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Abstract— Offset-free Model Predictive Control formulations
refer to a class of algorithms that are able to achieve output
tracking of reference signals despite the presence of plant/model
mismatch or unmeasured nonzero mean disturbances. The
general approach is to augment the nominal system with
disturbances, i.e. to build a disturbance model, and to estimate
the state and disturbance from output measurements. Some
alternatives are available, which are based on a non augmented
system with state disturbance observer, or on velocity form
representations of the system to be controlled. In this paper,
we review the disturbance model approach and two different
approaches in a coherent framework. Then, differently from
what is reported in the literature, we show that the two
alternative formulations are indeed particular cases of the
general disturbance model approach.

I. INTRODUCTION

Model Predictive Control (MPC) solves, at each decision
time, an optimal control problem in which control and state
trajectories are related by a nominal model of the controlled
process. The cost function typically takes into account the
future (i.e. predicted) output tracking error and the input
variation (or deviation from a target). The first input of the
optimal control sequence is injected into the plant, and the
overall algorithm is repeated again the next decision time
given the new current state. If the actual process and the
nominal model perfectly match, under mild assumptions this
feedback control scheme can be shown to be stabilizing, and
the output tracks any reachable target without offset.

Whenever permanent, nonzero mean, disturbances are
present and/or there is mismatch between the MPC model
and the actual plant, a more elaborate strategy is required
to achieve offset-free tracking of the output. The earliest
ones as Dynamic Matrix Control (see e.g. [1, Sec. 5.2]),
applicable only to open-loop stable systems, were based on
the use of step-response models for prediction of the nominal
output response to which a constant output correction term
is added. This correction term is defined as the difference
between the actual and the nominal output, and represents
a particular form of disturbance model, namely the output
disturbance model. State-space MPC formulations based on
more general disturbance models and observers have been
proposed and discussed more recently [2]–[8]. In these for-
mulations, the nominal system is augmented with integrating
states (called disturbances), which are estimated from the
output measurements by means of an observer, designed for
the augmented system. In the case of measurable state, Tat-
jewski [9] discussed a state disturbance formulation that does
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not require state augmentation. This method was recently
extended to the case of output feedback [10] by adding a
state disturbance estimator and an appropriate output bias
term. Alternative state-space formulations are based on so-
called velocity form representations of the system, in which
the input and (possibly) the state are replaced by their rate-
of-change (see e.g. [11]–[14] and references therein). Offset-
free control is achieved by this approach without the need
of defining and estimating disturbances.

It is arguable that every method has some merits and some
drawbacks. This paper has three main objectives.

1) Review three different formulations within a unified
framework in order to establish more easily assump-
tions and requirements of each method.

2) Show that the state disturbance observer method [10]
and the velocity form approach are both particular
cases of the general disturbance model approach.

3) Transfer the ease of tuning of the state disturbance
observer method [10] to the other methods.

Notation: C, R and Z denote the fields of complex,
real, and integer numbers, respectively. Given x : Z→ Rn,
we define δx : Z→ Rn as δx(k) := x(k)− x(k− 1). A real
square matrix is said to be Hurwitz if all its eigenvalues lie
in the interior of the unit circle. Given x ∈Rn and a positive
semi-definite matrix Q ∈ Rn×n, we denote ‖x‖2

Q := x′Qx.

II. PRELIMINARIES
A. Actual system, nominal model and main assumptions

We consider linear, discrete-time, time-invariant systems:

x+ = Ax+Bu+w

y =Cx+ v
(1)

in which x ∈ Rn, u ∈ Rm, y ∈ Rp are the system state, input
and output at a given time, respectively, x+ is the successor
state, w ∈ Rn is the state disturbance, v ∈ Rp is the output
disturbance. Disturbances are unknown but satisfy: w(k) ∈
W⊂ Rn and v(k) ∈ V⊂ Rp for all k ∈ Z.

