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Abstract:

In this paper we investigate economies of scale and specialization of European uni-
versities. The proposed approach builds on the notion that university production is
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universities data on inputs and outputs with bibliometric data on publications, impact
and collaborations. We pursue a cross-country perspective; we include subject mix and
introduce a robust modeling of production trade-offs. Finally we test the statistical
significance of scale and specialization and find that they both have a significant impact
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specialization has not a significant impact on the efficiency of the research model.
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1 Introduction

This paper addresses two contested issues that are at the core of recent debates in higher

education and makes the argument that, in order to address them sensibly, there is a need

for the integration of existing data and for new elaboration techniques. Thus, although the

ultimate issue is a policy one, the approach we suggest makes use of an integrated dataset

at European level and applies new techniques1. To be more precise: we argue that without

an investment into data integration (including data retrieval and data cleaning) and new

informetrics, these policy issues cannot be addressed appropriately.

The two issues under discussion can be formulated as follows:

(a) how does the size of universities influence their efficiency? In other terms, are there

economies of scale in higher education?

(b) is there a need to reconsider the main organizational model of universities, which is

predominantly based on generalist institutions covering many disciplines? In other terms,

are there economies of specialization in higher education?

These two questions come after the higher education system, in advanced countries, has

reached the point of massification (i.e. enrolment rates exceeding 50% of the relevant age

cohort), while the public budget has not grown correspondingly. Universities are put under

pressure to use existing resources, namely staff and funding, in the most efficient way. At

the same time there is an increased pressure from the research side: the expectations of

society and policy makers on the contribution of research to societal problems have grown

significantly, there are new entrants in scientific arena (particularly from Asia) and the com-

petition for funding has increased sharply. This situation creates a classical issue in public

policy: we have two valuable goals (serving better mass educational needs and producing

good research) between which there is tension. The trade-off between the two goals would

require a grounded theory of production, which can be framed in the economic language. If

we assume that universities are units of production, then these issues require investigating

the existence and importance of economies of scale and specialization. Do we need to in-

crease the size of universities, in order to enhance their efficiency? Do we need to increase the

specialization of universities, favoring focused institutions (e.g. technical universities, med-

1In Bonaccorsi, Daraio and Simar (2013) we analyse the impact of scale and specialization on the research

efficiency of European universities. In this paper we extend the analysis including additional bibliometric

indicators such as Normalized impact, high quality publications, Excellence rate and international collab-

orations. Moreover, we test the impact of scale and specialization by applying state of the art approaches

(Daraio and Simar, 2014).
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ical schools, business schools) against the more traditional generalist institutions, covering

many unrelated disciplines?

The paper is organized as follows.

In the next section, the relevant literature as well as the main research questions ad-

dressed in the paper are outlined. Section 3 describes the main data used in the analysis,

providing details on the integration of the different sources. Section 4 provides a simplified

graphical illustration of university’s activities and their trade-offs. Section 5 provides the

methodological background, while Section 6 reports the main results and Section 7 concludes

the paper. Appendix A describes the factorial analysis conducted on the data and provides

some details on the calculation of gaps.

2 Economies of scale and specialization in higher edu-

cation

2.1 General introduction

In this section we offer a short and focused survey of the literature.

Economies of scale refer to the reduction of cost per unit of output when the size of

operations increases, mainly due to the reduction of unitary fixed costs, but often due also

to lower variable costs.

Economies of specialization occur (arise) when the cost of producing a specific good by

a specialized firm is lower than the cost of the same good made by a firm which produces

together two or more goods.

Before entering into the details, let us remind that the issue of economies of scale and

specialization can be addressed according to two different approaches.

The first has worked directly with cost functions as the dual of production functions. Here

the main difficulty has been the modeling of a production function which is, by definition,

not only multi-input (as any production function), but also multi-output. The traditional

econometric techniques used to estimate economies of scale in a monoproduct setting were

clearly inadequate. After the introduction of a full scale theory of the multi-product firm

(Baumol, Panzar and Willig, 1982), several appropriate econometric techniques have been

introduced (see Bonaccorsi and Daraio (2003, 2004) for an overview).

The second approach is based on the estimation of technical efficiency of the units under

analysis, namely the best use of resources (inputs) to realize their outputs. In this line of re-

search, the existence and magnitude of economies of scale and specialization is derived from

the difference between the efficiency scores of observed Decision Making Units (DMUs) and

the scores that would be obtained if the inputs (and/or outputs) were aggregated. In non-
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parametric efficiency analysis, traditionally based on a Data Envelopment Analysis (DEA)

approach (see e.g. Fare, Grosskopf and Lovell, 1994), economies of specialization are com-

puted on the base of the comparison of the frontier of specialized firms and the frontier of

multiproduct firm constructed from the sum of specialized firms. This approach, however,

introduces in the analysis additional assumptions (which rely on the convexity and addi-

tional assumptions on the hypothetical firm, and the sample size bias). Recent works in

efficiency analysis (see e.g. Daraio and Simar, 2007) propose the conditional nonparamet-

ric analysis to investigate the impact of scale and specialization, which are considered as

external- environmental factors that are neither inputs nor outputs under the control of the

DMU, but might influence the performance of the units. In this paper we follow the fore-

going approach, extending the efficiency methodology to robust and conditional directional

distances and implementing a recently introduced test (Daraio and Simar, 2014), based on

the bootstrap, to assess the significance of scale and specialization impact.

2.2 Research questions

In the following we proceed with the description of the literature and explicit the main

research questions we address in the paper.

2.2.1 Are larger universities more efficient?

It is not surprising that a large literature has addressed the issue of economies of scale in

higher education. Brinkman and Leslie (1986) review the first 60 years of empirical studies,

most of which from United States. After almost 20 years, Cohn and Cooper (2004) have

offered a comprehensive survey of findings from the cost function perspective, while Johnes

(2006) has reviewed the technical efficiency literature. In general the literature has addressed

the issue of increasing returns to scale in the two core production processes of universities,

namely teaching and research.

Teaching is a complex process, whose technology is yet poorly understood. As several

authors have noted (e.g. Hanushek, 1986; Worthington, 2001; Johnes, 2006), we really do

not have a full scale theory of higher education teaching. Teaching is subject to economies

of scale since expanding the size of the class of students expands the output (number of

students attending a lecture) while keeping constant the input (the lecturing staff). At the

same time teaching also require one-to-one interaction with students, such as examinations

and tutoring, for which costs are roughly proportional to the output. The exact combination

between these two opposite forces is responsible for the overall effect. As a matter of fact,

the existence of economies of scale in undergraduate teaching is largely established in the

literature (Cohn, Rhine and Santos, 1989; Dundar and Lewis, 1995; Glass, McKillop and
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Hyndman, 1995; Hashimoto and Cohn, 1997; Koshal and Koshal, 1999; Laband and Lentz,

2003).

Research is an even less understood production process, for which the arguments for

economies of scale are mostly linked to indivisibilities in cognitive capital (minimum scale of

research teams) and above all in physical capital (scientific instrumentation). A dedicated

literature has examined this issue repeatedly and has been reviewed by SPRU (Science Policy

Research Unit, Sassex University) in the early 2000s at a request of the UK government (von

Tunzelmann et al., 2003). The overall synthesis was that we do not have compelling evidence

on the positive impact of the size of research organizations on scientific productivity.

