 
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Human microbiomes dating to hundreds and thousands of years are just beginning to be 

characterized, and have also been associated with dietary shifts, dietary habits, and periodontal 

health and disease (Adler et al., 2013, Cano et al., 2014, Warinner et al., 2015, Weyrich et al., 

2015). Yet, very few studies have focused on the viral composition of ancient human samples. 

Previous studies have focused on viruses in ancient human specimens including retroviruses and 

those from the Flaviridae, Rhabdoviridae, Parvoviridae families (Emerman & Malik, 2010, 

Patel et al., 2011, Aswad & Katzourakis, 2012, Katzourakis, 2013, Lavialle et al., 2013, Rivera-

Perez et al., 2015). It is feasible to hypothesize that ancient microbiomes are also home to a 

community of bacteriophages homologous to those present in modern human microbiomes. A 

previous study characterizing the virome of fossilized fecal material from the14
th

 century found 

that bacteriophages comprised a good proportion of the viral communities (Appelt et al., 2014). 

 

The natural mummification process is also known to preserve ancient microbial DNA due 

to cold temperatures and low oxygen levels (Cano et al., 2000, Zink et al., 2000, Tito et al., 

2012). Our previous study characterizing the gut microbiome of a pre-Columbian Andean 

mummy identified sequences associated with bacteria, archaea, fungi, pathogenic eukaryotes and 

eukaryotic viruses (Santiago-Rodriguez et al. 2015c); yet, no studies have demonstrated that the 

process of natural mummification also results in the preservation of bacteriophage DNA. 

Bacteriophage communities are usually characterized using viral metagenomics, which consists 

in the enrichment of viruses by CsCl gradient ultracentrifugation (Rosario et al., 2009, Walker, 

2010, Ly et al., 2014, Santiago-Rodriguez et al., 2015a). A previous study characterized the viral 
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communities of a 14
th

 century coprolite using viral metagenomics, but the method needs to be 

tested in mummified human specimens (Appelt et al., 2014). Shotgun metagenomics has also 

shown to provide information on microbial communities in ancient human samples (Adler et al., 

2013). While shotgun metagenomics is not selective for bacteriophage DNA, it is useful in 

characterizing phage communities in modern samples (Belda-Ferre et al., 2012, Santiago-

Rodriguez et al., 2015b). Therefore, by using metagenomics, we aim to: (i) determine the 

percentage of sequences associated with bacteriophages, (ii) identify bacteriophages sharing 

sequence homology to modern bacteriophages, and (iii) determine predicted functional 

categories associated with bacteriophages in the gut of naturally-preserved human mummies. 

 

MATERIALS AND METHODS 

Description of mummified human remains 

 The specimens studied are presently stored at the Museum of Anthropology and 

Ethnology of the University of Florence, Italy. Autopsies were performed by paleopathologists 

G. Fornaciari and colleagues, and specimens were collected from internal organs by cutting the 

skin and the ribs. The first mummy, FI3, was an adult male dating to the 14-15
th 

century which 

showed a good preservation of the skin with the adnexa and a massive presence of fungi and 

ectoparasites. The presence of microscopic, non-pathological fungi, including the genus 

Aspergillus (easily identifiable with Periodic Acid Schiff staining), is a very common finding in 

mummies as a post-mortem invasion phenomenon. DNA was extracted from abdominal viscera. 

The second mummy, FI9, was a female of estimated 18-23 years of age, dating to the 11
th

 

century A.D.  DNA was extracted from the descending colon, but the ascending and transverse 
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colon, as well as paleofeces were previously characterized by our group (Santiago-Rodriguez et 

al., 2015c). The third mummy, FI12, was an adult female, estimated age 20-25 years, and 

autopsy showed that she was afflicted by bronchopneumonia. An exact date for the mummy is 

unknown, but it is evident that she belonged to the Inca culture from the fetal position found in 

the burial basket. DNA was extracted from the transverse colon.  