Assumption 1: The plant output y is measured at each
time k ∈ Z. The pair (A,B) is stabilizable, the pair (C,A)
is detectable, and the following condition holds true:

rank
[

A− I B
C 0

]
= n+ p (2)

Remark 2: Condition (2) is necessary for the output y to
track an arbitrary target ȳ, and implies that p≤ m.

The nominal system dynamics is given by:

x̂+ = Ax̂+Bu

ŷ =Cx̂
(3)



The nominal state needs to be estimated at each sampling
time given the output measurement. Among the various
available methods, without loss of generality, we restrict our
attention to the so-called current observer in which, at each
time k, the current state prediction computed at time k−1 is
updated using the measured output y(k) as follows:

x̂(k) = Ax̂(k−1)+Bu(k−1)︸ ︷︷ ︸
nominal prediction

+K(y(k)− ŷ∗(k))︸ ︷︷ ︸
correction

(4)

in which

ŷ∗(k) :=C(Ax̂(k−1)+Bu(k−1)) (5)

is the predicted output, and K ∈ Rn×p is the observer gain.
By combining (1), (4) and (5), we can obtain the dynamics
of the state estimate error, defined as ε := x− x̂, as follows:

ε(k) = Ax(k−1)+Bu(k−1)+w(k−1)
− [Ax̂(k−1)+Bu(k−1)+K(y(k)− ŷ∗(k))]

= (A−KCA)ε(k−1)+(I−KC)w(k−1)+Kv(k)

B. Optimal control problem formulation

Let x̃ be the current state and ũ the previously ap-
plied input. Let x =

[
x(0) x(1) · · · x(N)

]
, and u =[

u(0) u(1) · · · u(N−1)
]

be, respectively, a state se-
quence and an input sequence. The Finite Horizon Optimal
Control Problem (FHOCP) that is solved at each time,
denoted by P(x̃, ũ, d̃x, d̃y), is the following:

min
x,u

N−1

∑
i=0

`(e(i),δu(i))+Vf (x(N),u(N−1)) s.t. (6a)

x(0) = x̃, u(−1) = ũ (6b)

x(i+1) = Ax(i)+Bu(i)+ d̃x (6c)
u(i) ∈ U, δu(i) ∈ δU (6d)

y(i) :=Cx(i)+ d̃y ∈ Y (6e)

in which δu(i) := u(i)− u(i− 1) is the control increment,
e(i) := ŷ(i)− ȳ=Cx(i)+ d̃y− ȳ is the predicted tracking error,
and the cost function `(·) is given by

`(e,δu) := ‖e‖2
Q +‖δu‖2

R

where ȳ represents the desired (achievable) output target.
The matrices Q and R are assumed to be positive definite.
The sets U, δU, Y are assumed to be polyhedral. The
vectors d̃x ∈ Rn and d̃y ∈ Rp represent the predicted state
and output disturbances (cfr. (6c) and (6e)), and they are
precisely defined for each offset-free method later on. Vf (·) is
the terminal cost, which may vary depending on the specific
MPC formulation. In order for P(·) to be equivalent to an
infinite horizon problem, Vf (·) can be chosen as follows:

Vf (x,u) :=
∥∥∥∥[x− x̄

u− ū

]∥∥∥∥2

P

in which (x̄, ū) are state and input steady-state targets,
respectively, which satisfy:

x̄ = Ax̄+Bū+ d̃x

ȳ =Cx̄+ d̃y
(7)

with ū ∈ U and ȳ ∈ Y. The matrix P is the solution to the
discrete-time algebraic Riccati equation for the following
Linear Quadratic Regulation (LQR) matrices: AP :=

[
A 0
0 0

]
,

BP := [B
I ], QP :=

[Q 0
0 R

]
, RP := R, MP :=

[
0
−R
]
.