It has also been noted that size may be associated to other factors, such as the pressure

for visibility and the quality of the intellectual environment (Qureshi et al., 2003; Seglen and

Aksnes, 2000; Bonaccorsi and Daraio, 2005). More recently, Carayol and Matt (2006) have

stressed that it is not size per se but the adoption of policies for the recruitment of high

quality researchers that make a difference. Horta and Lacy (2011) have found that researchers

in larger research units have indeed a larger network of scientific contacts and tend to publish

more at the international level. Combining the two production processes, a summary of

findings from Brinkman and Leslie (1986) is that economies of scale in higher education are

pervasive, although they tend to be exhausted at a relatively small scale, in the order of 1000

full time equivalent students (FTE). Confirming the survey from Brinkman and Leslie (1986)

and the results of Cohn, Rhine and Santos (1989), Johnes (2006) find economies of scale at

the level of university, but claim that they are exhausted at relatively small size. These results

are generally confirmed by stating that the main sources of economies of scale for universities

come from undergraduate education, while research contributes little to increasing returns or

even is subject to decreasing returns, with postgraduate education somewhat in the middle.

Recently Brandt and Schubert (2014), by using data on Germany, show that research is

subject to diminishing returns to scale at the level of research team. At the same time,

universities offer an umbrella to research teams which is subject to increasing returns to scale,

due to shared infrastructures, better efficiency in administrative activities and reputational

effects. This might explain the dominant organizational model of universities, based on a

number of semi-autonomous research teams, which however accept to operate under the

administrative umbrella of universities.

2.2.2 Are specialised universities more efficient?

It is well known that Europe has invented the modern organizational model of universities,

called Humboldtian model (Schimank and Winnes, 2000). There are two elements in the

model: the coexistence of teaching and research, and the generalist orientation, namely the

coexistence of many disciplines within the same institutional umbrella. The coexistence of
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teaching and research can be explained, in economic terms, with the existence of economies of

scope, given that the same staff can produce both outputs and may optimize the use of time

budgets by alternating these activities. Most studies on economies of scope between research

and teaching confirm this assumption (Johnes, 2004; Longlong et al., 2009), although it is

possible that after a certain level, heavy teaching loads reduce scientific productivity (Izadi

et al., 2002; Worthington and Higgs, 2011). Much less explored is the issue we analyze here,

that is, whether there is an impact on efficiency from the specialization of universities, that

is, the orientation to do research and teaching in a few areas, as in specialized universities,

as opposed to the traditional model of broad coverage. This is a relatively unexplored issue.

Is there an advantage in doing research in a field, provided that there are other fields under

the institutional and administrative umbrella of the same university? In Bonaccorsi and

Daraio (2007) an investigation on the generalist model of European universities is offered,

based on a descriptive analysis. No explanation is given for the prevalence of the generalist

model. In this paper we employ directional distance techniques to explore whether efficiency

is influenced by various degrees of specialization, using a quantitative variable, which is

more informative than previous descriptive analysis. In particular, following Lopez-Illescas

et al. (2011), we use the Gini index of institution’s disciplinary specialization to characterize

generalist versus specialist universities.

2.3 Generalizability and policy relevance of results

While the existing literature, briefly presented in the previous section, deliver a rich array

of implications, it mostly comes from country-level studies. Therefore they are subject to

serious problems of generalizability, which is a major concern for policy making if decisions

must be made based on the evidence of other, poorly comparable, institutional contexts. In

addition, existing studies do not offer separate analyses by disciplinary fields. The first wave

of studies has been dealing with USA and Anglosaxon countries, partly due to better avail-

ability of data, partly as a consequence of major structural reforms of the university system

starting in the 1980s in countries such as the United Kingdom, New Zealand, Australia and

Canada.

The dominance of Anglosaxon countries in the literature creates an issue of generaliz-

ability. The issue at stake is not, as it is often stated, the role of the private sector, which

is instead marginal, for example, in UK or Canada. The issue is that, according to OECD,

these countries have an institutional framework and labour market conditions that allow a

much higher mobility of inputs, such as staff, as well mobility of students. In addition, the

autonomy of universities in recruitment decisions is quite high. Placed under conditions of

competition for funding, it is likely that universities in these countries enjoy more room for

structural adaptation. Not surprisingly, almost all studies on UK and Australia concluded
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that universities operate at fairly high levels of efficiency. Among multi-country studies the

generalizability is still limited, either because of a small set of countries, or because of small

numbers of country observations. An example of study with a cross-country perspective is

Joumady and Ris (2005), which is however based on a survey of graduates across European

countries. Bonaccorsi and Daraio (2007) examined a dozen of countries based on data com-

ing from the Aquameth project, the first research project that collected comparable data on

European universities (see Bonaccorsi and Daraio, 2007; Daraio, Bonaccorsi et al. 2011).

There are also limits in generalizability due to disciplinary differences. Dundar and

Lewis (1995) argued that without a careful distinction among disciplines it is impossible to

derive meaningful implications. According to them ‘the most important problem seems to

be that different production technologies among academic disciplines may generate problems

in analyzing departmental cost functions. For instance, results can be quite misleading if a

single cost function is estimated for both chemistry and English departments because they

have quite dissimilar production functions’ (Dundar and Lewis, 1995, p. 120). The impact of

disciplinary specialization on university performance has been also analysed in Lopez-Illescas

et al. (2011) and in Moed et al. (2011) that rightly emphasized that subject mix should be

taken into account in the assessment of university performance.

This paper builds upon the first studies that have explicitly adopted a multi-country

perspective (Daraio et al. 2011), benefiting from the construction of the Eumida dataset

(Daghbashyan, Deiaco and McKelvey, 2014; Bonaccorsi, Daraio and Simar, 2014). Moving

further in the direction of generalizability, this paper also introduces, although only partially,

a cross-discipline perspective. This will be done in the modeling part below in which we use

the specialization index (SPEC), that is a proxy of the wideness of activities carried out).

3 Data

3.1 Description of datasets

We exploit a large database, recently constructed by the EUMIDA Consortium (European

Universities Micro Data, EUMIDA, 2010) under a European Commission tender, supported

by DG EAC (Directorate General for Education and Culture), DG RTD (Directorate General

for Research and Innovation), and Eurostat.

This database is based on official statistics produced by National Statistical Authori-

ties in all 25 EU countries (with the exception of France and Denmark) plus Norway and

Switzerland. The EUMIDA project, relying on the results of the Aquameth project (Bonac-

corsi and Daraio, 2007; Daraio et al. 2011) collected two data sets. Data Collection 1 (DC 1)

collected a set of uniform variables on all 2457 higher education institutions that are active
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in graduate and postgraduate education (i.e. universities), but also in vocational training2.

Accordingly, all institutions delivering ISCED (International Standard Classification of Ed-

ucation) 5a and 6 degrees are included, and the subset of those delivering ISCED 5b degrees

that have a stable organization (i.e. mission, budget, staff). Those institutions altogether

constitute the perimeter of higher education institutions (HEIs) in Europe.

Data Collection 2 (DC 2) instead included a larger set of variables on the 850 research

active institutions that are also doctorate awarding3. Interestingly, the number of HEIs

research active is 1364, but only 850 of these are also doctorate awarding institutions. This

means that a significant portion of research active institutions is found outside the traditional

perimeter of universities, that is in the domain of non-university research (particularly in

countries with dual higher education systems).

Data refer to 2008, or to 2009 in some cases.