 

Avoidance of contamination 

We employed the standard precautions for ancient DNA work including the use of sterile 

gloves, pretreatment of mortars, pestles, and homogenizers with HCl, use of UV-irradiated safety 

cabinets, dedicated gel trays, tanks and reagents. The autopsy was performed by 

paleopathologists wearing sterile surgical coats, sterile latex gloves, sterile masks, headdresses 

and overshoes. The outermost portions of the specimens were not used to eliminate the risk of 

surface contamination, and one replicate per sample was obtained for further analyses. The 

mummified specimens were immediately kept and sealed in sterile containers, reducing the 

possibility of subsequent contamination. The samples were stored aseptically in hermetic plastic 

containers in a dry environment with silica gel at 18-20 °C. DNA extraction and further 

precautions were performed as described previously (Santiago-Rodriguez et al., 2015c) and are 

detailed in Supplementary methods. 

 

Metagenome analyses for viruses 

DNA library preparation for metagenome sequencing was performed at the Next-

Generation sequencing provider Molecular Research Laboratory (MRDNA) 
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(www.mrdnalab.com; Shallowater, TX, USA) under strict procedures to eliminate cross-

contamination with modern DNA as described previously (Santiago-Rodriguez et al., 2015c). 

Libraries were sequenced using Illumina MiSeq following Truseq DNA library preparation 

protocol, and sequence files were processed as described previously (Santiago-Rodriguez et al., 

2015c). Data were then uploaded and annotated using the MG-RAST pipeline and taxonomic 

assignments were determined using the SEED database with a minimum e-value of 80% (Meyer 

et al., 2008). To determine the percentage of sequences associated with viruses and the predicted 

putative hosts at the phylum level, data were acquired from the Virus category. Sequences were 

also mapped to a virus database that included both prokaryotic and eukaryotic viruses 

(www.phantome.org; ftp://ftp.ncbi.nih.gov/genomes/Viruses/). Mapping was performed using 

CLC Genomics Workbench with the following parameters: no masking, mismatch cost=2, 

insertion cost=3, deletion cost=3, with an 80% identity over a minimum of 50% of the read 

length. Mapped reads were also retrieved from CLC Genomics Workbench as a SAM file and 

processed using mapDamage for further ancient DNA authentication as described previously 

(Ginolhac et al., 2011). Predicted functional categories associated with bacteriophages were 

analyzed using MG-RAST with a minimum e-value of 80%.  

 

16S rRNA gene analyses 

16S rRNA gene data from these mummies were used to associate the phages predicted 

putative hosts with the bacterial taxonomy at the phylum level. SourceTracker analyses were also 

performed to identify possible sources of contamination (Knights et al., 2011, Santiago-
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Rodriguez et al., 2015c, Santiago-Rodriguez et al., 2015d). 16S rRNA gene methods and 

analyses are described in Supplementary Methods. 

 

RESULTS 

Metagenome and 16S rRNA gene high-throughput sequencing data 

For the metagenome analyses, a total of 16,805,260 (mummy FI3), 146,081,692 (mummy 

FI9) and 16,537,474 (mummy FI12) sequences, with an average length of 100 bp were analyzed. 

For the 16S rRNA gene analyses, a total of 79,752 (mummy FI3), 8,731 (mummy FI9) and 

57,979 (mummy FI12) sequences with an average length of 270 bp were acquired, but data was 

rarefied to 8,000 sequences to minimize the effect of disparate sequence number in the results 

(Santiago-Rodriguez et al., 2015c). We utilized SourceTracker using 135 human (45 oral, 45 

skin, and 45 gut), and 45 soil microbiomes to identify possible sources of contamination in the 

mummified gut tissues (Supplementary Figure 1) (Santiago-Rodriguez et al., 2015c). Given 

that the samples were obtained from the mummies’ colon, it is expected some of the ancient 

sequences to match modern gut microbiomes, as in the case of mummy FI3. However, given that 

the sequences did not match the most likely sources of contamination (shown as unknown) in 

any of the mummies, namely skin and soil microbiomes, suggests that no external sources of 

contamination contributed to the findings reported in the present study (Santiago-Rodriguez et 

al., 2015c, Santiago-Rodriguez et al., 2015d). We also performed mapDamage analyses for 

mummy FI3 mapped viral reads, but did not note the typical DNA damage pattern at the 5’ or 3’ 

ends as described for eukaryotic genomes (Knapp et al., 2012, Der Sarkissian et al., 2014) 