We observe that problem P(·) is parametric in the current
state x̃, the previously applied input ũ, and the current
state/output disturbance pair (d̃x, d̃y). Moreover, depending
on the specific MPC formulation, the target tuple (ȳ, x̄, ū)
satisfying (7) can be regarded as a parameter of P(·) when
it is computed by a separate target calculation problem or
as a decision variable of P(·) in so-called single-layer MPC
formulations.

III. METHODS FOR OFFSET-FREE TRACKING

In this Section, we review three different methods for
offset-free MPC design within a coherent framework.

A. Method 1: disturbance model and observer

The first method to achieve offset-free tracking is to
augment the nominal system dynamics (3) with additional
integrating states, usually referred to as disturbances. The
general augmented system can be written as follows [2]–[8]:

x̂+ = Ax̂+Bu+Bd d̂

d̂+ = d̂

ŷ =Cx̂+Cd d̂

in which d̂ ∈Rnd is the so-called disturbance. The evolution

of the augmented state ξ̂ :=
[

x̂
d̂

]
can be rewritten as

ξ̂
+ = Aaξ̂ +Bau

ŷ =Caξ̂
(8)

in which:

Aa :=
[

A Bd
0 I

]
, Ba :=

[
B
0

]
, Ca :=

[
C Cd

]
(9)

The following results are known [3], [5], and provide the
basis for estimating the augmented state ξ̂ .

Proposition 3: The pair (Ca,Aa) is detectable if and only
if (C,A) is detectable and

rank
[

A− I Bd
C Cd

]
= n+nd (10)

Proposition 4: There exist matrices (Bd ,Cd) such that
condition (10) holds if and only if nd ≤ p.

Assuming that (Bd ,Cd) are chosen to satisfy (10), the
augmented state is estimated at each time k given the output
measurement by means on the current observer for (8):

ξ̂ (k) = Aaξ̂ (k−1)+Bau(k−1)+Ka(y(k)− ŷ∗(k)) (11)

in which
Ka :=

[
Kx
Kd

]
(12)

is the augmented observer gain matrix, and ŷ∗(k) is the
predicted output given by

ŷ∗(k) :=Ca(Aaξ̂ (k−1)+Bau(k−1)) (13)



Finally, given the current augmented state ξ̂ (k) =
[

x̂(k)
d̂(k)

]
,

the offset-free MPC algorithm based on Method 1 solves
problem P(·) in (6) using the following definitions:

x̃ := x̂(k), d̃x := Bd d̂(k), d̃y :=Cd d̂(k) (14)

Remark 5: The augmented state formulation (8) is only
necessary to obtain the pair (x̂(k), d̂(k)), and consequently
to define (d̃x, d̃y), but it is not used in P(·).

B. Method 2: state disturbance observer

The second method, proposed by Tatjewski [9], [10], is
not based on an augmented system.

At each time k, the current state is estimated by means of
(4) and (5) for a given observer gain K ∈Rn×p chosen such
that (A−KCA) is Hurwitz. Given this estimate x̂(k), a state
disturbance is consequently defined and computed as:

dx(k) := x̂(k)− (Ax̂(k−1)+Bu(k−1))
= K(y(k)−C(Ax̂(k−1)+Bu(k−1)))

(15)

In addition an output correction term, which is necessary to
ensure offset-free tracking, is defined as:

dy(k) := y(k)−Cx̂(k) (16)

Thus, the prediction model used, at time k, is given by:

x̂+ = Ax̂+Bu+dx(k)

ŷ =Cx̂+dy(k)
(17)

Hence, the offset-free MPC algorithm based on Method 2
solves problem P(·) in (6) using the following definitions:

x̃ := x̂(k), d̃x := dx(k), d̃y := dy(k) (18)

C. Method 3: velocity form model

The third method is based on the so-called velocity form
model, which can be easily derived from (3) as:

δ x̂+ = Aδ x̂+Bδu

ŷ+ = ŷ+CAδ x̂+CBδu
(19)