We integrate the EUMIDA data, in particular the DC 2 dataset, with the Scimago data

(Scimago Institutional Rankings, SIR World Report 2011, period analyzed 2005-09) which

include institutions having published at least 100 scientific documents of any type, that is,

articles, reviews, short reviews, letters, conference papers, etc., during the period 2005-2009

as collected by Scopus database. From Scimago data we used the following variables:

- number of publications in Scopus (PUB);

- Specialization index (SPEC) of the university that indicates the extent of thematic con-

centration / dispersion of an institution’s scientific output; its values range between

0 to 1, indicating generalist vs. specialized institutions respectively. This indicator

is computed according to the Gini Index and in our analysis it is used as a proxy of

the specialization of the university. We follow previous bibliometric studies by Lopez-

Illescas et al. (2011) and Moed et al. (2011) that showed the usefulness of categorizing

universities in generalist versus specialist by means of the Gini index. See also Egghe

and Rousseau (1990) for more details on disciplinary specialization indices.

- International Collaboration (IC), a university’s output ratio produced in collaboration

with foreign institutions.

- High Quality Publications (Q1), a university’s ratio of publications published in the first

quartile (25%) in their categories, according to the Scimago journal rank indicator.

- Normalized Impact (NI), it shows the relation between an institution’s average scientific

impact and the world average (that is set to one).

2These data are available at: http://datahub.io/it/dataset/eumida (last accessed 12 November 2014).
3These data are not publicly available. They are available for research purpose only to the Eumida

project team.
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- Excellence Rate (EXC), it is the percentage of publications included in the 10% of the

most cited papers in their respective scientific fields.

3.2 Data Integration

The integration of the previously described databases has been carried out within the ac-

tivities of the Smart.CI.EU (Sapienza microdata architecture for education, research and

technology studies. A Competence-based data Infrastructure on European Universities).

Smart.CI.EU is an experimental data infrastructure created within a research project funded

by Sapienza University of Rome and owned at the Department of Computer, Control and

Management Engineering Antonio Ruberti, Sapienza University of Rome. Its creation has

been made possible by the integration of several data sources coming from different projects.

The matching of the EUMIDA and Scimago databases has been completed in two stages:

• automatic matching between the fields “organisation” contained in Scimago world rank

2011 and the fields “institution name” and “English institutions name” from EUMIDA

dataset;

• manual matching of additional institutions whose denominations were slightly different

and not recognised automatically but were clearly recognisable (identifiable) on the

base of expert knowledge. Moreover, several cases of changed names (as EUMIDA

data refer to year 2008) have been checked case by case from institutions’ website.

All the organisations comprised in the higher education sector in Scimago dataset for

the countries covered by EUMIDA were matched, with the exception of some institutions

for which the lack of some information made it impossible to do the matching, such as one

university in Cyprus (because EUMIDA dataset includes only the Greek part of the island);

five universities in Spain; four organisations in UK; one college in Ireland; one military

university in Poland; five institutos politecnicos in Portugal; three universities in Romania.

In a few cases (that are Linnaeus University in Sweden and Aalto University and Uni-

versity of Eastern Finland in Finland) organisations included in the Scimago dataset are the

results of a process of merger of two or more HEIs included in EUMIDA. In these cases the

total number of publications (output) has been attributed to EUMIDA HEIs proportionally

to their respective number of academic staff, while qualitative indicators have been set the

same for all.

About university hospitals which are labeled under a separate sector in the Scimago

dataset, they were not integrated with the related university organisation in order to avoid

distortion due to different organisational setting in different countries. This because it is

difficult to disentangle which part of hospital staff and expenditures are included in the
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related university balance account. Furthermore there is no unambiguous list of university

hospitals in Europe and this creates additional problems.

Summing up, as the description reported above clearly shows, the combination of different

databases requires several steps and assumptions and should be done carefully. In particular

in the Scimago database sometimes a university hospital is separated from its university

while in others it is not. Similar problems might arise for those governmental agencies that

are strictly linked with universities. It may happen in fact that national authorities that

provide data for Eumida dataset will include the personnel counts in the ACSTAF variable

while it is not clear which approach is taken by Scimago.4 Such discrepancies may introduce

distortion in the results of the analysis carried out.

3.3 Variables

In this section we describe the main variables that were retained from the previously inte-

grated databases for the following analysis. It is important to notice that, for the selected

variables, not all the European institutions whose data were integrated reported all the in-

formation required and this is the reason why the number of observations retained for the

elaborations was reduced to 400 observations for which all the information were available.

Table 1 defines and describes the inputs, outputs and conditioning factors that are used

in the following analysis.

4We thank an anonymous reviewer for having raised this important point.
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Table 1: Definition of inputs, outputs and conditioning factors

Input Definition

Output

Conditioning factor

Input

NACSTA (x1) Number of non academic staff

ACSTAF (x2) Number of academic staff

PEREXP (x3) Personnel expenditures (PPS)

NOPEXP (x4) Non-personnel expenditures (PPS)

FINP Input factor including:

NACSTA, ACSTAF, PEREXP, NOPEXP

Output

TODEG5 (y1) Total Degrees ISCED 5

TODEG6 (y2) Total Degrees ISCED 6 (Doctorate)

PUB (y3) Number of published papers (Scimago)

IC (y4) International collaboration (Scimago)

NI (y5) Normalized impact (Scimago)

Q1 (y6) High quality publications (Scimago)

EXC (y7) Excellence rate (Scimago)

FRES Factor of volume of research including: TODEG6, PUB

FQUAL Factor of quality of research including: IC, NI, Q1, EXC

Conditioning factors

SIZE (z1) It is the sum of

Total Students enrolled ISCED 5 and

Total Students enrolled ISCED 6

(used in log in the elaborations)

SPEC (z2) Proxy of Specialization

Gini index of the scientific output (Scimago)

Source: Eumida DC2 and Scimago.

As commonly used in applied econometrics, the size is used in the analysis as the log of

the total volume of the activity, that in our case is proxied by the sum of enrolled students

at all undergraduate and post-graduate levels (SIZE ).

Table 2 reports some descriptive statistics (25th percentile, median, average, 75th per-

centile and standard deviation) on the sample that will be analysed in the paper. Figure 1

illustrates the nonparametric kernel distributions of the SIZE and SPEC variables.
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Table 2: Descriptive statistics

Variable 25th Perc Median Average 75th Perc Std

NACSTA 562 1040 1497 1811 1408

ACSTAF 686 1164 1470 1973 1058

PEREXP 54600000 103370000 142580000 187810000 121660000

NOPEXP 27250000 58100000 87111000 100320000 94925000

TODEG5 1748 3205 3881 4992 3146

TODEG6 55 126 204 278 215

PUB 1505 3609 5571 7564 5626

IC 33 38 39 44 9

NI 1.10 1.30 1.30 1.50 0.31

Q1 44 53 51 60 13

EXC 11 15 15 20 6

SIZE 10038 16718 20259 24559 17485

SPEC 0.60 0.70 0.69 0.80 0.13

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

0.5
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1

1.5
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2.5

3

Figure 1: Nonparametric kernel distribution of SIZE (top panel) and SPEC (bottom panel).

From a preliminary data analysis, we found that PUB and TODEG6 were highly corre-

lated; that NACSTA, ACSTAF, PEREXP, NOPEXP were also highly correlated and that

IC, NI, Q1, EXC were also highly correlated. We found correlations higher than 85% in

all cases, and for this reason, in the analysis we used their aggregating factors, respectively
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FINP, FRES and FQUAL. Additional details on the factorial data analysis are reported in

Appendix A.

4 Production Models of European universities

In this section we present the modeling strategy of our approach. While this section intro-

duces the main ideas of directional distances through a simple illustration, Section 5 details

the methodology of directional distances and their estimation.