(Supplementary Figure 2). 
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Natural mummification preserves bacteriophage DNA 

Metagenome analyses showed that the mummified guts included in the present study had 

sequence homology to viral genomes, with a proportion corresponding to bacteriophages. A total 

of 2,198 (mummy FI3), 74,052 (mummy FI9), and 275 (mummy FI12) sequences were 

homologous to viruses. Approximately 50.4%, 4.0% and 45.6% of the viral sequences in 

mummy FI3 were homologous to bacteriophages, eukaryotic viruses and unclassified viruses, 

respectively. Mummy FI9 had the majority of the viral sequences (93.7%) not matching 

bacteriophages or eukaryotic viruses (unclassified). Approximately 84.4%, 6.9% and 8.7% of the 

viral sequences in mummy FI12 were homologous to bacteriophages, eukaryotic viruses and 

unclassified viruses, respectively (Figure 1A). Analysis of the phage families showed that 42.9% 

(mummy FI3), 0.29% (mummy FI9) and 79.9% (mummy FI12) of the sequences were 

homologous to siphoviruses. Approximately 4.6% (mummy FI3), 0.04% (mummy FI9) and 3.6% 

(mummy FI12) of the sequences were homologous to myoviruses. Podoviruses represented 0.2% 

and 0.03% of the viral sequences in mummies FI3 and FI9, respectively. No podovirus-

homologous sequences were present in mummy FI12. Microviruses contributed 0.2%, 0.05% 

and 1.8% of the viral sequences in mummies FI3, FI9 and FI12, respectively. The remaining 

sequences associated with bacteriophages could not be classified (Figure 1B).  

 

Analyses of predicted putative hosts at the phylum level showed that the majority 

(80.4%) of the sequences associated with bacteriophages in mummies FI3 and FI12 were 

homologous to those having Firmicutes as the bacterial hosts. Other putative hosts at the phylum 
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level included the Proteobacteria, Actinobacteria or Cyanobacteria. Notably, mummy FI9 had the 

majority of the bacteriophage sequences sharing homology to those infecting Proteobacteria 

(93.6%) (Figure 2). 16S rRNA gene analyses showed that the Firmicutes were the most 

represented bacterial group in mummies FI3 (99.9%), FI9 (98.5%) and FI12 (99.4%) (Figure 2).  

 

Mapping results also demonstrated that reads in the mummified guts corresponded to 

phage homologs. Table 1 shows examples of the mapping results to presumptive bacteriophages 

with the highest number of reads and coverage. Examples include Staphylococcus, Cronobacter 

and Brochothrix phages in mummy FI3, Lactobacillus and Staphylococcus phages in mummy 

FI9, and Bacillus and Cronobacter phages in mummy FI12. Reads also mapped across 

bacteriophage genomes, although not broadly, in mummies FI3 (Figure 3A), FI9 (Figure 3B) 

and FI12 (Figure 3C). Examples shown include Staphylococcus bacteriophage StB20 

(Figure3A), Lactobacillus phage AQ113 (Figure 3B), and Enterobacteria phage phiX174 sensu 

lato (Figure 3C). Regions that mapped to modern Enterobacteria phage phiX174 in mummies 

FI3 (Panel A), FI9 (Panel B) and FI12 (Panel C) are shown in Supplementary Figure 3. 

Nucleotide differences between modern and ancient sequences are shown in red, and indicate 

that ancient sequences do not correspond to the standard spike-in control used in Illumina 

sequencing. 

 

 Predicted functional categories associated with bacteriophage genes were divided into 

structure (head and tail), entry and lysis, integrases, replication, packaging, antirepressors, 

repressors, virulence, introns and hypothetical proteins. The majority of the bacteriophage 
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categories in mummy FI3 corresponded to packaging (35.3%), and entry and lysis (31.2%) 

(Figure 4A). Mummy FI9 had the majority of the bacteriophage categories (98.7%) 

corresponding to integrases (Figure 4B). Most of the bacteriophage categories in mummy FI12 

corresponded to the entry and lysis (65.1%) (Figure 4C).  