By subtracting the output target from both sides of the second

equation, defining the augmented state ξ̂δ :=
[

δ x̂
ŷ− ȳ

]
, and

considering the model tracking error ê := ŷ− ȳ as the output,
we can rewrite (19) as:

ξ̂
+
δ
= Aδ ξ̂δ +Bδ δu

ê =Cδ ξ̂δ

(20)

in which

Aδ :=
[

A 0
CA I

]
, Bδ :=

[
B

CB

]
, Cδ :=

[
0 I

]
(21)

Let ξδ :=
[

δx
y− ȳ

]
. From (1), we observe that the actual

system evolution in velocity form is the following:

ξ
+
δ
= Aδ ξδ +Bδ δu+

[
δw

Cδw+δv+

]
e =Cδ ξδ

(22)

in which we notice that e := y− ȳ is the actual tracking error.
Therefore, from (20) and (22), it follows that the velocity
form model is exact also in the presence of constant state and
output disturbances, i.e. whenever δw = 0, δv = 0. For this
reason, it does not need a disturbance model to compensate
for constant nonzero disturbances.

The next result (proof, based on the Hautus Lemma, is
omitted due to space limitations) provides the basis for
estimating the augmented state of the velocity form ξ̂δ .

Proposition 6: The pair (Cδ ,Aδ ) is detectable if and only
if (C,A) is detectable.

Thus, under Assumption 1, the augmented state of the
velocity form model (20) can be obtained from the measured
tracking error by means of the current observer as follows:

ξ̂δ (k) = Aδ ξ̂δ (k−1)+Bδ δu(k−1)+Kδ (e(k)− ê∗(k)) (23)

in which

Kδ :=
[

Kδx
Ke

]
, ê∗(k) :=Cδ (Aδ ξ̂δ (k−1)+Bδ δu(k−1))

(24)
Notice that Kδ should be chosen such that (Aδ −KδCδ Aδ )
is Hurwitz. Most often, given that the second component of
the velocity form state is a measurable quantity, namely the
tracking error, it is customary to use a deadbeat observer for
that state component, i.e. Ke = I, so that we obtain

ŷ(k)− ȳ = e(k) = y(k)− ȳ (25)

From (25), it follows that the model output ŷ(k) is implicitly
realigned to the measured output y(k) at each decision time.

Let ξ̃δ denote the current augmented state estimate given
by (23) and ũ the previously applied input. When using
the velocity form, the FHOCP (6) should be equivalently
rewritten as follows, and denoted by Pδ (ξ̃δ , ũ):

min
ξξξ ,δδδuuu

N−1

∑
i=0

`(Cδ ξδ (i),δu(i))+V δ
f (ξδ (N)) s.t. (26a)

ξδ (0) = ξ̃δ (26b)
ξδ (i+1) = Aδ ξδ (i)+Bδu(i) (26c)

ũ+
i

∑
j=0

δu( j) ∈ U, δu(i) ∈ δU (26d)

Cδ ξδ (i)+ ȳ ∈ Y (26e)

in which ξξξ =
[
ξ (0) ξ (1) · · · ξ (N)

]
and δδδuuu =[

δu(0) δu(1) · · · δu(N−1)
]

are the state and input
sequences of the velocity form.

In order for Pδ (·) in (26) to be equivalent to an infinite
horizon problem, the terminal cost function V δ

f (·) can be
defined as: V δ

f (ξ ) := ‖ξ‖2
Pδ

, in which Pδ is the solution to
the discrete-time algebraic Riccati equation for the following
LQR matrices: Aδ , Bδ := [B

I ], Qδ :=
[0 0

0 Q
]
, Rδ := R. Notice

that existence of Pδ requires the pair (Aδ ,Bδ ) to be stabi-
lizable and (Q1/2

δ
,Aδ ) detectable. To this aim we have the

following results (proofs, based on the Hautus Lemma, are
omitted due to space limitations).