Figure 2 illustrates the flexibility of directional distance functions to model internal trade-

offs between dimensions of the academic production. For each unit in the sample, we can

assess its performance (or technical efficiency) considering also its input structure, along

the research dimension (RES), considering given the teaching that it is carrying out. This

corresponds for unit u to move towards u”. Alternatively, we could investigate the perfor-

mance of u along the teaching dimension (TEACH) keeping constant (or considering given)

its research activity (this corresponds to assess the performance of u in reaching the efficient

frontier from u to u”’ in Figure 2). Finally, unit u could be assessed on how it is perform-

ing in doing both teaching and research, that corresponds in Figure 2 to move towards the

efficient frontier from u to u’.

RES

TEACH

U

U’

U’’

U’’’

INPUT

Figure 2: An illustration of tradeoffs in the academic production.

This is the basic illustration of the activity. Obviously, the efficiency processes described

in Figure 2 may be affected by some external factors that are, at least in the short run, not
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under the control of the units. This leads to the inclusion in the analysis of these factors

whose potential impact on the performance we are interested in estimating.

In this paper we are going to evaluate the impact of SIZE and SPEC. These factors

indeed might influence the probability of each unit (university) of being dominated (that

is of lagging far away from the efficient boundary of the production frontier). We apply a

directional output distance function, in which the direction to approach the efficient frontier

is the same for each university in our sample (‘egalitarian approach’) and it is set to the

European median. We think that this choice reflects the important European Research Area

pillar of “cooperation and competition” because the comparison in terms of target is with

respect to a median value calculated over a highly skewed distribution.

We would like to estimate also the efficiency of the research activity itself, but this was not

possible because the available inputs data refer to all the activities of universities including

also teaching. We would like also to include information on the third mission activity (i.e.

knowledge transfer, collaborations with industry, patents and so on), but data were not

available for all the universities in our sample.

We analyse the impact of scale (as proxied by the SIZE variable) and specialization (as

proxied by the SPEC variable) on two models of university production in Europe, namely5:

Humb Model Full model of academic production, in which the targets to reach the frontier

are set in terms of teaching, research and quality. The following variables are used:

Input : FINP, Outputs : TODEG5, FRES, FQUAL; external factors : SIZE, SPEC.

Res Model Research model, in which teaching is considered given, and targets to reach

the frontier are set in terms of research and quality. The following variables are used:

Input : FINP, Outputs : TODEG5 is kept constant, FRES, FQUAL; external factors :

SIZE, SPEC.

In this paper, following also existing literature (e.g. Johnes, 2006, and Daghbashyan

et al. 2014) we approximate the output of the teaching activities by the total number of

degrees produced. Of course, more detailed information about employment rate of graduated

students or wages for the first job would provide additional information on the teaching

quality and its alignment with the needs of labor market. Unfortunately, comparable data

at European level on placement of students are not available.

5Bonaccorsi, Daraio and Simar (2014) instead analyse the efficiency of a teaching model.
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5 Method: a flexible approach based on Directional

Distances

We apply an activity analysis framework within the theory of production (see Shephard,

1970), in which producing units (hereafter “unit”), realize a set of outputs Y ∈ Rq by

combining a set of inputs X ∈ Rp. The technology is characterized by the attainable set T ,

the set of combination of (x, y) that are technically achievable

T = {(x, y) ∈ Rp × Rq|x can produce y}. (1)

We know that under the free disposability assumption for the inputs and the outputs, the

set can be described as6:

T = {(x, y) ∈ Rp × Rq|HXY (x, y) > 0}, (2)

where HXY (x, y) is the probability of observing a unit (X, Y ) dominating the production

plan (x, y), i.e. HXY (x, y) = Prob(X ≤ x, Y ≥ y).

The free disposability we used in this paper is the assumption that if (x, y) ∈ T then

(x̃, ỹ) ∈ T for all x̃ ≥ x and all ỹ ≤ y. It is a minimal assumption generally made on

production processes.

The efficient boundary of T is of interest and several ways have been proposed in the

literature to measure the distance of the unit (x, y) to the efficient frontier. One of the most

flexible approach is the directional distance introduced by Chambers et al. (1996) (see also

Färe et al., 2008). Given a directional vector for the inputs dx ∈ Rp
+ and a direction for the

outputs dy ∈ Rq
+, the directional distance is defined as

β(x, y; dx, dy) = sup{β > 0|(x− βdx, y + βdy) ∈ T}, (3)

or equivalently, under the free disposability assumption (see Simar and Vanhems, 2012)

β(x, y; dx, dy) = sup{β > 0|HXY (x− βdx, y + βdy) > 0}. (4)

Hence, we measure the distance of unit (x, y) to the efficient frontier in an additive way and

along the path defined by (−dx, dy).

This way of measuring the distance is very flexible and generalizes the “oriented” radial

measures initiated by Farrell (1957). Indeed by choosing dx = 0 and dy = y (or dx = x and

dy = 0), we recover the traditional output (reps. input) radial distances. The flexibility is

that we might have some elements of the vector dx and/or of the vector dy be set to zero, for

6See Daraio and Simar (2007) for further details and illustrations.
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focusing on the distances to the frontier along certain particular paths (for instance if some

inputs or outputs are non-discretionary, not under the control of the manager, etc.).

Consistent nonparametric estimators of Equation (4) have been proposed in Simar and

Vanhems (2012); Daraio and Simar (2014) analyse in details the case when some directions

are set to zero, as well as statistical issues in this context.

For a discussion about the choice of a direction, see Färe et al. (2008). The direction

can be different for each unit (like in the radial cases) or it can be the same for all the units.

Färe et al. (2008) argue that a common direction would be a kind of egalitarian evaluation

reflecting some social welfare function. Researches often select in the latter case dx = E(X)

and dy = E(Y ), where in practice empirical averages are chosen.

In this paper we select the same direction for all the units, setting a reference with respect

to the European standard. The reference is made with respect to the median value of each

output calculated at European level over the analysed sample.

Quantile frontiers for evaluating the performance of firms by using oriented radial mea-

sures (input or output) have been extended to directional distance in Simar and Vanhems

(2012) and this extension is quite natural after the representation given in (4). In place of

looking to the support of the distribution HXY we benchmark the unit against a point which

leaves on average α × 100% of points above the frontier. This benchmark is the α-quantile

frontier. Formally the α-order directional distance is defined as

βα(x, y; dx, dy) = sup{β > 0|HXY (x− βdx, y + βdy) > 1− α}. (5)

Here a value βα(x, y; dx, dy) = 0 indicates a point (x, y) on the α-quantile frontier, a positive

value is a point below the quantile frontier and a negative value is a point above the quantile

frontier. We see clearly that when α → 1 we recover the full frontier definition.

The projection of any (x, y) ∈ T on the estimated α-quantile frontier is given by the

points (x̂∂
α, ŷ

∂
α) defined as

x̂∂
α = x− β̂α(x, y; dx, dy)dx, and ŷ∂α = y + β̂α(x, y; dx, dy)dy. (6)

Since the resulting estimator will not envelop all the data points, the resulting frontier is

more robust to outliers and extreme data points than its full version above.

This is the approach we implemented in our empirical analysis.

5.1 Second stage regression: impact of scale and specialization on

efficiency

Badin et al. (2012) propose a general nonparametric methodology to investigate the impact

of external-environmental factors on the efficiency scores of units. This framework is com-

pletely different with respect to the traditional regression-based framework. Our objective
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is not to estimate the impact of the external factors on the outputs of the analysed units.

