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Abstract 

More than 180 millions of subjects in the world are infected by Hepatitis C Virus (HCV), 

and about 20% of them with HCV chronic infection progress to cirrhosis. Furthermore, 

numerous HCV extrahepatic manifestations have been reported in up to 74% of patients, as 

mixed cryoglobulinemia, lymphomas, rheumatic disorders, autoimmune thyroiditis, 

hypothyroidism, papillary thyroid cancer, and type 2 diabetes. Advances in understanding the 

HCV life cycle, and the inflammatory processes (involving a complex network of cytokines 

and chemokines) associated with HCV chronic infection, have led to substantial 

advancements in therapy. The combination of ribavirin and PEGylated interferon-α was 

the standard of therapy for HCV chronically infected patients in the last decades. 

However, interferon has limited effectiveness and is associated with severe adverse effects. 

Recently, direct-acting antivirals (DAAs) that act as inhibitors of N5SA, or polymerase, 

or protease have been shown to result in shorter duration of therapy, better efficacy 

and tolerance, with respect to ribavirin and PEGylated interferon-α . Circulating CXCL10 

levels, and the interleukin(IL)-28B gene polymorphisms, are associated with the success 

of the therapy both with DAAs or ribavirin and PEGylated interferon-alpha. New DAAs 

targeting the HCV at various molecular levels have been developed to eradicate HCV. 

Moving to interferon-free therapies should offer new treatments for resistant HCV genotypes, 

and for ineligible patients or patients failing to respond to prior therapies. 

Many efforts have been made to understand the factors that are involved with 

clearance of HCV to personalize the therapy for each patient, with the aim to reduce 

side effects, increasing the sustained virologic response rate, and to prevent the 

progression of the disease. 

 

 



EDITORIAL 

 

More than 180 millions of subjects in the world are infected by Hepatitis C Virus (HCV), 

and about 20% of them with HCV chronic infection progress to cirrhosis [1]. 

Furthermore, numerous extrahepatic manifestations (HCV-EHMs) have been reported in up 

to 74% of patients [2-5]. HCV strategies that limit or delay the initiation of innate antiviral 

responses are important in determining the final outcome of the infection [6]. High rate of 

replication and error prone genome replication machinery enable HCV to evade immune 

recognition. This delay of an effective immune response allows HCV to establish widespread 

infection in liver and extra-hepatic tissues and cells. Changing viral epitopes induces a failure 

of the adaptive immune response. Moreover, neutralizing antibody epitopes may be hidden by 

decoy structures, lipoproteins and glycans [7, 8]. Also, T cell responses fail due to changing 

viral epitope sequences; while the phenomenon of exhaustion is probably evolved to limit 

immune-mediated pathology [9]. As a result, immune-mediated clearance of HCV infection is 

occurring only in about 20% of people, by innate and adaptive immune mechanisms [10].  

A complex orchestration of cytokines and chemokines coordinate immune response, 

both innate and adaptive, in the initial phases of HCV infection, and plays a pivotal role in 

controlling viral replication and liver damage [11]. Among cytokines, it is well known that the 

production of and/or response to interferons (IFNs) are very important in the induction of the 

immune response during chronic HCV infection (CHC) [12, 13], and several studies have 

shown that patients with CHC have a deregulated IFNs response [14]. In fact, patients who 

already have a high level of endogenous IFN-stimulated genes (ISGs) expression do not 

achieve viral clearance or have a poor response to treatment with IFN-α [15]. The viral and/or 

host factors that are responsible for the greater baseline ISGs expression in certain HCV 

patients remain to be determined [16]. Recently, it has been shown that type III IFNs, and in 

particular the new discovered IFN-λ4, play a dominant role in driving ISGs response and in 

contributing to the viral clearance or persistence [17-19].  



A predominance of the Th1 immune response (and related cytokines/chemokines) has been 

shown in CHC and in HCV-EHMs [20, 21]. Interferons, and chemokines inducible by 

interferon-γ [(C-X-C motif) ligand (CXCL)9, -10 and -11] recruit inflammatory cells into 

the hepatic parenchyma (when the infection is not controlled) producing chronic 

inflammation and fibrosis of the liver, that may results in hepatic cirrhosis [22-25]. A 

complex dysregulation of cytokines and chemokines response is associated with HCV 

systemic manifestations [mixed cryoglobulinemia (MC), lymphomas, autoimmune 

diseases of the thyroid (AITD), type 2 diabetes], and involves overall the Th1 

cyokines/chemokines [23, 26]. HCV escapes immunity interfering at various levels with 

cytokines/chemokines, and inducing a Th2/Tc2 immune response [26, 27]. The 

administration of interferon-α can induce the HCV clearance during CHC, and can 

revert the progression to cirrhosis, reducing CXCL10 levels [25, 28]. It has been 

suggested that agents directed to neutralize CXCL10 could increase the 

responsiveness of patients to traditional therapies of HCV infection, simultaneously 

reducing inflammatory immune cell activation [29]. Many studies have shown that both 

circulating CXCL10, and polymorphisms of interleukin (IL)-28B, could be used as 

prognostic markers of efficacy of HCV therapies [30-33]. Other studies have also shown 

that HCV clearance by direct-acting antiviral (DAAs) therapies decreases circulating CXCL10 

levels [34].  