Proposition 7: The pair (Aδ ,Bδ ) is stabilizable if and only
if (A,B) is stabilizable and condition (2) holds true.



Proposition 8: The pair (Q1/2
δ

,Aδ ) is detectable if and
only if (C,A) is detectable and Q is positive definite.

IV. MAIN RESULTS

The main results of this work are now presented. We show
that Method 2 and Method 3 are particular cases of Method 1.

A. Method 2 vs. Method 1

Theorem 9: Method 2 described in Section III-B is a
particular case of Method 1 described in Section III-A using:

Bd = K, Cd = I−CK, Kx = K, Kd = I (27)

and, for all k ∈ Z there holds d̂(k) = dy(k)+Cdx(k).
Proof: Considering the disturbance model matrices

defined in (27), from (9), (11) and (12), the evolution of
the augmented state is given by:[

x̂(k)
d̂(k)

]
=

[
A K
0 I

][
x̂(k−1)
d̂(k−1)

]
+

[
B
0

]
u(k−1)+[

K
I

]
(y(k)− ŷ∗(k)) (28)

in which, from (13), the predicted output ŷ∗(k) is given by:

ŷ∗(k)=
[
C I−CK

]([A K
0 I

][
x̂(k−1)
d̂(k−1)

]
+

[
B
0

]
u(k−1)

)
=CAx̂(k−1)+CBu(k−1)+ d̂(k−1) (29)

From (28) and (29), after simplification, it follows that:

x̂(k) = Ax̂(k−1)+Bu(k−1)
+K(y(k)−C(Ax̂(k−1)+Bu(k−1))

= Ax̂(k−1)+Bu(k−1)+dx(k)

d̂(k) = y(k)−C(Ax̂(k−1)+Bu(k−1))
= dy(k)+Cdx(k)

which, by inspection of (15)-(16), completes the proof.
We next show that the augmented system (implicitly) used

by Method 2 is detectable, and that the associated augmented
observer is asymptotically stable.

Proposition 10: Consider an augmented system (8)-(9)
with matrices Bd := K, Cd := I−CK, and K chosen such
that (A−KCA) is Hurwitz. Then, the detectability condition
of the augmented system (10) holds true.

Proof: To show that (10) holds, consider the system:[
A− I K

C I−CK

][
x
y

]
=

[
0
0

]
(30)

or equivalently:

(A− I)x+Ky = 0, Cx+(I−CK)y = 0 (31)

Rearranging (31) we obtain:

(A− I)x+Ky = 0, y+CAx = 0 (32)

and combining (32) we obtain:

(A−KCA− I)x = 0⇒ x = 0

where the last step comes from the fact that (A−KCA) is
Hurwitz, and hence (A−KCA− I) is invertible. Finally, y+
CAx = 0 and x = 0 imply y = 0. Thus, the unique solution

to (30) is
[

x
y

]
=

[
0
0

]
, which completes the proof.

Proposition 11: Consider an augmented system observer
(8), (9), (11), (12) with matrices Bd := K, Cd := I −CK,
Kx := K, Kd := I, and K chosen such that (A−KCA) is
Hurwitz. Then, the associated augmented observer matrix
(Aa−KaCaAa) is Hurwitz.

Proof: We can write:

Aa−KaCaAa =

[
A K
0 I

]
−
[

K
I

][
C I−CK

][A K
0 I

]
=

[
A K
0 I

]
−
[

KCA K
CA I

]
=

[
A−KCA 0
−CA 0

]
(33)

Thus, the matrix (Aa−KaCaAa) has the same eigenvalues
of (A−KCA) and p zero eigenvalues. Since by assumption
(A−KCA) is Hurwitz, the claim is proved.

Remark 12: From (33) we notice that the augmented sys-
tem observer (implicitly) used in Method 2, is deadbeat with
respect to the mixed state/output disturbance, d̂ = dy +Cdx,
and does not alter the closed-loop dynamics of the state
estimate error still governed by (A−KCA).