On the contrary, we estimate nonparametrically a conditional probability law were the ex-

ternal factors can and in general should be related in a linear or even in a nonlinear way

with both the inputs and the outputs. We estimate the impact of the external factors on

the performance of the units, that is their ability to operate close to their efficient frontier

(estimated by using their input-output relationship). This approach allows us to capture

also the presence of nonlinear impact of the considered external factors.

Daraio and Simar (2014) extended this methodology to conditional directional distances

to investigate the effect of z on the mean of the conditional directional distances.

This method contributes to the literature on the so called two-stage approach, where

estimated unconditional efficiency scores (input or output oriented) are regressed in a second

stage against the Z variables. However we know from the literature (see Badin et al. 2014

for a detailed explanation and more references) that this is valid only under a ‘separability’

assumption where it is assumed that the frontier of the attainable set is not changing with

the values of z.

As indicated in Badin et al. (2012), the use of the estimated conditional efficiency scores

for this second stage regression, does not require this restrictive assumption.

Hence, following Daraio and Simar (2014), the flexible second stage regression can be

written as the following location-scale nonparametric regression model:

βα(X, Y ; dx, dy|Z = z) = µ(z) + σ(z)ε, (7)

where ε and Z are independent with E(ε) = 0 and V(ε) = 1. This model permits to detect the

location µ(z) = E(βα(X,Y ; dx, dy|Z = z)) and the scale effect σ2(z) = V(βα(X,Y ; dx, dy|Z =

z)).

These two functions can be estimated non parametrically from a sample of observations{
Zi, β̂α(Xi, Yi; dx, dy|Zi)

}
, i = 1, . . . , n by using local constant smoothing techniques to

guarantee positive estimates of both functions, as suggested by Daraio and Simar (2014).

The analysis of the estimated µ̂(z) as a function of z will enlighten the potential effect

of Z on the average efficiency, with the help of σ̂(z) which may indicate the presence of

heteroskedasticity.

5.2 Testing the significance of scale and specialization

Here we apply the approach of Daraio and Simar (2014) which adapted to the efficiency setup

the test proposed by Racine (1997). The test statistics is based on the partial derivatives of

the mean function µ(z) = E(βα(X,Y ; dx, dy|Z = z)) that are:

ηj(z) = ∂µ(z)/∂zj, for j = 1, ..., r. (8)
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Without loss of generality, the null hypothesis (H0) to test is that the first r1 components

of Z do not affect µ(z) against the alternative hypothesis that some of these components of

Z affect µ(z).

The constructed test statistics is given by:

τ =
1

n

n∑
i=1

r1∑
j=1

[ηj(Zi)]
2, r1 ≤ r. (9)

We will reject the null in favor of the alternative when τ is too big. Both the p-value of

H0 and critical values of any size are determined by the bootstrap. See Daraio and Simar

(2014) for further details on how the bootstrap is implemented.

We point out that for statistical significant impact we mean that there exists a statisti-

cal significant “influence” or “association” of the investigated variables on the performance

(input-output relationship) of the analysed units, as we do not consider any causal relation

here.

5.3 Analyzing the gaps

It may be useful for policy makers to measure, in original units of the inputs and of the

outputs, the estimated distance of an observation to the frontier. This allows us to appreciate

the efforts to be achieved in increasing the outputs and reducing the inputs to reach the

efficient frontier. For the full frontier these measures are given by what we call the “gaps”

to efficiency. They are directly given by:

Gx = β̂(x, y; dx, dy)dx, and Gy = β̂(x, y; dx, dy)dy. (10)

For the partial frontiers, the gaps appear as being the difference between (x, y) and the

projections on the α-quantile frontier given in (6). They are particularly useful to detect

outliers in the direction given by (dx, dy). This will be the case in the input direction if

Gα,x = β̂α(x, y; dx, dy)dx has some elements with large negative value: the point (x, y) is well

below the estimated α-frontier in the input direction, and/or a very large negative value

in some elements of the vector Gα,y = β̂α(x, y; dx, dy)dy warns a point being well above the

quantile frontier in the output direction.

As explained in Section 4, in the empirical analysis that follows in the next sections we

pursue an output orientation approach aiming at estimating the efforts needed to increase

the outputs of the units, given the level of their inputs used, and hence we estimate the

robust gaps Gα,y in terms of percentage values of the analysed outputs.
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6 Results

In this section we summarize the main results of the analysis carried out.

6.1 Impact of scale and specialization on efficiency

In this subsection we report the results of the impact of scale and specialization analysis

obtained for the HUMB model.

Figure 3 illustrates the results of the nonparametric regression of the estimated µ(z) in

function of SIZE and SPEC.
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Figure 3: HUMB MODEL. Nonparametric regression of the estimated µ(z) versus Z1 =

SIZE and Z2 = SPEC. Note that SIZE is expressed in log.

To provide a graphical illustration in two dimensions of the effect of one variable on

the efficiency, one can use partial regression lines of efficiency over one of the variables

for a fixed level of the second one. In addition, pointwise bootstrap error bounds can be

displayed to appreciate visually the variability of the estimates. This is common practice in

nonparametric statistics, as suggested e.g. in Racine (2008).

In Figure 4 the nonparametric regression of conditional efficiency vs SIZE is reported, so

the partial impact of SIZE is represented by fixing the SPEC value at its median level. We

observe an inverse U-shaped impact of SIZE (given that SPEC is fixed at its median) already

visible on Figure 3. To read the plot we have to remind that the smaller the level of βα the
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greater the efficiency of the unit is. It appears that there is a lot of uncertainty when Z1 is

smaller than 8 (corresponding to exp(8) = 2981 total enrolled students), as pointed out by

the large bootstrap error bounds, because there are few and heterogeneous small universities

in our sample.

Figure 4 shows that the partial impact of scale on the efficiency of the European univer-

sities analysed is not linear: it appears that size has a negative impact up to a log of SIZE

of around 10 (corresponding to a total number of enrolled students of 22,026) and after that

it has a positive impact. As we shall see below in this section, the nonlinear impact of size is

statistically significant, considered in isolation, in both HUMB and RES models. Moreover,

it is significant also jointly considered with SPEC in the HUMB model. We observe that,

thanks to the flexibility of our approach, we are able to shed light on the behavior of SIZE

over its range of variation, which is not constant but varying, and are able to appreciate the

variability of the estimates of its impact.
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Figure 4: HUMB MODEL. Partial nonparametric regression of conditional efficiency as a

function of SIZE, helding constant to its median value SPEC. Bootstrap error bounds are

reported to illustrate the variability of the estimates. Note that SIZE is expressed in log.

In Figure 5 the nonparametric regression of conditional efficiency vs SPEC is displayed.

The partial impact of SPEC is represented by fixing the SIZE value at its median level.

Bootstrap error bounds are also reported again to illustrate the variability of the estimates.

We observe that SPEC has an even clearer inverse U-shaped impact with respect to SIZE;

again to read the plot we have to remind that the smaller the level of βα the greater the

efficiency of the unit is. By inspecting Figure 5 it appears that also the partial impact

of specialization on the efficiency of the European universities analysed is not linear. As
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observed for size, also specialization has a negative impact up to around 0.65 and after that

it has a positive impact. As we shall see below in this section, the nonlinear impact of

specialization is statistically significant, considered both in isolation and jointly considered

with SIZE in the HUMB model, however it is not significant for the RES model. See below

for more details.
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Figure 5: HUMB MODEL. Partial nonparametric regression of conditional efficiency as a

function of disciplinary specialization (SPEC), helding constant at its median value SIZE.

Bootstrap error bounds are reported to illustrate the variability of the estimates.