 

DISCUSSION 

 Our data is consistent with authentic ancient DNA, as shown with the high level of 

fragmentation (Ubaldi et al., 1998) and the SourceTracker analyses (Santiago-Rodriguez et al., 

2015c). We also performed mapDamage analyses to assess patterns of DNA damage that could 

be consistent with ancient DNA (Der Sarkissian et al., 2014), but did not note these patterns with 

the phageomes tested. While mapDamage has proven to be useful in determining DNA damage 

in eukaryotic genomes (Knapp et al., 2012), the method still needs to be further tested in 

microbiomes. Damage artifacts are often used to authenticate ancient DNA, but these may 

represent a challenge when characterizing ancient microbiomes. DNA damage analyses may not 

always provide reliable information of ancient microbiomes as nucleotide differences could also 

represent a novel microorganism (Warinner et al., 2015). In addition, ancient DNA originating 

from microorganisms or eukaryotes would possibly need to be analyzed differently as different 

degrees of damage may be associated with specific taphonomic conditions.   

 

Little is known about bacteriophage DNA preservation in ancient human specimens 

(Appelt et al., 2014). Our study adds to the knowledge of ancient viruses by showing that the 

natural mummification process of the human gut results in the preservation of bacteriophage 
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DNA. While the recovering and sequencing methods differed, the relative abundances of 

siphoviruses, myoviruses, podoviruses and microviruses were virtually similar to previously 

reported viromes in extant human guts and coprolites (Breitbart et al., 2003, Appelt et al., 2014). 

Of interest was also the presence of sequences that were not homologous to known 

bacteriophages, consistent with their rapid evolution in modern human guts (Minot et al., 2013). 

These results are also consistent with previous studies showing that a proportion of viral 

sequences in the human gut usually cannot be assigned to existing reference genomes (Breitbart 

et al., 2003, Minot et al., 2011, Muniesa & Jofre, 2014).  

 

 While we have demonstrated that phage DNA is preserved in mummified gut tissue, the 

preservation processes remain to be elucidated. A possible explanation for bacteriophage DNA 

preservation in mummified gut tissue may include the replication cycles. A proportion of the 

sequences associated with bacteriophages in the mummies guts corresponded to integrases, 

antirepressors and repressors. While these genes are known to be markers of lysogeny and may 

suggest the presence of prophages, it is difficult to demonstrate with our current data that 

temperate bacteriophages were in a prophage state in the mummified gut tissues. However, it is 

reasonable to hypothesize that prophages were preserved along with their bacterial host 

genomes. Of interest is also the possibility that the process of natural mummification resulted in 

the induction of prophages due to desiccation, which is known to trigger the lytic cycle (Brovko, 

2007).  
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The detection of strictly virulent bacteriophage DNA is intriguing as it may suggest that 

there may be other mechanisms supporting bacteriophage preservation during the process of 

natural mummification of the human gut. It is known that lytic bacteriophages are persistent 

members of the human microbiome and can be detected up to 60 days in the oral cavity, 

suggesting that they may attach to mucous layers (Barr et al., 2013, Abeles & Pride, 2014, 

Edlund et al., 2015). Although similar studies have not been carried out in ancient samples, it is 

feasible that mucous layer(s) in mummified human specimens may also act as a reservoir of lytic 

bacteriophages (Fornaciari, 1993, Corthals et al., 2012). Intact capsids may aid in the 

preservation of bacteriophage DNA, but this still needs to be demonstrated with mummified gut 

tissue using electron microscopy (Appelt et al., 2014). Another possible explanation for the 

detection of bacteriophages in the mummified guts is their seemingly high proportions in the 

human gut, where concentrations may range between 10
7
 to 10

10
 per gram of feces (Muniesa & 

Jofre, 2014). This relatively high initial concentration may aid in the detection of bacteriophage 

DNA even if some inactivation has occurred during natural mummification.     