B. Method 3 vs. Method 1
Proposition 13: Consider the velocity form observer (23)-

(24) with Ke = I. The associated matrix (Aδ −KδCδ Aδ ) is
Hurwitz if and only if Kδx is chosen such that (A−KδxCA)
is Hurwitz.

Proof: We can write:

(Aδ −KδCδ Aδ ) =

[
A 0

CA I

]
−
[

Kδx
I

][
0 I

][ A 0
CA I

]
=

[
A 0

CA I

]
−
[

Kδx
I

][
CA I

]
=

[
A 0

CA I

]
−
[

KδxCA Kδx
CA I

]
and finally

(Aδ −KδCδ Aδ ) =

[
A−KδxCA −Kδx

0 0

]
(34)

which completes the proof.
Remark 14: From (34) we notice that (Aδ −KδCδ Aδ ) has

p eigenvalues at the origin, which are associated with the
deadbeat estimation of the tracking error, in accordance with
(25).

Theorem 15: Method 3 described in Section III-C, with
Ke = I, is a particular case of Method 1 described in
Section III-A using:

Bd = Kδx, Cd = I−CKδx, Kx = Kδx, Kd = I (35)
Proof: Consider the velocity form observer (23)-(24)

with Ke = I. By expanding and rearranging the various terms
in (23)-(24), and recalling (21) and (34), we obtain:

δ x̂(k) = (A−KδxCA)δ x̂(k−1)+
(B−KδxCB)δu(k−1)+Kδx(e(k)− ê(k−1))

ê(k) = e(k)



which can also be rewritten as:

δ x̂(k) = (A−KδxCA)δ x̂(k−1)+
(B−KδxCB)δu(k−1)+Kδx(e(k)− e(k−1)) (36)

Now consider the evolution of the augmented system of
Method 1 with matrices given in (35), which can be written:

x̂(k) = Ax̂(k−1)+Bu(k−1)
+Kδx(y(k)−C(Ax̂(k−1)+Bu(k−1))) (37)

By rewriting (37) at time k−1 and taking the difference of
both sides, we obtain:

δ x̂(k) = Aδ x̂(k−1)+Bδu(k−1)+Kδx(y(k)− y(k−1))
−KδxC(Aδ x̂(k−1)+Bδu(k−1))) (38)

Since there holds:

y(k)− y(k−1) = (y(k)− ȳ)− (y(k−1)− ȳ)

= e(k)− e(k−1) (39)

we can rewrite (38) as

δ x̂(k) = (A−KδxCA)δ x̂(k−1)+
(B−KδxCB)δu(k−1)+Kδx(e(k)− e(k−1)) (40)

The proof is completed by comparing (40) with (36).
Remark 16: By comparing Thm. 9 and Thm. 15 we easily

see that Method 2 and Method 3 (with Ke = I) are also
equivalent to each other if K = Kδx.

C. Tuning

One aspect that is not straightforward in the design of
offset-free MPC systems is the choice of various matrices
that appear in the algorithm. This difficulty is common to
all methods, in which at least an observer gain needs to be
defined, but it is clear Method 1 requires the choice of the
disturbance model matrices (Bd ,Cd) and of the augmented
observer gain matrices (Kx,Kd). An important aspect to
remark is that, in general any choice of (Bd ,Cd) respecting
(10) is equivalent because there exist observer gain matrices
(Kx,Kd) which make the augmented system defined by the
tuple (Aa,Ba,Ca,Ka) algebraically equivalent to any desired
augmented system based on the same nominal model matri-
ces (A,B,C) but different (Bd ,Cd) (see [15], [16] for details).
Therefore, strictly speaking, only (Kx,Kd) need to be chosen.