We run the analysis also for the RES model and obtain very similar results. See Figure

6.
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Figure 6: RES MOD. Nonparametric regression of the estimated µ(z) versus Z1 = SIZE

and Z2 = SPEC. Note that SIZE is expressed in log.

Here below we report the results of the testing of scale and specialization carried out for

the full Humb Model, with B = 1000 bootstrap loops. The test has been implemented

by following the approach of Daraio and Simar (2014) described above. We investigate the

impact of both external factors Z together and also each factor separately.

The obtained results confirm that SIZE and SPEC have a statistically significant impact

both together and in isolation. Indeed we have:

size and spec Z = (Z1, Z2), the p-value of H0 at 5% is 0.036, observed value of the test

statistics τ̂ = 0.0245, the Bootstrap-based critical value at 5% is 0.0228; given that the

p-value of H0 is less than 0.05 we reject H0.

size Z = Z1, p-value (at 5%) of H0 is 0.000001, the observed value of the test statistics

τ̂ = 0.001619, the Bootstrap-based 5% critical value is: 0.00079; given that the p-value

of H0 is much less than 0.05 we reject H0.
7

spec Z = Z2, p-value (at 5%) of H0 is 0.031, the observed value of the test statistics

τ̂ = 0.02291, the Bootstrap-based 5% critical value is 0.02031; given that the p-value

of H0 is less than 0.05 we reject H0.

7Note that at first sight this result may seem in contrast with the large error bounds in Figure 4. It is

not. Remember that Figure 4 illustrates the error bound of the partial regression of the efficiency on SIZE at

a fixed value (median) of SPEC. When integrating the analysis over all values of SPEC we find a significant

effect.
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From this analysis, we can conclude that for the HUMB model, the nonlinear impact of

scale and specialization, illustrated in Figure 3, is statistically significant both considering

size and specialization alone as well as jointly.

In the following we summarize the results for the RES model:

size and spec Z = (Z1, Z2), the p-value of H0 (at 5%) is 0.223, observed value of the test

statistics τ̂ = 0.02996, the Bootstrap-based critical value at 5% is 0.04769; given that

the p-value of H0 is higher than 0.05 we cannot reject H0.

size Z = Z1, p-value (at 5%) of H0 is 0.007, the observed value of the test statistics τ̂ =

0.00202, the Bootstrap-based 5% critical value is: 0.001245; given that the p-value of

H0 is lower than 0.05 we reject H0.

spec Z = Z2, p-value (at 5%) of H0 is 0.186, the observed value of the test statistics

τ̂ = 0.02794, the Bootstrap-based 5% critical value is 0.0422. Given that the p-value

of H0 is higher than 0.05 we cannot reject H0.

The obtained results show that the specialization of the universities does not play a

significant role on the research performance model.

Interestingly, our results for the RES model seem to support previous results (Moed et

al. 2011) which found that the concentration of research among institutions is not associated

with better overall performance. Our analysis indeed may reflect previous findings that “it is

multidisciplinary research that is the most promising and visible at the international research

front, and that this type of research tends to develop better in universities specializing in a

particular domain and expanding their capabilities in that domain towards other fields. If

specialization is too strong, an institution may not be able to pick up the developments in

emerging topics that require a structural contribution from fields in which it hardly shows

activity and does not have expertise” (Moed et al. pag. 657). Further research is needed

to confirm this hypothesis. Nevertheless, by applying a different approach and integrating

bibliometric data with input data at institutional level we were able to find some support to

this hypothesis. This result is encouraging and shows the usefulness and the importance of

integrating data from different sources to analyze complex input-output relationships at the

institutional level.

6.2 Efficiency results and analysis of gaps

The analyses have been carried out on the entire European sample. In this section we

summarize the obtained results grouping them by country, and report the European average

computed over the analysed sample to facilitate the interpretation. We remind again that
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to read the results, the smaller the level of the efficiency the greater the efficiency of the unit

(or group of units) is.

Table 3 reports in the columns: Country, Country code (C. code), number of observations

(# obs), number of dominating units (# dom) which is the average number of units which

dominates the universities of a given country, empirical estimates of the probability of the

universities of a country of being dominated (ĤXY , that is defined in Section 5), robust

directional measure of efficiency conditioned to SIZE and SPEC, our Z variables (β̂α,XY |Z)

and the standard deviation of the conditional efficiency scores (Std of β̂α,XY |Z) in the last

column.

The last line of the Table shows the average at European level. An outline of the efficiency

analysis results on the Humboldtian model could be obtained by comparing the average

performance at national level with the European average.

Table 3: Efficiency Results for Humb Model: averages by country.

Country C. code #obs #dom ĤXY βα̂,XY |Z Std of βα̂,XY |Z

Austria AT 14 4.21 0.0105 0.040465 0.071259

Belgium BE 4 2.75 0.0069 0.061991 0.087600

Switzerland CH 11 1.18 0.0029 0.008743 0.028996

Czech Republic CZ 14 3.00 0.0075 0.042476 0.061663

Germany DE 71 10.55 0.0263 0.153871 0.158692

Spain ES 47 6.15 0.0153 0.097338 0.106114

Finland FI 12 1.75 0.0044 0.012852 0.022466

Hungary HU 6 27.50 0.0686 0.209560 0.196387

Ireland IE 10 2.40 0.0060 0.033448 0.045473

Italy IT 60 4.23 0.0106 0.064099 0.090596

the Netherlands NL 13 3.46 0.0086 0.048254 0.105020

Norway NO 8 6.25 0.0156 0.115628 0.112975

Romania RO 14 1.86 0.0046 0.024394 0.052332

Sweden SE 17 1.71 0.0043 0.014079 0.037360

Slovakia SK 4 2.25 0.0056 0.013651 0.027301

United Kingdom UK 89 1.80 0.0045 0.027551 0.057940

All sample EU 400 4.96 0.0124 0.068804

Note: only countries with at least 4 observations are reported in the table.

The last line reports the average over the whole analyzed sample.

By inspecting Table 3 it appears that countries that are performing much better than

the European average are Switzerland, UK, Sweden, Slovakia, Belgium, Austria, Ireland,

the Netherlands, Czech Republic, Romania and Finland. The others follow, as it appears by

analysing the average over the country of conditional efficiency scores (β̂α,XY |Z). Only four
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countries score above the European average (having hence worst performance), including

Germany, which shows a strong influence on the European average. Obviously, these com-

parisons of country’s averages with respect to the European average should be taken with

care. It is in fact for this reason that we will report in the following the comparison on a

country base, showing the internal variability of the institutions within a country. This find-

ing deserves to be further investigated. Here we observe that there is a great heterogeneity

among German universities as well as the other three countries which perform worst than

the European average, namely Hungary, Norway and to a certain extent Spain, whose stan-

dard deviation of their respective conditional efficiency scores is 0.159 for Germany, 0.196

for Hungary, 0.11 for Norway and 0.106 for Spain. More generally, a certain degree of het-

erogeneity of the efficiency within countries is observed also for all the European countries,

including well performing ones, such as the Netherlands which has a standard deviation of

its efficiency scores of 0.105. See also below where we provide some discussion on the results

obtained in terms of gaps which are reported in Table 4.

Table 4 reports the estimated gaps in percentage of the outputs produced by the units

to reach the robustly estimated efficient frontier.