 

Given that lysogenic bacteriophages co-evolve with their bacterial hosts, culture-

independent methods using sequence homology have shown to be relatively accurate in 

predicting putative bacterial hosts up to the genus level in modern human viromes (Minot et al., 

2011, Ly et al., 2014). While the same techniques have shown to not possess this same 

specificity with strictly lytic bacteriophages, they are still useful in providing insights into 

predicted putative bacterial hosts (Ly et al., 2014). Previous studies have also associated 

predicted phage putative hosts with 16S rRNA gene data (Pride et al., 2012, Ly et al., 2014, 

Abeles et al., 2015, Santiago-Rodriguez et al., 2015a, Santiago-Rodriguez et al., 2015e), but 
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phageome relative abundances do not always mirror those of their bacterial hosts (Edlund et al., 

2015). This may be due to different dynamic relationships present for different host/phage pairs 

(Abeles et al., 2014, Ly et al., 2014, Abeles et al., 2015, Santiago-Rodriguez et al., 2015a). 

While associations between the phageome and 16S rRNA gene data exhibit limitations, results 

may still provide insights into phage-host interactions. 

 

Other possible reasons for specific bacteriophages being preserved in ancient gut 

phageomes may include differences in gender (Abeles et al., 2014), dietary habits (Minot et al., 

2011), and health status (Cadwell, 2015), which are known to affect the phageome in extant 

human guts. We can only speculate that differences in the mummies gender, dietary habits, 

culture and health status may influence their phageomes (Santiago-Rodriguez et al., 2015c). This 

may have been the case for mummy FI9, where, although the metagenome analyses generated > 

140 million sequences (compared to >16 million sequences for mummies FI3 and FI12), we can 

only hypothesized that differences in her phageome may be associated to the mentioned factors. 

Ideally, virome metagenomics would better capture these trends when compared to shotgun 

metagenomics. While we are in the process of developing a method to study bacteriophages and 

other viruses in ancient specimens using viral metagenomics, from the data it is evident that 

shotgun metagenomics provide insights on bacteriophage sequences in ancient human gut 

microbiomes. Results also provide insights into bacteriophage community structure and 

composition in the gut of naturally-preserved mummies. 
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Table 1. Examples of bacteriophage sequences mapping known bacteriophage genomes in mummies FI3, 

FI9 and FI12. Bacterial taxonomic classification at the family level was determined using 16S rRNA gene 

analyses. Family and relative abundance percentages are shown.  

Presumptive bacteriophage 
Phage 

family 

Number 

of reads 

Average Accession 

number 

Reference 

length 

(bp) coverage 

Mummy FI3 

  
 