HCV infection regulates a number of microRNAs (miRNAs), which are able to exert an effect 

on liver biology and pathology [35, 36]. In HCV infected hepatocytes miRNAs can directly 

regulate HCV replication through interaction with the HCV genome [37]. Moreover miRNAs 

induced by HCV can indirectly control critical virus-associated host pathways, inducing liver 

fibrosis, cirrhosis, and/or hepatocellular carcinoma [38, 39]. Recently, circulating miRNAs are 

emerging as biomarkers for HCV associated disorders. Considerable efforts have been 

employed to investigate the change in the circulating miRNA pattern in HCV infection and 

related diseases [40, 41]. Distinctive circulating miRNA patterns are associated with 



HCV infection and HCV-related hepatic diseases [42], suggesting that miRNAs are non-

invasive biomarkers to evaluate the diagnosis and prognosis of these disorders [43]. 

Treatment for HCV infection has recently progressed from poorly tolerated IFN-α therapy and 

with very low cure rates, to highly effective oral DAAs with cure rates above 90% for almost all 

patients, and with little adverse effects [44-46]. Understanding of the viral lifecycle, with 

recognition of targets that could be inhibited by small molecules, has permitted the 

production of DAAs, that inhibit protease, non-structural 5a (NS5A), and nucleotide 

and non-nucleotide polymerase [47-49]. Initially DAAs have been used with Pegylated-

Interferon-α  (Peg- IFN) and Ribavirin (RBV), and subsequently in combination without the 

need for IFNs [50]. Rational DAAs combinations have overcome the major challenge of rapid 

emergence of drug resistance [51]. Second-generation DAAs agents in each class have 

further improved safety and efficacy profiles, reducing drug-drug interactions and adverse 

side effects [52-54].  

In the new era of DAAs therapy in which elimination of HCV infection is a real possibility, HCV 

infected cell culture models are important for the identification of therapeutic targets, testing 

candidate drugs, and profiling of therapeutic strategies [55-58]. The development of protocols 

to grow HCV in culture and generate hepatocyte cell lines from specific individuals holds great 

promise to investigate the mechanisms exploited by the virus to spread the infection and the 

host factors critical for HCV replication and propagation, or resistance to infection [59-63]. 

These models could be used for the development of drugs targeting host factors essential for 

virus replication, holding great promises in further increasing treatment efficacy [64].  

The most common HCV-EHMs of HCV infection is MC syndrome (MCs), an immune-complex 

mediated vasculitis, involving joints, skin, peripheral nerves, and internal 

organs. In the majority of individuals, MCs shows a mild, slow-progressive clinical course 

needing only symptomatic treatments [65-68]. However the etiologic therapy was considered 

the first-line option in MCs patients and, in the past two decades, antiviral treatment with RBV 

plus Peg-IFN represented the standard of care [69]. Rapidly progressive, diffuse MC 



vasculitis with multiple organ involvement may be successfully treated with aggressive 

immunosuppressive and anti-inflammatory therapies, mainly based on cyclophosphamide or 

rituximab, high dose corticosteroids, and plasmapheresis [70]. The recent introduction of 

DAAs substantially changed the treatment of HCV infection. DAAs anti-HCV therapy seem to 

be safe and effective in patients with MC and MCs from the virological and clinical points of 

view, thus confirming the key role played by HCV eradication in inducing MC remission [71- 

73]. The combination, or a sequence, of antiviral and 

immunosuppressive treatments has been shown to  be  useful in the therapy of MCs 

patients with major clinical manifestations. In the clinical practice, treatment of MCs 

needs to be personalized for each patient in relation to clinical symptoms and the 

severity of the diseases [74-76]. 

On the bases of epidemiological data, biological investigation, as well as clinical observations, 

HCV is increasingly recognized to be involved in the pathogenesis of a variety of histological 

types of B-cell non-Hodgkin' s lymphoma (B-NHL) [77-80]. To understand the 

mechanisms related to HCV persistence, and lymphomagenesis, is necessary to 

develop new therapies with the aim to prevent and to treat B-NHLs [81, 82]. It has been 

also observed that at least some types of HCV-related indolent B-NHLs disappear after 

successful antiviral treatment, strongly reinforcing the hypothesis of a HCV-induced 

lymphomagenesis [83]. The role of DAAs in the prevention and treatment of HCV associated 

lymphoproliferation remains to be clarified [84, 85].  

Other HCV-EHMs are various rheumatic disorders (mainly arthritis, sicca syndrome, 

osteosclerosis, etc) [86-91]. The management of HCV-associated rheumatic diseases is 

particularly difficult because of the coexistence of complex immunological disorders and 

HCV infection, and needs to be personalized in each patient [92-94]. 

The occurrence of autoimmune thyroiditis, hypothyroidism, papillary thyroid cancer and type 2 

diabetes is also more frequent in CHC: these disorders can significantly impact the quality of 



life of HCV patients, the course of the disease, and the effect of therapies [95-98]. The role of 

DAAs in the prevention and treatment of these endocrine disorders remains to be clarified.  

In this issue, we focus on the recent advancements in the viral and host factors influencing 

their interplay, highlighting current knowledge in the inflammatory processes (and the inherent 

network of cytokines and chemokines) associated with CHC, and illustrate the multifaceted 

HCV-EHMs, that heavily affect the quality of life of HCV patients. We then describe how the 

development of reliable systems to propagate the virus in vitro and the identification of small 

molecules targeting key steps of HCV replication have led to substantial advancements in the 

therapy. Finally, we give an overview of current approaches for treatment and of novel DAAs 

targeting various stages of the life of HCV and holding promise to eradicate HCV 

infection. Moving to IFN-free therapies should offer new treatments for resistant HCV 

genotypes, and for ineligible patients or patients failing to respond to prior therapies. The 

knowledge of viral and host factors associated with the clearance of HCV is very 

important to personalize the therapy in each patient, increasing the sustained virologic 

response rates, preventing the progression of hepatic disease, and reducing adverse 

side effects. 
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