Looking at Table 4 by country, some findings are striking. In the HUMB model the tar-

gets are expressed in terms of education, research volume and research quality. Switzerland

(CH) is the single most efficient country, with negligible gaps in either education and re-

search. Finland, Sweden, the Netherlands, Slovakia and United Kingdom are also countries

in which the magnitude of gaps is very small. Among the least efficient countries Hungary

and Norway stand up. Other countries exhibit highly differentiated patterns of gap by type

of output. For example, Germany looks less efficient in undergraduate education (with a

large gap at 0.27), while in postgraduate education and publications it shows higher levels of

efficiency. Germany might also improve in the upper tail of scientific production (gap in the

EXC indicator= 0.15). Italy, in turn, has large gaps in both undergraduate and postgrad-

uate education, while indicators of research efficiency are much better. Overall, European

universities could produce more educational output, both undergraduate and postgraduate,

and also get some improvement in research volume and quality.

Nevertheless, we point out that some comparability problems at the country level may

still exist, and may result in an extremely high amount of gaps, as is the case for Norway.
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Table 4: Gaps in percentages for Humb Model: averages by country.

Country #obs #DEG5 #DEG6 #PUB IC Q1 NI EXC

AT 14 0.13 0.11 0.03 0.03 0.04 0.04 0.04

BE 4 0.04 0.03 0.02 0.05 0.06 0.06 0.05

CH 11 0.02 0.00 0.00 0.01 0.01 0.01 0.01

CZ 14 0.06 0.06 0.11 0.06 0.08 0.07 0.13

DE 71 0.27 0.08 0.11 0.16 0.15 0.15 0.15

ES 47 0.12 0.17 0.14 0.11 0.10 0.12 0.13

FI 12 0.03 0.02 0.03 0.01 0.02 0.01 0.02

HU 6 0.25 0.30 0.26 0.21 0.23 0.32 0.26

IE 10 0.04 0.31 0.22 0.03 0.05 0.04 0.05

IT 60 0.14 0.23 0.08 0.08 0.06 0.07 0.07

NL 13 0.05 0.03 0.02 0.04 0.05 0.04 0.06

NO 8 0.20 1.98 0.24 0.11 0.12 0.11 0.15

RO 14 0.02 0.25 0.19 0.03 0.09 0.05 0.13

SE 17 0.03 0.01 0.01 0.01 0.01 0.01 0.01

SK 4 0.03 0.03 0.04 0.01 0.02 0.02 0.02

UK 89 0.02 0.06 0.06 0.03 0.03 0.03 0.04

EU 400 0.11 0.15 0.09 0.07 0.08 0.08 0.09

Note: only countries with at least 4 observations are reported in the table.

The last line reports the average over the whole analyzed sample.

Table 5 reports the results of the RES model. In the columns there are: Country code,

number of observations (# obs), number of dominating units (# dom), empirical estimates

of the probability of being dominated (ĤXY ), robust directional measure of efficiency con-

ditioned to SIZE and SPEC, our Z variables (β̂α,XY |Z) and the standard deviation of the

conditional efficiency scores (Std of β̂α,XY |Z) in the last column.

In the RES model the teaching output at undergraduate level is considered fixed. This

model addresses the question whether some improvements in research can be obtained with-

out compromising the educational mission. The last line of Table 5 shows the average

efficiency of the RES model at European level. Table 6 shows that it might be possible to

increase greatly the doctoral output without compromising the undergraduate education.

This is a striking result for Europe. In large countries such Italy and Spain the gain might

be significant. Also, on average 10% improvement in both research volume and quality is

attainable without losses in educational output. By comparing the average performance at

national level with the European average, it seems that results for the Research Model are

similar to the ones obtained in the Humboldtian Model. We can observe an high heterogene-

ity of university performance within countries, as showed by the high standard deviation of
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the conditional efficiency scores reported in the last column of Table 5.

Table 5: Efficiency Results for Res Model: averages by country.

Country code #obs #dom ĤXY β̂α,XY |Z Std of β̂α,XY |Z

AT 14 4.21 0.0105 0.051877 0.082760

BE 4 2.75 0.0069 0.061991 0.087600

CH 11 1.18 0.0029 0.008743 0.028996

CZ 13 3.15 0.0079 0.094881 0.129447

DE 71 10.55 0.0263 0.163797 0.165207

ES 47 6.15 0.0153 0.123091 0.138990

FI 11 1.82 0.0045 0.027432 0.060782

HU 6 27.50 0.0686 0.371831 0.249816

IE 10 2.40 0.0060 0.048087 0.081392

IT 60 4.23 0.0106 0.089005 0.148184

NL 13 3.46 0.0086 0.059462 0.113649

NO 8 6.25 0.0156 0.143286 0.130379

RO 9 2.33 0.0058 0.037946 0.062224

SE 16 1.75 0.0044 0.021866 0.047697

SK 3 2.67 0.0067 0.043278 0.074959

UK 86 1.83 0.0046 0.039575 0.074117

EU 387 5.10 0.0127 0.090002

Note: only countries with at least 4 observations are reported in the table.

The last line reports the average over the whole analyzed sample.

Table 6 reports the estimated gaps in percentage of the outputs produced by the units

to reach the robustly estimated efficient frontier.
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Table 6: Gaps in percentages for Res Model: averages by country.

Country #obs #DEG5 #DEG6 #PUB IC Q1 NI EXC

AT 14 0.00 0.17 0.04 0.04 0.05 0.05 0.06

BE 4 0.00 0.03 0.02 0.05 0.06 0.06 0.05

CH 11 0.00 0.00 0.00 0.01 0.01 0.01 0.01

CZ 13 0.00 0.10 0.21 0.12 0.18 0.15 0.27

DE 71 0.00 0.09 0.13 0.17 0.16 0.16 0.16

ES 47 0.00 0.22 0.18 0.14 0.13 0.15 0.18

FI 11 0.00 0.04 0.04 0.03 0.03 0.03 0.04

HU 6 0.00 0.58 0.62 0.38 0.41 0.57 0.49

IE 10 0.00 0.49 0.36 0.04 0.08 0.06 0.09

IT 60 0.00 0.42 0.14 0.12 0.08 0.10 0.10

NL 13 0.00 0.04 0.02 0.05 0.06 0.05 0.07

NO 8 0.00 4.01 0.40 0.14 0.15 0.14 0.20

RO 9 0.00 0.36 0.29 0.05 0.14 0.08 0.21

SE 16 0.00 0.04 0.04 0.02 0.02 0.02 0.02

SK 3 0.00 0.08 0.14 0.03 0.07 0.07 0.08

UK 86 0.00 0.08 0.08 0.05 0.04 0.04 0.05

EU 387 0.00 0.26 0.14 0.10 0.10 0.10 0.13

Note: only countries with at least 4 observations are reported in the table.

The last line reports the average over the whole analyzed sample.

Summing up, the inspection of average efficiency values per country shows large differ-

ences due to the national context. Moreover, within each country there is an high degree

of heterogeneity in the performance as the high standard deviations (reported in the last

column of Table 5) show. The interpretation of these differences will require a dedicated

research effort.

A preliminary conjecture could be as follows. In order to make the best use of their

inputs, universities should be put in the position to move in their multidimensional strategic

space. This space includes inputs and outputs. Efficient universities are those that adjust

their mix of inputs in order to achieve the best possible mix of outputs. It is clear that

universities do not have full discretionary power over inputs and outputs, as our analysis has

clearly recognised. However, national contexts may provide more or less strategic autonomy,

that is, may support universities in their strategic positioning or may, on the contrary,

create legal and administrative constraints. Supporting the autonomy of universities in

strategic positioning is generally associated to two conditions. As for education, it requires

that universities are in the position to match appropriately the profile of students to the

teaching offering. While this may have different implications in different fields, there is

27



a well known general problem that cuts across fields of education and countries, namely

the role of professional education, also called vocational training. According to CEDEFOP

(2014), vocational education and training “aims to equip people with knowledge, know-how,

skills and/or competences required in particular occupations or more broadly on the labour

market”.