  Acinetobacter phage 133 Myoviridae 48 7.51E-03 NC_015250.1 159,801 

Aeromonas phage 65 Myoviridae 93 9.62E-03 NC_015251.1 235,229 

Bacillus phage 0305phi8-36 Myoviridae 110 0.01 NC_009760.1 218,948 

Brochothrix phage A9 Myoviridae 295 0.1 NC_015253.1 127,065 

Campylobacter phage CP21 Myoviridae 101 0.02 NC_019507.1 182,833 

Cellulophaga phage phiST Siphoviridae 67 0.03 NC_020842.1 79,114 

Clostridium phage CDMH1 Myoviridae 60 0.05 NC_024144.1 54,279 

Cronobacter phage  vB_CsaM_GAP32 Myoviridae 411 0.05 NC_019401.1 358,663 

Cyanophage P-RSM6  Myoviridae 54 6.28E-03 NC_020855.1 192,497 

Enterobacteria phage phiX174 sensu lato Microviridae 21 0.26 NC_001422.1 5,386 

Erwinia phage Ea35-70 Myoviridae 69 5.41E-03 NC_023557.1 271,084 

Klebsiella phage K64-1 DNA Myoviridae 54 4.77E-03 NC_027399.1 346,602 

Mycobacterium phage Myrna Myoviridae 135 0.02 NC_011273.1 164,602 

Pelagibacter phage HTVC008M Myoviridae 77 0.01 NC_020484.1 147,284 

Prochlorococcus phage P-HM2 Myoviridae 98 0.01 NC_015284.1 183,806 

Pseudomonas phage 201phi2-1 Myoviridae 93 6.85E-03 NC_010821.1 316,674 

Pseudomonas phage PaBG Myoviridae 176 0.03 NC_022096.1 258,139 

Sphingomonas phage PAU Myoviridae 90 0.01 NC_019521.1 219,372 

Staphylococcus phage StB20 Siphoviridae 1127 2.5 NC_019915.1 40,917 

Staphylococcus phage Twort Myoviridae 172 0.06 NC_007021.1 130,706 

Synechococcus phage ACG-2014f  Myoviridae 219 0.04 NC_026927.1 228,143 

Synechococcus phage S-SKS1 Siphoviridae 149 0.02 NC_020851.1 208,007 

Vibrio phage KVP40 Myoviridae 65 5.93E-03 NC_005083.2 244,834 

Yersinia phage phiR1-37 Myoviridae 106 0.01 NC_016163.1 262,391 

   
 

  Mummy FI9 

  
 

  Enterobacteria phage phiX174 sensu lato Microviridae 416 1.86 NC_001422 5,386 

Lactobacillus phage AQ113 Myoviridae 4215 0.05 NC_019782 36,566 

Staphylococcus phage StB20 Siphoviridae 7695 0.04 NC_019915 40,917 

   
 

  Mummy FI12 

  
 

  Bacillus phage G Myoviridae 263 0.41 NC_023719.1 497,513 

Cronobacter phage vB_CsaM_GAP32 Myoviridae 168 0.07 NC_019401.1 358663 

Enterobacteria phage phiX174 sensu lato Microviridae 47 1.86 NC_001422.1 5,386 

Pseudomonas phage phiKZ Myoviridae 51 0.06 NC_004629.1 280,334 

*Not detected. 
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Figure legends 

 

 

Figure 1. Panel A shows the percentage of sequences homologous to phages, eukaryotic viruses 

and unclassified viruses. Percentage was calculated based on the total number of sequences 

corresponding to viruses. Panel B shows the percentage of sequences corresponding to phage 

families. Families included the Siphoviridae, Myoviridae, Podoviridae, Microviridae and 

unclassified, and were determined based on sequence homology to known phages.  
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Figure 2. Bacteriophage predicted putative bacterial host at the phylum level was determined 

based on sequence homology. Predicted putative hosts included the Firmicutes, Proteobacteria, 

Actinobacteria, Cyanobacteria and unclassified. Figure also shows the bacterial phylum based on 

analysis of the 16S rRNA gene variable region V4. 
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Figure 3. Examples of mapping results in mummies FI3 (Panel A), FI9 (Panel B), and FI12 

(Panel C). Examples included presumptive Staphylococcus phage StB20 (mummy FI3), 

Lactobacillus phage AQ113 (mummy FI9) and Enterobacteria phage phiX174 sensu lato 

(mummy FI12). Reads mapping to the phage genomes are shown in red. 
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Figure 4. Functional categories attributed to bacteriophages. Categories included structure (head 

and tail), entry and lysis, integrases, replication, packaging, antirepressors, repressors, virulence 

genes, introns and hypothetical proteins.      
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Supplementary Figure 1. Bayesian-SourceTracker analyses for the determination of possible 

sources of contamination. Gut sequences from mummies FI3 (Panel A), FI9 (Panel B) and FI12 

(Panel C) were compared to extant gut (purple), oral (blue), skin (green) and soil (pink) 

microbiomes. Sequences not matching any of the human and /or soil sources (unknown) are 

shown in gray. 

 

Supplementary Figure 2. mapDamage results for mummy FI3 viral reads at the first and last 25 

bases. 

 

Supplementary Figure 3. Selected regions that mapped to modern Enterobacteria phage 

phiX174 in mummies FI3 (Panel A), FI9 (Panel B) and FI12 (Panel C). Differences between 

modern and ancient Enterobacteria phage phiX174 are shown in red.  

 