The equivalence results of Thm. 9 and Thm. 15 suggest a
simple and unified approach for tuning (Bd ,Cd ,Kx,Kd) in
Method 1 (or (Kδx,Ke) in Method 3) which follows the
approach of Method 2. First, choose the observer gain K
such that the non-augmented system characteristic matrix
(A−KCA) has desired properties, e.g. assigned eigenvalues.
Then, for Method 1, use (27) to define (Bd ,Cd ,Kx,Kd). For
Method 3 instead, use Kδx = K and Ke = I. Clearly, this
simple tuning may be sensitive to output noise because
it places p observer poles at the origin. This aspect is
highlighted by an illustrative example in the next section.
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Fig. 1. Time varying state disturbances.

V. ILLUSTRATIVE EXAMPLE

As illustrative example, we consider the 2 input, 2 output
system defined by the matrices [10]:

A =

[0.958 0 0 0
0 0.9418 0 0
0 0 0.9048 0
0 0 0 0.9277

]
, B =

[0.25 0
0.25 0

0 0.5
0 0.5

]
,

C =
[

0.1678 0 0.9516 0
0 0.2329 0 0.289

]
Inputs are assumed to be constrained, ‖u‖∞ = 2, and the
output is required to track a piece wise constant target despite
the presence of (unmeasured) time varying disturbances on
the state dynamics, w(k) for all k ∈ Z, as depicted in Fig. 1.
The output measurement is affected by normally distributed
random noise, v(k) for all k ∈ Z. We compare three MPC
algorithms:
• MPC-0 is a standard (non offset-free) algorithm, i.e.

it uses d̃x = 0, d̃y = 0. The state observer gain K in
(4) is computed such that the observer poles are at
(0.60,0.61,0.62,0.63).

• MPC-1 uses Method 2 with the same observer gain K
as MPC-0.

• MPC-2 uses Method 1 with disturbance model matrices
chosen such that

[
Bd
Cd

]
is an orthonormal basis of null

space of
[

A−I
C

]′, and the augmented observer gain is
Ka is computed such that the observer poles are at
(0.60,0.61,0.62,0.63,0.50,0.50).

For all algorithms we use: N = 100, Q = I, R = I.
Given the results of this paper, MPC-1 based on Method 2

is also equivalent to using Method 1 with Bd = K, Cd =
I −CK, Kx = K, Kd = I or Method 3 with Kδx = K and
Ke = I. Moreover, the augmented observer poles of MPC-1
are inherently placed at (0.60,0.61,0.62,0.63,0,0).

Comparative results are reported in Fig. 2. As expected
MPC-0 is not able to track the desired target without offset,
whereas MPC-1 and MPC-2 eliminate permanent offset. The
behavior of MPC-1 and MPC-2 is similar in terms of outputs,
but the input generated by MPC-1 appears less smooth than
that of MPC-2. This behavior occurs due to the fact that
MPC-1 has two observer poles at the origin, whereas in
MPC-2 the corresponding poles are placed at 0.5, and hence
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Fig. 2. Closed-loop outputs (top) and inputs (bottom) using MPC-0, MPC-1 and MPC-2. Output target is also shown in top plots.

are less sensitive to measurement noise. The closed-loop
cost function, JCL = ∑k ‖y(k)− ȳ(k)‖2

Q +‖u(k)−u(k−1)‖2
R,

is equal to 1.356 for MPC-0, 1.017 for MPC-1 and 0.934
for MPC-2. Thus, compared to MPC-2, MPC-0 is 45.2%
suboptimal and MPC-1 is 8.84% suboptimal.

VI. CONCLUSIONS
Offset-free MPC algorithms are usually designed by aug-

menting the nominal system with a disturbance model,
and estimating the augmented state with an observer. This
paper showed that two known (and supposedly alternative)
offset-free MPC formulations, namely the state disturbance
observer approach [10] and the velocity form approach,
are particular cases of the disturbance model formulation.
It is therefore no longer appropriate to consider them as
alternative formulations, but simply as particular choices
of the general approach. Hence, the debate about which
formulation is better, simpler or more generally applicable
should be reconsidered.
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