Some countries allocate vocational training to separate institutions, while others add it

to the general mission of universities. In the latter case universities have, in general, larger

student loads and lower teaching efficiency, given the mismatch between the educational

needs of students and the rigidity of the university offering. As for research, efficiency

requires that public research funding is allocated according to criteria that give a premium to

research quality. This follows the adoption of evaluation exercises, or formula-based funding

criteria based on research quality. Universities that are placed in an institutional context

based on research quality funding develop over time strategies to improve their positioning.

This adjustment may require years, if not decades, to take place. This conjecture might

help to explain the findings. Interestingly, the countries that perform well in both models

(Humboldtian model and Research model) share, by and large, two institutional features.

On the one hand, they have since many years dual or binary higher education systems,

in which vocational training is allocated to non-university institutions (or is delegated to the

private sector as in UK). Dual systems are in a better position to adjust their inputs and

outputs of education, because university students self-select themselves against a well artic-

ulated and prestigious non-university higher education system. On the other hand, many

of these countries have implemented since long time university funding systems in which

there is a significant performance-based component, largely dependent on research, or in

which formalized research assessment exercises have been carried out. Strikingly, no large

continental European country shows up among the best performers. Germany has indeed a

vibrant vocational training system, but its university sector is somewhat less competitive.

Italy and Spain do not have a dual higher education system, so that the efficiency of un-

dergraduate education is reduced by a large number of dropouts. In addition, they have

started to implement competitive funding of universities only recently. Thus not only the

best performers but also the countries with significant gaps seem to confirm the conjecture.

Nevertheless, further research is clearly needed to confirm this conjecture.

7 Conclusions

In this paper we analysed the issue of scale and specialization in European universities by

applying state of the art directional distances techniques on an original database built by in-

tegrating input/output university data with bibliometric indicators. Moreover, we improved
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over previous studies adopting a cross-country perspective, applying robust nonparametric

estimators and testing for the significance of scale and specialization effects by using the

bootstrap.

We find that size and specialization have a significant impact on the efficiency of the

Humboldt model, whilst specialization has not a significant impact on the efficiency of the

research model. By applying a different approach and integrating bibliometric data with

input data at institutional level we were able to find some support to previous research on

the importance of multidisciplinary research that is the most promising and visible at the

international research front (Moed et al. 2011). This evidence is encouraging and shows the

usefulness and the importance of integrating data from different sources to analyze complex

input-output relationships at the institutional level. Nevertheless, further research is needed

to confirm the preliminary findings of this paper.

Although the data we have used come from a feasibility study, that is, even if the data

have been extensively examined by experts within the Eumida project, they have not been

subject to data quality analysis and systematic checks by the National Statistical Authorities,

which however provided them.

Further developments, in progress, are directed to develop a robust methodology for

the data quality analysis specifically tailored for input/output data coming from different

heterogeneous sources.
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A Appendix on Technical details on factorial analysis

and gaps calculation

It is well known that nonparametric efficiency analysis gains in precision when working in

space with lower dimensions (this is the usual “curse of dimensionality” of nonparametric

techniques, see e.g. Daraio and Simar, 2007, for a discussion). In the application reported in

this paper, the original data are transformed before entering into the analysis, to reduce the

dimension of the problem (by using input and/or output factors as defined in Daraio and

Simar, 2007). In this case of course, once the gaps have been computed for the variables used

in the analysis, the researcher is willing to evaluate the corresponding gaps in the original

inputs and outputs. This can be done by transforming back the gaps in the factors into the
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original units. We briefly explain how to achieve this.

Suppose we are able to reduce the dimension among a selection of inputs, because they

are highly correlated. Denote the corresponding matrix of selected inputs by X̃ that has n

rows (the observations) and p̃ columns (we could follow exactly the same procedure for a

subset of highly correlated outputs Ỹ ). In this method (see e.g. Daraio and Simar (2007);

Härdle and Simar, 2012), the highly correlated p̃ columns can be replaced, without much

loss of information by a single new variable through a linear combination. The best linear

combination is given by the eigenvector of the matrix X̃ ′X̃ corresponding to its highest

eigenvalue. We call this unique linear combination the “input-factor” FX̃ . The ratios of the

largest eigenvalue over the sum of all the p̃ eigenvalues allows us to appreciate the loss of

information due to the reduction of dimension. In practice, this ratio should be large, say

above 0.85, meaning that more than 85% of the total information shared by the p̃ original

inputs is retained in this unique input-factor FX̃ . Note also that if the columns of X̃ are in

different units, we scale them by their standard deviations to obtain unit free variables more

adapted to linear combinations. The formal steps of this dimension-reduction are as follows:

[1] If needed, scale the columns of X̃: X̃s = X̃diag(1./sx̃), where diag(.) is a diagonal

matrix, ./ is the Hadamard element-wise division between the vector of ones and the

vector sx̃ which is the vector of the empirical standard deviations of the p̃ columns of

X̃.

[2] The input factor is given by FX̃ = X̃sa1 where a1 ∈ Rp̃ is the eigenvector of X̃ ′
sX̃s

corresponding to its largest eigenvalue λ1.

[3] The percentage of inertia of this factor (percentage of information contained in the

factor) is given by λ1/(λ1 + . . . + λp̃). This percentage should be high enough to

validate the procedure (say, above 80–85%).

In particular, for the inputs, we replace the 4 scaled inputs by their best (non-centered)

linear combination, defined as FINP , as described in Table 1. In doing this analysis, we

control that the information we loose in aggregating the variables is not too high. We also

control the correlation of the resulting univariate input factor with the 4 original inputs,

that should be high.

The obtained results are the following: FINP = 0.48x1+0.56x2+0.52x3+0.44x4, where

we see that the factor is a weighted average of the 4 inputs. FINP explains 94% of total

inertia of original data (correlations of the FINP with the original inputs are 0.93, 0.91,

0.98, 0.92). We follow the same procedure with the outputs. The results for the two factors

are: FRES = 0.70y2 + 0.71y3, FQUAL = 0.56y4 + 0.51y5 + 0.56y6 + 0.33y7, where FRES

and FQUAL are defined in Table 1. FRES explains 96% of total inertia of original data
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(correlations of the FRES with the original data are 0.96 and 0.96), while FQUAL explains

98% of total inertia of original data (correlations of FQUAL with original values are 0.7, 0.9,

0.9, 0.9).

So, in the analysis, the factor FX̃ will act as a single observed input and will be combined

with other inputs (or other input factors) and outputs (or other output factors) along the

lines of the techniques developed above. The gaps obtained at the end are thus in the units

of the factors FX̃ used and not in the units of the original variable X̃. We know that the

value of the input factor variable on the efficient frontier is F̂ ∂
X̃

= FX̃ + GF . It is easy to

check that the coordinates of FX̃ in the original units of X̃s are given by FX̃a
′
1. For the same

reason, the coordinates of the frontier points are F̂ ∂
X̃
a′1, so the measure of the gaps in the

units of X̃s are given by GX̃s
= GFa

′
1. Of course we have also to rescale back this solution,

if step [1] above has been used. Finally, an estimate of the gaps in the units of the original

p̃ input variables, for the n observations is given by:

GX̃ = GX̃s
diag(sx̃) = GFa

′
1diag(sx̃).
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